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Sammendrag

Termisk diffusjon er et facinerende fenomen med mange mulige, fremtidige anvendelsesomr̊ader.
Fenomenet observeres i blandinger som utsettes for en termisk gradient, hvor denne gradi-
enten kan drive en massefluks. Det ble først oppdaget av C. Ludwig, og senere undersøkt
nærmere av C. Soret allerede sent p̊a 1800-tallet. Siden den gang har mye forskning blitt
investert i å forsøke å forst̊a og beskrive det som n̊a ofte kalles Soret-effekten. Ikke minst
har man lenge forsøkt å utvikle modeller for å kunne kvantitativt prediktere hvor sterkt
masse- og varmestransport kobler i et gitt system. Likevel har til dags dato ingen generelt
anvendbar og p̊alitelig modell blitt presentert i den åpne litteraturen.

Moderne utvikling innen b̊ade nano- og bioteknologi, samt hydrogen- og CO2 lagring,
energiteknologi og kjernekraft vil ha stor nytte av muligheten til å prediktere virkningen
av termisk diffusjon. Derfor har dette arbeidet undersøkt to forskjellige fremgangsmåter
for å modellere termisk diffusjon.

Enskog-løsningene til Boltzmannlikningene for hardkulesystemer har tidligere blitt vist å
gi gode prediksjoner for transportkoeffisienter i lavtetthetsregimet. I dette arbeidet eval-
ueres Enskog-løsningene for Mie fluider. Dette resulterer i svært nøyaktige og p̊alitelige
prediksjoner for transportkoeffisienter i gassfasen. Det vises at Mie-potensial-parametre
tilpasset til likevektsdata ved bruk av SAFT-tilstandslikninger kan brukes i kombinasjon
med Enskog-løsningene for å prediktere transportkoeffisienter med høy nøyaktighet. Dermed
kan Enskog-løsningene for Mie-fluider brukes som et bindeledd mellom modellering av
likevekts- og ikke-likevektsfenomen.

Prediksjonene til Enskog-løsningene for Mie-fluider har blitt sammenliknet med predik-
sjonene for harde kuler. Det demonstreres at løsningene for Mie-fluider fanger opp
b̊ade temperatur- og sammensetningsavhengigheter som ikke fanges opp av løsningene
for harde kuler. Fordi disse avhengighetene fanges opp, gir denne nye implementasjo-
nen en vesentlig bedre representasjon av virkelige systemer enn de mer hyppig brukte
hardkuleløsningene.

I nylige arbeider har det blitt vist at en modell foresl̊att av Kempers for prediksjon av
Soretkoeffisienten er up̊alitelig. Den nye implementasjonen av Enskog-løsningene for Mie-
fluider har blitt brukt for å undersøke antakelsene bak Kempers-modellen i detalj. Det
vises at antakelsene vedrørende sammenhengen mellom kinetisk gassteori, likevektstermo-
dynamikk og den stasjonære tilstanden etter all sannsynlighet ikke holder. Følgelig bør
fremtidige forsøk p̊a å utvikle universelle modeller for Soretkoeffisienten fokusere p̊a andre
fremgangsmåter, heller enn å forsøke å utbedre Kempers-modellen.





Abstract

Thermal diffusion is an intriguing phenomenon with an extensive list of possible applica-
tions. The effect is that in which a temperature gradient drives a mass flux, originally
discovered by Ludwig and investigated further by Soret already in the late 19th century.
Much research has gone into understanding this effect, and specifically into quantitatively
predicting the coupling coefficient between heat and mass transport, still, no universally
reliable model has so far been presented in the open literature.

Current developments within nano-engineering, bio-processing, hydrogen and CO2 storage
and energy- and nuclear technology all warrant the development of an ability to accurately
predict the effects of thermal diffusion in complex systems. Thus, this work will investigate
more closely two approaches to modelling thermal diffusion.

The Enskog solutions to the Boltzmann equations for hard sphere systems have been
shown to give accurate predictions in the low density regime. In this work, explicit eval-
uation of the collision integrals using Mie potentials is shown to produce highly accurate
predictions of transport coefficients in the gas phase. Mie potential parameters obtained
by regressing SAFT-type equations of state to equilibrium properties are revealed to
give reliable predictions of transport coefficients when used with the Enskog solutions
for Mie fluids. This provides a powerful link between the modelling of equilibrium and
non-equilibrium properties using the same molecular interaction parameters and mixing
rules.

The predictions obtained from the Enskog solutions for Mie fluids are compared to those
obtained for hard spheres. It is found that the solutions for Mie fluids capture both
temperature- and compositional effects that are not captured by the hard sphere solutions.
This new implementation represents a significant improvement compared to the more
commonly used solutions for hard spheres.

In a recent work, a specific model proposed by Kempers has been shown to give highly
unreliable predictions of the Soret coefficient. The new implementation of the Enskog
solutions for Mie fluids is used to investigate the underlying assumptions behind the
Kempers model, and it is found that these assumptions likely do not hold. This analysis
shows that future development of models for the Soret coefficient in the liquid phase
should follow other approaches than that used by Kempers.
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enn jeg har plass til n̊ar jeg er hos deg. Jeg vil takke Mamma og Pappa for en konstant
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Symbols and abbreviations

Here an exhaustive list of all mathematical symbols used in this text, and their definitions,
is collected. Notation wise, boldface roman font, such as U is used for vectors, and calli-
graphic font, U is used for dimensionless quantities, except in the case of dimensionless
state variables, which are denoted with a star, such as T ∗. The length of a vector U is
denoted in serif font as U . Matrices are denoted with underlined boldface symbols, such
as BBB.

The symbols φ and ψ are reserved to indicate arbitrary, or placeholder, variables and
functions respectively.

Due to the large volume of notation, a few symbols carry several definitions, these are sum-
marised at the end of the table to facilitate differentiating them based on context.

Symbols used in the text

Symbol Description Unit

A Helmholtz energy J
Apqrℓ, A

′
pqrl, A

′′′
pqrℓ Specific scalar values, see Section 2.3.6 −

apq Specific integrals, see Eq. 2.83 m3 s−1

a
(p)
i Specific Sonine polynomials, see Eq. (2.74) −
b Impact parameter, see Figures 2.1 and 2.2 m
Dij Diffusion coefficient molm−2 s−1

D̂ Predicted diffusion coefficient molm−2 s−1

DT Thermal diffusion coefficient molm−2 s−1

D Velocity distribution response to d12, see Eq. (2.56) m
d12 Specific driving force, see Eq. 2.55 m−1

dp Sonine polynomial expansion coefficient, see Eq. (2.71) m
F Force N
f Exact velocity distribution function (vdf.) s3m−6

f (r) r-th approximation term to the vdf. s3m−6

g Relative particle velocity m s−1

g Relative particle speed m s−1

g Dimensionless relative particle speed −
H Enthalpy J

H
(1)
1 , H

(1)
12 , H

(12)
12 Specific bracket integrals, see Eq. (2.89) −

h Molar enthalpy Jmol−1

hi Partial molar enthalpy of species i Jmol−1

hx, hy Integration step, hx = Nxδx, hy = Nyδy −
I Several specific integrals, see Eq. (2.40) ∗
Ji Mass flux of species i molm−2 s−1

Jq Measurable heat flux Wm−2

J Several specific integrals, see Eq. (2.24) m−1

kB Boltzmann constant JK−1

kT Thermal diffusion ratio −
kij, ℓij Modified Lorentz-Berthelot mixing rule parameters −

* Various units



Continued

Symbol Description Unit

L Onsager phenomenological coefficient ∗
L Lagrange target function ∗
lp Sonine polynomial expansion coefficient, see Eq. (2.71) m
Mi mi/m0 −
mi Molar or particle mass of species i gmol−1 or kg
m0 Sum of particle masses kg

Number of species −
N Order of approximation −

Number of intervals −

NA Avogadros number mol−1

Nx, Ny Multiple of minimum integration step, δx, δy −
n Total moles in system mol
ni Moles of species i mol
n Vector of all mole numbers in system mol
p Pressure Pa
Q Canonical partition function −

R
Distance of closes approach between particles, see Figure 2.5 m
Universal gas constant Jmol−1K

r Positional vector m
r Polar coordinate radial position m
S Entropy JK−1

ST Soret coefficient K−1

S
(n)
m Sonine polynomial ∗
S Integration domain −
S∗ Discretised integration domain −
S∗
ij Continuous subdomain of S∗, see Eq. (3.19) −

S∆
ij Discretisation of S∗

ij, see Eq. (3.19) −
Sx
ij,S

xy
ij ,S

y
ij Specific domain mappings, see Eq. (3.22) −

T Thermodynamic temperature K
t Time s
Ui Peculiar speed of particles of species i ms−1

Ui Peculiar velocity of particles of species i, ui − un ms−1

Ūi Average peculiar speed of particles of species i ms−1

U Dimensionless peculiar speed of particles of species i −
un Mole average velocity of system m s−1

ui Speed of particles of species i ms−1

ūi Average speed of particles of species i ms−1

ui Velocity of particles of species i ms−1

up−HS Pseudo hard-sphere potential, defined in Eq. (3.30) J
uMie Mie potential, defined in Eq. (2.13) J
V Volume m3

v Molar volume m3mol−1

* Various units



Continued

Symbol Description Unit

vi Partial molar volume of species i m3mol−1

W
(ℓ)
ij (r) Dimensionless collision integral, see Eq. (2.91) −
xi Mole fraction of species i −
x Vector of all mole fractions in the system −

x, y, z Cartesian coordinates −
Z Compressibility factor −
αT Thermal diffusion factor −
αq Value of specific integrals, see Eq. (2.78) m4s−1

Γ Gamma function −
γ, ϕ Lagrange multipliers −
δq Value of specific integrals, see Eq. (2.76) m4s−1

δij Kronecker delta −
δx, δy Minimum integration step −

ϵ
Angular collision coordinate, see Figure 2.2 −
Small number, identified by sub- and superscripts *

ε Mie potential well depth J
ϵ̂ Descriptor for deviation −
η Packing fraction −
θ Angular collision coordinate, see Figure 2.1 −
Λ Thermal response function, see Eq. (2.47) K s
Λ Velocity distribution function response to ∇ lnT Km

Λ̃ Λ− kTD
λ Thermal conductivity Wm−1K−1

λ̂ Predicted conductivity Wm−1K−1

λa Mie potential attractive exponent −
λr Mie potential repulsive exponent −
µ Chemical potential Jmol−1

ρ Molar density or particle density molm−3 or m−3

ρm Mass density kgm−3

ρP Pearson correlation coefficient −
σ Mie potential parameter m
σHS Hard sphere diameter m
σ̄ij Average distance of closest approach, see Eq. (2.128) m
σ̄ Mixture average of σ̄ij, see Eq. (2.129) m
τ Kempers target function, see Eq. (2.146) JK−1

Φ Perturbation to the velocity distribution function −
φ Arbitrary variable ∗
χ Deflection angle, see Figures 2.1 and 2.5 −
χ̃ Density correction factor −
ψ Arbitrary function ∗

Ω
(ℓ)
ij (r),Ω

(ℓ)
i (r) Collision integral, see Eq. (2.91) and (2.92) m3 s−1

* Various units



Superscripts

Symbol Description Unit

CS Carnahan-Starling value −
E Enskog value −
HS Hard sphere −
ig Ideal gas state −
α, β Bulb indices −
∗ Reduced state point −
∞ Value at infinite dilution −

Operators

Cov[φ1, φ2] Covariance of φ1 and φ2 ∗
D Differential operator, see Section 2.3.1 −

Var[φ] Variance of φ ∗
∆
α,β

Difference between bulbs ∗
∆
ig

Difference between real and ideal gas state ∗
∆
HS

Difference between real and hard sphere state ∗
∆2
x Numeric second derivative along x-coordinate ∗

∆2
y Numeric second derivative along y-coordinate ∗

∆2
xy Numeric second cross derivative ∗
∇ Spatial gradient m−1

∇T Spatial gradient at constant temperature m−1

* Various units

Multiply defined symbols

Context and definition
Symbol Thermodynamics Kinetic gas theory Numerics

A Helmholtz energy - Interpolating coefficient
I - Specific integrals Numeric integral
N Number of species Order of approximation Number of intervals
R Gas constant Distance of closest approach -
x Mole fraction Mole fraction Cartesian coordinate axis
ϵ - Angular coordinate Small scalar
ρ Molar density Particle density -



Abbreviations

Abbreviation Definition

AAD Average absolute deviation
AD Average deviation
BH Barker-Henderson
CoV Centre of volume
CoM Centre of mass
CS Carnahan-Starling
EoS Equation of State
FoR Frame of Reference
HS Hard-sphere
LB Lorenz-Berthelot
MD Molecular dynamics
NDP Number of data points
rdf. Radial distribution function

SAFT Statistical associating fluid theory
vdf. Velocity distribution function
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1 Introduction

Thermal diffusion, also known as the Soret effect or Ludwig-Soret effect, is an intriguing
phenomenon that has interested researchers for over a hundred years since it was first
described by Carl Friedrich Wilhelm Ludwig in the mid 19th century. [1] The phenomenon
is that a mixture with an imposed temperature gradient will develop a concentration
gradient. This a consequence of the well known result from irreversible thermodynamics,
that there are cross-coupling coefficients between fluxes and driving forces. [2] The inverse
effect - a heat flux resulting from an imposed gradient in chemical potential is known as
the Dufour effect.

Onsager showed that the coefficient matrix that describes coupling of fluxes and forces
is symmetrical, introducing the famous Onsager reciprocal relations. [3] These relations
imply that the coefficient coupling a thermal gradient to a mass flux is equal to the
coefficient that couples a chemical potential gradient to a heat flux. This means that if
one is capable of modelling the Soret coefficient, the same model can be used to predict
the Dufour effect.

As modern science progresses, engineering applications also require ever increasing mod-
elling capabilities. Nano-scale precision is commonly used in the production and develop-
ment of modern technology, both in the texturing of surfaces and structuring of pores in
nano-porous materials. [4] At this scale small variations in concentration and temperature
lead to enormous gradients. In the design of battery electrodes and electrolytes, transport
properties are of major importance, and during operation a temperature gradient arises in
the battery due to the electrode reactions and internal resistance. [5] Further development
in these fields therefore warrants precise descriptions of the coupling of heat and mass
transfer.

Modern material applications on the macro scale require materials that can perform re-
liably when subjected to temperature gradients. [2] This includes the materials used in
reactors, both chemical and nuclear, as well as materials in pipes and containers contain-
ing fluids far from ambient temperature, and the coatings used on said materials. The
effects of thermal diffusion on these materials can be relevant even with small temperature
gradients, and can become highly significant in environments with large temperature gra-
dients. To further progress the development of materials subjected to extreme conditions,
increased precision in the modelling and prediction of diffusive behaviour is required.
Among prominent examples of conditions in which thermal diffusion is of significant im-
portance is in the storage of nuclear waste. [6] Temperature gradients resulting from the
activity of the partially active waste can lead to migration of radioactive materials and
thereby contamination of the environment.

In the field of Biochemical engineering, precise control of heat- and oxygen flow is re-
quired. [7] This is also a major hurdle in the up-scaling of bio-reactors. Specifically, the
transfer of oxygen into the reactor solution at a rate high enough to keep a high con-
centration of microorganisms alive is challenging. More precise modelling of how the
thermal gradients in the reactor and the mass transfer of oxygen interact may be of use
in overcoming this challenge.

In short, the list of possible future applications of a reliable model for thermal diffusion
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is long. [8] The current lack of such a model therefore warrants further study into the
fundamentals of developing a model for the Soret effect.

1.1 Modelling the Soret effect

A variety of different models have been proposed to quantitatively predict the Soret
effect. Already in the early 20th century Chapman and Enskog developed solutions to
the Boltzmann equations that provided results in agreement with experiment for dilute
gases. [9] These solutions are central to this work, and will be referred to as the Enskog
solutions. The theory was later extended to the denser gas region, however extending the
theory to the liquid phase has been shown to introduce significant difficulties. [10]

The most common method of employing the Enskog solutions is by evaluating the solu-
tions for mixtures of hard spheres. Approximating a real gas as a hard sphere system
greatly simplifies the evaluation of the solutions, and allows one to use tabulated values
for a range of otherwise complicated computations. [9,11] Additionally, one can find in the
literature a variety of correlations that intend to correct the tabulated hard sphere val-
ues such that they can be used with higher accuracy for real systems. [12] In fact, in the
making of this work, no attempts at explicitly employing a more advanced potential to
the Enskog solutions was found.

It has been suggested that in order to develop a model capable of reproducing the Soret
effect in both the gas and liquid phase, one can split the Soret effect in to several contribu-
tions. One manner of accomplishing this is splitting the Soret coefficient into an isotopic
contribution, SisoT , depending only on molecular masses and moments of inertia, and a
chemical contribution, SchT , depending on molecular interactions. [13] The Soret coefficient
is then ST = SisoT +SchT , Debuschewitz and Köhler have shown that this manner of splitting
the coefficient is likely reasonable. Others have proposed subdividing the Soret coefficient
into a reversible and an irreversible contribution, [14] or a kinetic and a configurational
contribution. [15].

Through the years, a series of different approaches to modelling thermal diffusion in dense
fluids have been proposed. The different approaches primarily have their roots in kinetic
theory, irreversible thermodynamics or statistical thermodynamics. [1] Among the more
prominent examples are the kinetic based model by Artola et al. [16] the Shukla and Firooz-
abadi model based on relating the Soret coefficient to the heats of transport, [17,18] and the
Kempers model, based in maximisation of the number of microstates in a system. [15,19]

There are other models than those presented here, the models by Artola et al., Kempers,
and Firoozabadi and Shukla are used here to exemplify the general frameworks within
which most models are developed. Different models developed within the same framework
tend to be similar in form, and exhibit similar challenges and advantages. [1]

The kinetic, or transition theory approach is based in the works by Prigogine and Tichacek. [20,21]

This approach seeks to describe thermal diffusion as an activated process, and to predict
the Soret coefficient from the activation free enthalpies of the components in a mixture.
The immediate difficulty within this approach is obtaining these activation energies, with
the result that they have been used by some as fitting parameters in the interpretation
of experimental data. [22] Additionally, the original models within this approach fail to
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account for the effects of the different molecular masses of the diffusing species, i.e. they
fail to capture the isotopic contribution. [23] Artola et al. propose a new derivation within
the transition theory framework that incorporates the isotope effect, and obtain the ac-
tivation energies from MD simulations. [16] They demonstrate that their model is in good
quantitative agreement with simulation results for some simple fluids, and also in some-
what qualitative agreement with measurements in the ethanol-water system. The issue
still remains, however, of obtaining the relevant activation energies for a given mixture
without requiring time-consuming simulations, and they propose that the reason for the
poor quantitative agreement with data in the ethanol-water system is due to a failure of
the potential model they use to obtain said energies.

Approaching the task of modelling the the Soret effect by use of the heats of transport
originated with the model by Denbigh. [1,24] Much work and improvement within this
framework has been made since, resulting in the model proposed by Shukla and Firooz-
abadi. [17,18] The challenge of applying this model in practice is similar to the challenges
of transition theory based models. Accurate values for the heats of transport are not
necessarily trivial to obtain. Additionally the model contains a parameter that is com-
monly treated as a fitting parameter, thereby somewhat reducing its predictive value.
Despite these challenges, it has been shown that the model can be capable of accurately
reproducing simulation- and experimental results in dense fluids. [23]

The statistical thermodynamic approach, here represented by the models proposed by
Kempers, [15,19] has its appeal in the lack of dubiously defined or hard-to-obtain parame-
ters. The underlying hypothesis of these models is that the steady state of a system is
characterised by a constrained maximum in the canonical partition function, such that by
minimising the Helmholtz energy of a system under certain constraints one can relate the
Soret coefficient to thermodynamic properties that may be obtained from an equation of
state (EoS). The original Kempers model has the issue of being dependent on accurate
values for the enthalpy of the reference state, but later Kempers proposed a modification
to the model that removes this inconsistency. Using kinetic gas theory to acquire the
value of the Soret coefficient in the ideal gas state, the dependency on the reference state
is removed. The derivation of this model is covered in more detail in Section 2.4.

It has been shown that the Kempers model is incapable of reliably predicting the Soret
coefficient of binary mixtures. [23,25,26] Kempers claims that the model is highly sensitive
to the EoS employed, and this has been confirmed in recent work. [25] An investigation was
made into the possibility of predicting whether the model would be capable of predicting
the Soret coefficient when coupled with a specific EoS, based on how the given EoS
performed in predictions of other thermodynamic quantities. No clear method of achieving
this was found, and questions were raised regarding the fundamentals of the statistical
thermodynamic approach used by Kempers. Additionally, the question of whether the
use of kinetic gas theory should in fact be coupled with an ideal gas reference state was
raised.

1.2 Scope

In this work, both the Enskog solutions and the Kempers model are investigated in greater
detail. As mentioned in the previous section, the Enskog solutions have been shown to give
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agreement with experiments in the low density region, but no attempts at explicitly solving
the necessary equations for more advanced potentials than the hard sphere potential have
been found in the litterature.

Successfully employing the Enskog solutions with a realistic intermolecular potential could
provide the possibility of reliably predicting diffusion coefficients, conductivities, thermal
diffusion coefficients and viscosity in the gas phase. This approach is explored using a Mie
potential to model intermolecular interactions, with potential parameters obtained from
the literature. The potential parameters are deliberately not used as fitting parameters,
as part of the goal is to assess feasibility of using parameters from the literature that have
been fit to equilibrium properties, rather than transport properties, in order to accurately
predict transport properties from the Enskog solutions.

With regard to the Kempers model, the implemented Enskog solutions are used to inves-
tigate the assumptions behind the model. In particular the usage of Kinetic gas theory,
and the assumption of the steady state as a constrained minimum in Helmholtz energy.
The goal of this part is to uncover whether this line of approach is feasible but requiring
improvement, or whether future work should be centred around other principles.
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2 Theory

In this section, the theory integral to this work are presented. The section begins with
more general considerations regarding the relevant flux-force relations and equations of
state. Later, important, established results from kinetic gas theory are introduced and
some derivations specific to this work are presented. Finally, the derivation and theoretical
basis of the Kempers model is presented.

2.1 Flux relations

In this section, relationships between various common transport coefficients and the phe-
nomenological coefficients of a binary mixture subjected to a thermal gradient are pre-
sented. Additionally, the relationships between various coefficients used to describe ther-
mal diffusion are given. For a binary system, the independent flux-force relations may be
written as

Jq = Lqq∇
(
1

T

)
+ Lqµ

(
− 1

T
∇Tµ1

)

J1 = Lµq∇
(
1

T

)
+ Lµµ

(
− 1

T
∇Tµ1

) (2.1)

where Jq is the measurable heat flux, and J1 is the molar flux of species 1 in the centre-of-
volume (CoV) frame of reference (FoR), T is the absolute temperature, µ1 is the chemical
potential of specie 1, and Lij are the phenomenological coefficients. ∇T indicates that the
gradient is taken at constant temperature. It is assumed that all transport coefficients are
independent of the fluxes and gradients, depending only on the state point of the system
i.e. linear response.

First the gradient in chemical potential is related to the mole fraction gradient. Expressing
the chemical potential as µ1 = µ1(T, p,x),

∇µ1 =

(
∂µ1

∂T

)

p,x

∇T +

(
∂µ1

∂p

)

T,x

∇p+
∑

i

(
∂µ1

∂xi

)

T,p

∇xi

(∇Tµ1)∇p=0 =

[(
∂µ1

∂x1

)

T,p

−
(
∂µ1

∂x2

)

T,p

]
∇x1

≡
(
dµ1

dx1

)

T,p

∇x1

(2.2)

where xi is the mole fraction of specie i and p is the pressure. The final equality defines

the quantity
(

dµ1
dx1

)
T,p

.

Now the phenomenological coefficients can be related to the Soret coefficient (ST,1), the
interdiffusion coefficient (D12) and the conductivity (λ). In the absence of a temperature
gradient Lµµ can be related to the diffusion coefficient as
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(J1)∇T=0 = −Lµµ
T

∇Tµ1 = − D12

x1x2
∇x1

Lµµ
T

(
dµ1

dx1

)

T,p

∇x1 =
D12

x1x2
∇x1

D12 =
1

T
x1x2Lµµ

(
dµ1

dx1

)

T,p

.

(2.3)

Further, in the state of no mass flux,

Lµq∇
(
1

T

)
+ Lµµ

(
− 1

T
∇Tµ1

)
= 0

−Lµq
T 2

∇T =
Lµµ
T

(
dµ1

dx1

)

T,p

∇x1

Lµq = −TLµµ
(
dµ1

dx1

)

T,p

∇x1
∇T

Lµq = TLµµ

(
dµ1

dx1

)

T,p

x1x2ST,1

ST,1 =
Lµq

TLµµ

(
dµ1
dx1

)
T,p
x1x2

.

(2.4)

Where the Soret coefficient is defined as

ST,i ≡ −
( ∇xi
xi(1− xi)∇T

)

J1=0

, (2.5)

with 1− x1 = x2 for a binary system. The conductivity, λ, is related to the phenomeno-
logical coefficients by observing the heat flux in the absence of a mass flux,

(
Jq
)
J1=0

= Lqq∇
(
1

T

)
+ Lqµ

(
− 1

T
∇Tµ1

)
= −λ∇T (2.6)

When J1 = 0, the chemical potential gradient can be related to the temperature gradient
as

J1 = Lµq∇
(
1

T

)
+ Lµµ

(
− 1

T
∇Tµ1

)
= 0

(
− 1

T
∇Tµ1

)
=

Lµq
LµµT 2

∇T
(2.7)

Inserting this into Equation (2.6) yields

−Lqq
T 2

∇T +
L2
qµ

LµµT 2
∇T = −λ∇T

λ =
Lqq
T 2

− L2
µq

T 2L2
µµ

.

(2.8)
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There are several common ways of quantifying thermal diffusion, one is through the Soret
coefficient. Alternatively, one may use the thermal diffusion coefficient DT , considering
the mass flux in the absence of a compositional or pressure gradient,

(J1)∇x1=∇p=0 ≡ − DT

x1x2
∇ lnT

= Lµq∇
(
1

T

)

=⇒ DT =
x1x2Lµq

T
.

(2.9)

The thermal diffusion ratio, kT ≡ DT

D12
is also in common use, related to the phenomeno-

logical coefficients as

kT ≡ DT

D12

=
Lµq

Lµµ

(
dµ1
dx1

)
T,p

= Tx1x2ST,1. (2.10)

Finally, the dimensionless thermal diffusion factor αT is commonly used, defined as

αT,i ≡
(

T∇x1
x1(1− x1)∇T

)

J1=0

= TST,1. (2.11)

2.2 Equations of state

An equation of state (EoS) is an equation that relates various thermodynamic state vari-
ables. [12] Often, these are expressed on the form p = p(n, V, T ;φ1, φ2, ...φn) where p, V, n, T
are the pressure, mole number, volume and temperature and the φi are parameters de-
termined either empirically, from first principles or a combination of the two. Common
manners of expressing an EoS are by the use of the compressibility factor Z ≡ pV

nRT
, or by

expressing pressure as a polynomial in 1
v
, where v denotes the molar volume, known as a

virial expansion.

An EoS worth mentioning is the Carnahan-Starling (CS) EoS for hard spheres. [27] This
equation is based on approximating the virial expansion in volume as an infinite geometric
series. Manipulation of this series yields an explicit expression for the compressibility
factor for hard spheres as a function of the packing fraction, η, given as

η =
πNAn

(
σHS

)3

6V
(2.12)

where σHS is the hard sphere diameter and NA is Avogadros number. Once an expression
for the compressibility factor is known, other properties of interest may be related by
various derivatives of this. This EoS has been proven to be highly accurate when measured
against MD-simulations of hard-sphere particles. [27] Nevertheless, several propositions of
extensions and modifications have been made to the theory from its introduction until
today, in attempts to further improve its performance. [28,29] An important area of usage
for the CS EoS is the ability to accurately represent a theoretical hard sphere state, which
can be a convenient reference state.
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A frequent starting point in the development of an EoS is describing the Helmholtz energy
(A) of the system, this can be done by regarding the intermolecular potential. Observable
properties, and other properties of interest, such as the entropy, chemical potential and so
on can be calculated in terms of the derivatives of the Helmholtz energy. This approach
opens several doors: The possibility to estimate molecular parameters from macroscopic
observations; [30] firm control of the microscopic description of the system; the option to
explicitly include quantum effects, [31] and the possibility of creating equations of state for
theoretical fluids, such as the Lennard-Jones fluid. Apart from accurately describing real
fluids, this means that one can construct an EoS that, in principle, should reproduce the
results of molecular dynamics (MD) simulations. This can be useful in the development
of thermodynamic models.

Many equations of state have been developed using the approach outlined above. Of
particular interest in the context of this work is the SAFT-VR Mie EoS. This EoS aims
to describe a fluid molecule as a chain of monomers interacting through a Mie-potential,
given as

uMie
ij = Cεij

[(
σij
rij

)λr,ij
−
(
σij
rij

)λa,ij]
, C =

λrij
λr,ij − λa,ij

(
λr,ij
λa,ij

) λa,ij
λr,ij−λa,ij

, (2.13)

where rij is the inter-particle distance, εij is the potential well depth, σij is the point at
which uMie

ij = 0, related to the particle sizes, and λr,ij and λa,ij are adjustable exponents.
Further, the Helmholtz energy of the fluid is related to the radial distribution function
(rdf.) of these monomers. Using the framework of Barker-Henderson (BH) perturbation
theory it can then be shown that the residual Helmholtz energy of the fluid may be
written as the sum of a hard sphere term, which may be determined by the CS EoS, [27]

and a series of perturbation terms. This EoS has been shown to give highly accurate
predictions of fluid-phase equilibria, pressure-volume-temperature (PVT) behaviour and
second-derivative properties for both pure fluids and mixtures.

When applying an EoS to a mixture, composition must be taken into account. This is
accomplished by the use of mixing rules. [12] A mixing rule is an equation that in some
way combines or averages the parameters of the components in a mixture such that an
EoS can be applied. These equations are to a large degree empirical in nature, and are
often expressed on the form

φm =
∑

i

∑

j

xixjφij (2.14)

where φm is some property of the mixture, and φii, φjj are the properties of the pure com-
ponents. Various combining rules can be chosen to determine the interaction terms φij.
An example of such combining rules are the Lorentz-Berthelot (LB) rules for combining
the parameters of a Mie-potential

σij =
1

2
(σii + σjj) , εij =

√
εiiεjj. (2.15)

These are of special significance in this work, and may be modified to create the more
general mixing rules hereafter termed the modified Lorentz-Berthelot rules, [32,33] given as
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σij =
1

2
(σii + σjj) , εij = (1− kij)

(σiiσjj)
3
2

σ3
ij

√
εiiεjj

λr,ij − 3 = (1− ℓij)
√

(λr,ii − 3)(λr,jj − 3)

(2.16)

where kij and ℓij are parameters that may be adjusted represent the behaviour of fluids
for which particle interaction is energetically favourable (kij > 0), stabilising the liquid
phase; or fluids for which interaction is less favourable (kij < 0), destabilising the liquid
phase and lowering the boiling point.

2.3 Kinetic gas theory

The kinetic theory of gases was initiated with the development of the Maxwell-Boltzmann
equations in the mid- to late 19th century. [9] The equations are based in statistical me-
chanics, and consider the effects of collisions between particles. The solutions to these
equations, developed by Chapman and Enskog in the early 20th century, are termed the
Chapman-Enskog or Enskog solutions, and the resulting theory is often referred to as En-
skog theory. This theory has later been expanded and elaborated upon by Chapman and
Cowling, among many others. [34,35] For the remainder of this work, the term Kinetic gas
theory will be used to refer to the theory as a whole, while the term Enskog solutions will
refer to the specific equations for the transport coefficients that are presented here.

The theory is highly mathematical in nature and at times difficult to follow. Nevertheless
the goal of this section is to present a pedagogical summary of the derivations and results
integral to this work. For a complete, rigorous explanation of the theory, the reader is
referred to the text by Chapman and Cowling. [9] It is worth mentioning that despite
being a compressed summary, this section is characterised by a large volume of notation
and definitions. This is due to the theory itself being characterised by multiply nested
definitions, and notation that requires explaining. Note also that the notation employed
here differs somewhat from that of Chapman and Cowling so as to remain self-consistent
within the current work.

This section consists of two main parts, first a general introduction to kinetic gas theory
will be given, then some derivations specific to this work are presented. The first part will
introduce the nomenclature and mathematical basis behind the Enskog solutions, without
regard to the intermolecular potential. In the second part the equations necessary to
evaluate the solutions for a Mie potential are derived.

The goal of this section is to arrive at a set of explicit equations that can be solved for the
interdiffusion- and thermal diffusion coefficients, such that a value for the Soret coefficient
in the ideal gas state, SigT , may be supplied to the Kempers-model, described in Section
2.4. This will require a rigorous definition of how these coefficients relate to the average
velocities of particles in a mixture. It may be fruitful to have the final result in mind when
reading, to have this as a reference point as new variables and functions are introduced.
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By the end of this section the integrals

D12 ≡
ρ1ρ2
3ρ

{D,D}

=
ρ1ρ2
3ρ3

∫
D1

∫∫∫
f
(0)
1 f

(0)
1′ (D1 +D1′ −D′

1 −D′
1′)bdbdϵdu1′du1

+
ρ1ρ2
6ρ3

∫∫∫∫
f
(0)
1 f

(0)
2 (D1 +D2 −D′

1 −D′
2)

2bdbdϵdu1du2

+
ρ1ρ2
3ρ3

∫
D2

∫∫∫
f
(0)
2 f

(0)
2′ (D2 +D2′ −D′

2 −D′
2′)bdbdϵdu2′du2

(2.17)

DT ≡ρ1ρ2
3ρ

{D,Λ}

=
ρ1ρ2
3ρ3

∫
Λ1

∫∫∫
f
(0)
1 f

(0)
1′ (D1 +D1′ −D′

1 −D′
1′)bdbdϵdu1′du1

+
ρ1ρ2
6ρ3

∫∫∫∫
f
(0)
1 f

(0)
2 (D1 +D2 −D′

1 −D′
2)(Λ1 +Λ2 −Λ′

1 −Λ′
2)bdbdϵdu1du2

+
ρ1ρ2
3ρ3

∫
Λ2

∫∫∫
f
(0)
2 f

(0)
2′ (D2 +D2′ −D′

2 −D′
2′)bdbdϵdu2′du2

(2.18)

will be defined, and a method for approximating their value will be introduced.

2.3.1 The Boltzmann-equations

To begin, the Maxwell-Boltzmann equations are derived by assuming that collisions - i.e.
interactions between particles, take up only a very small amount of a particles lifetime.
This gives rise to a differential equation for the velocity distribution function (vdf.) fi =
fi(ui, r, t), describing the probability of finding a particle of species i with velocity ui at
position r at time t. This equation reads

∂fi
∂t

+ ui∇fi + Fi
∂fi
∂ui

=
∂efi
∂t

(2.19)

where F denotes an external force on the particle and ∂ef
∂t

describes the rate of change
due to encounters between molecules. The latter of these may be expanded as a sum over
the change due to encounters of different types, that is

∂efi
∂t

=
∑

j

(
∂efi
∂t

)

j

(2.20)

where subscript j denotes the particle type that particle i encounters, and the sum runs
over all particle species. To describe this differential, a description of the dynamics of
a binary encounter between particles is required. This description is done through a
set of geometric considerations that are difficult to summarise in a short manner, these
considerations are treated in detail in Section 2.3.9. For the time being, only a summary of
the variables involved, their significance and their dependencies are included here, shown
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Figure 2.1: The geometry of a binary encounter.

graphically in Figure 2.1. Let g12 and g21 denote the initial velocity of particle 1 relative
to 2, and 2 relative to 1. Such that g12 = u1 − u2 = −g21. Primes on the velocities will
denote the post-collision velocities, g′

12 = u′
1 − u′

2 = −g′
21. The relative speeds are then

g12 = |g12| = |g21| ≡ g, where the subscript is dropped due to the equivalency. Due to
conservation of energy and momentum, the encounter can be completely described by the
change in direction of the relative velocities, as the centre of mass velocity is constant.
Further, assume that the forces acting between the particles act along the line connecting
their centres of mass. For spherical particles this is clearly correct, but for chain-like
molecules it cannot be expected to hold.

Now, let χ denote the deflection angle of the relative velocity, that is cosχ = g12 · g′
12.

To describe χ, one must also define the impact parameter b. This can be thought of
as the ”closest passing distance” the particles would have had if they had been non-
interacting point particles, as visualised in Figure 2.1. It is clear that χ is a function
of b, and that the functional form is dependent on the intermolecular potential. For a
hard-sphere potential, an analytical expression can be derived without extended effort.
For other potentials however, the dependency on g12 and the molecular masses requires
one to employ numerical methods. For now, χ will be left as some function of g12, b, m1

and m2.

Finally, to expand the geometry of Figure 2.1 to three dimensions, define a cylindrical
coordinate system centred on particle 1, with the vertical axis perpendicular to g12, such
that b takes the role of the radial coordinate. Denote the angular coordinate of this
system as ϵ. This coordinate system is shown in Figure 2.2. Following these geometric
considerations it can be shown that

(
∂efi
∂t

)

j

=

∫∫∫ (
f ′
if

′
j − fifj

)
bdbdϵduj. (2.21)

The truncation of an interaction potential at some distance now amounts to limiting
the integral over db to that distance. The case of i = j follows the exact same row of
arguments as the case i ̸= j, but the notation employed can quickly lead to confusion. The

11



g12
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g21

Figure 2.2: Cylindrical coordinate system to describe an encounter.

integral in Equation (2.21) passes over uj, and is therefore a function only of ui. If i = j,
recognise that the integral still only passes over the velocity of one particle in the colliding
pair, such that it is still a function of the velocity of the other particle. Notation-wise,
Chapman and Cowling solve this by denoting the velocity of the two particles as u and
ui and writing (

∂efi
∂t

)

i

=

∫∫∫
(f ′
if

′ − fif) bdbdϵdu. (2.22)

To avoid confusion as to what function f at any time refers to, the notation employed
here will denote the velocity of the two particles as ui′ and ui, such that

(
∂efi
∂t

)

i

=

∫∫∫
(f ′
if

′
i′ − fifi′) bdbdϵdui′ . (2.23)

For brevity, the integral in equation (2.21) will later be written as

−
(
∂efi
∂t

)

j

≡
{
Jij(fifj) i ̸= j

Ji(fi′fi) i = j
(2.24)

where the prime in Ji(fi′fi) indicates the variable of integration, the differentiation will
become important later. The left hand side of equation (2.19) will be written as Difi,
thus the Boltzmann equation for a single-component (simple) gas reads

Difi + Ji(fi′fi) = 0 (2.25)

Already now, the reader should be made aware of one of the inherent limitations of kinetic
gas theory: The assumption of uncorrelated collisions. Notice that Ji is only a function
of a particles current velocity, thus implying that the rate of change to a particles vdf.
due to collisions is independent of its previous velocity. This holds well for gases in which
there is little long time-correlation in a particles position, but breaks down at liquid-like
densities, where the collision of one particle with another can lead to a long chain of
correlated collisions in what are known as cage- and vortex effects. [36]
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2.3.2 The first approximation for a simple gas

Now that the notation and formulation of the Boltzmann-equations has been established,
the time is ripe for introducing the Enskog solution method. Assume that the true
solution, f , of equation (2.19) can be written as an infinite series f =

∑∞
r=0 f

(r). The
operators D and J can also be subdivided. First, introduce the operator ∂r

∂t
, with the

property
∂φ

∂t
≡
∑

r

∂rφ

∂t
, φ = {ρ, T,un} (2.26)

where un denotes the mole average velocity of the gas, and ρ denotes the number density
of the gas. For the formal definition of ∂r

∂t
the reader is referred to Chapman and Cowling,

pp. 116. [9] Enskog now subdivides the operator D such that

D1f1 =
∑

r

D (r), D (0) = 0

D (r)
1 =

r−1∑

i=0

∂rf
(r−1−i)
1

∂t
+ u · ∇f (r−1)

1 + F1 · ∇f (r−1)
1 , r > 0.

(2.27)

Similarly, J can be subdivided such that

J
(r)
1 =

r∑

i=0

J1(f
(i)
1′ f

(r−i)
1 ). (2.28)

It is important to note that this manner of subdividing D and J is a matter of choice,
and that the key to the Enskog solution lies in choosing to subdivide them in this way.
The result of the subdivision is that Equation (2.25) may be written as

∑

r

D (r)
1 + J

(r)
1 = 0 (2.29)

This equation is fulfilled if D (r)
1 +J

(r)
1 = 0, ∀ r, and the manner in which D and J have been

subdivided ensures that each of these equations is solvable. The equation corresponding
to r = 0 becomes J1(f

(0)
1′ f

(0)
1 ) = 0, of which

f
(0)
1 = exp

(
φ(1) +φ(2)φ(2)φ(2)mu1 + φ(3)1

2
mu21

)
(2.30)

is the general solution, with φ(1),φ(2)φ(2)φ(2) and φ(3) arbitrary quantities independent of u1, and
u1 = |u1| is the particle speed. Making some convenient choices for these, yields

f
(0)
1 = ρ

(
m1

2πkBT

) 3
2

exp

(
−m1U

2
1

2kBT

)
, (2.31)

where Ui ≡ ui − un is the peculiar velocity of species i, and U is its magnitude, the
peculiar speed, with un the mole average velocity. Note that J1(f

(0)
1′ f

(0)
1 ) = 0 is the exact

equation describing a gas in which collisions have no net effect on the velocity distribution
function, such that f (0) is the velocity distribution function in a homogeneous (uniform)
steady state gas. It is evident then, that to describe a non-uniform state, a solution for
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the second approximation f (1) must be found. Before moving on, note some properties
of the velocity distribution function regarding the summational invariants, ρ, mU and
1
2
mU2. That is, the number density, momentum and kinetic energy of the gas. These

must all be conserved over time. It then follows that
∫
f
(0)
1 du1 = ρ1 =

∫
f1du1

∫
(f1 − f

(0)
1 )du1 = 0

(2.32)

and similarly for the other invariants,
∫

(f1 − f
(0)
1 )φdu1 = 0, φ = {mU1,

1

2
mU2

1}. (2.33)

Inserting for f1 =
∑∞

r=0 f
(r)
1 then yields

∞∑

r=1

∫
f
(r)
1 φdu1 = 0, φ = {1,mU1,

1

2
mU2

1}. (2.34)

This equation is clearly fulfilled if
∫
f
(r)
1 φdu1 = 0 ∀ i > 0, φ = {1,mU1,

1

2
mU2

1}. (2.35)

2.3.3 The second approximation for a simple gas

It can be shown that a valid second approximation to f can be written on the form
f
(1)
1 = f

(0)
1 Φ

(1)
1 . Just like the first approximation, the second approximation satisfies

Equation (2.29) if

D (1)
1 + J

(1)
1 = 0. (2.36)

Here, D (1) may be expanded as

D (1)
1 = f

(0)
1

[(
mU2

1

2kBT
− 5

2

)
U1∇ lnT +

m

kBT

◦
U1U1 : ∇un

]

= f
(0)
1

[(
U1 −

5

2

)
U1∇ lnT +

m

kBT

◦
UUU 1UUU 1 : ∇un

] (2.37)

where for a 3d vector v,
◦
vv is the operation

◦
vv =



v1

v2
v3





v1 v2 v3
v1 v2 v3
v1 v2 v3


− 1

3
v2III (2.38)

and for two matrices φφφ
1
: φφφ

2
= φ1,ijφ2,ji =

∑
i

∑
j φ1,ijφ2,ji denotes the double dot

product. UUU i is the dimensionless peculiar velocity UUU i ≡
(

mi

2kBT

) 1
2
Ui, and U ≡ |UUU | is

the peculiar speed. Further, the term J (1) can be expanded and rewritten as

J
(1)
1 = J1(f

(0)
1′ f

(1)
1 ) + J1(f

(1)
1′ f

(0)
1 )

= ρ2I1

(
Φ

(1)
1

) (2.39)
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where the integral I1

(
Φ

(1)
1

)
has been introduced.

This is a convenient time to step aside and introduce some integral notation that will be
heavily employed later. Recognise how Equations (2.17) and (2.18) consist of exactly these
types of integrals. Let F and G be functions defined on u1 and K be a function defined
on u1 and u2. Then, using the notation Fi = F (ui), F

′
i = F (u′

i), Kij = Kji = K(ui,uj)
and K ′

ij = K ′
ji = K(u′

i,u
′
j),

ρ21I1(F ) ≡
∫∫∫

f
(0)
1 f

(0)
1′ (F1 + F1′ − F ′

1 − F ′
1′) gbdbdϵdu1′

ρ22I2(F ) ≡
∫∫∫

f
(0)
2 f

(0)
2′ (F2 + F2′ − F ′

2 − F ′
2′) gbdbdϵdu2′

ρ1ρ2I12(K) ≡
∫∫∫

f
(0)
1 f

(0)
2 (K12 −K ′

12) gbdbdϵdu2

ρ1ρ2I21(K) ≡
∫∫∫

f
(0)
1 f

(0)
2 (K12 −K ′

12) gbdbdϵdu1

(2.40)

Note that I1(F ) and I12(K) are functions of u1, while I2(F ) and I21(K) are functions of
u2. Further define the bracket integrals

[F,G]i ≡
∫
GiIi(F )dui, i = {1, 2}. (2.41)

For functions F and H defined on u1, and G and K defined on u2, define

[F1 +G2, H1 +K2]12 ≡
∫
F1I12(H1 +K2)du1 +

∫
G2I21(H1 +K2)du2 (2.42)

Expanding Equation (2.42), one will find that [F1 +G2, H1 +K2]12 = [H1 +K2, F1 +G2]12.
Finally, for functions F and G both defined on u1 and u2, define the bracket integral

ρ2{F,G} = ρ21[F,G]1 + ρ1ρ2[F1 + F2, G1 +G2]12 + ρ2[F,G]2. (2.43)

Returning to the problem of determining the second approximation f
(1)
1 = f

(0)
1 Φ

(1)
1 , in-

serting Equations (2.39) and (2.37) into Equation (2.36) yields

ρ2I1

(
Φ

(1)
1

)
= −f (0)

1

[(
U 2

1 − 5

2

)
U1∇ lnT +

m

kBT

◦
UUU 1UUU 1 : ∇un

]
. (2.44)

Observe that I1

(
Φ

(1)
1

)
is linear in Φ

(1)
1 , and that the right hand side of this equation is

linear in the components of ∇ lnT and un. Thereby, Φ
(1)
1 can be written as a linear combi-

nation of the components of ∇ lnT and un and the solution to the equation I1

(
Φ

(1)
1

)
= 0.

The latter can be recognised as a solution of the form in equation (2.30), such that for
some vector Λ, matrix BBB, and constants φ(1,1),φ(2,1)φ(2,1)φ(2,1), φ(3,1)

Φ
(1)
1 = −1

ρ

(
2kBT

m1

) 1
2

Λ∇ lnT − 2

ρ
BBB : ∇un + φ(1,1) +φ(2,1)φ(2,1)φ(2,1)m1u1 + φ(3,1)1

2
m1U

2
1 , (2.45)
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Where the prefactors to Λ and BBB are chosen for later convenience. Substituting this
into equation (2.44), using the fact that I1(F + G) = I1(F ) + I1(G), and equating the
coefficients to each of the gradient terms yields a set of equations for Λ and BBB,

ρI1(Λ) = f
(0)
1

(
U 2

1 − 5

2

)
U1

ρI1(BBB) = f
(0)
1

◦
UUU 1UUU 1.

(2.46)

It is clear from the first of these equations that Λ must be a vector parallel to U1, which
is parallel to UUU 1, such that one can write

Λ = Λ(U1, ρ, T )UUU 1, (2.47)

where U ≡ |UUU | is the dimensionless peculiar speed. It is less clear, but can be shown,
that BBB is a symmetric, traceless matrix. All symmetric, traceless matrices that can be

formed from UUU 1 are multiples of
◦

UUU 1UUU 1. Therefore, BBB can be written as

BBB = B(U1, ρ, T )
◦

UUU 1UUU 1. (2.48)

The constants φ(1,1),φ(2,1)φ(2,1)φ(2,1) and φ(3,1) can be chosen such that f
(1)
1 satisfies the constraints

posed by the summational invariants, from Equation (2.35). Analysing these constraints,
one finds that φ(1,1) = φ(2,1)φ(2,1)φ(2,1) = φ(3,1) = 0 is a valid choice. Equation (2.45) then reduces
to

Φ
(1)
1 = − 1

ρ1

(
2kBT

m1

) 1
2

Λ∇ lnT − 2

ρ
BBB : ∇un. (2.49)

Until now, only a unary gas has been considered. The method for arriving at Equation
(2.49) for a binary system follows the exact same steps as those presented so far. Because
the goal of this section is to describe diffusion, we now move to a binary case and in short
words describe how the equation for Φ

(1)
1 will differ from Equation (2.49).

2.3.4 The binary solutions

The Boltzmann equations for a binary system are directly analogous to those of a unary
system,

∂fi
∂t

+ u∇fi + Fi
∂fi
∂u

=
∂efi
∂t

, i = {1, 2}. (2.50)

Rewriting this in terms of the operators D and J gives

D1f1 + J1(f1f1′) + J12(f1f2) = 0

D2f2 + J2(f2f2′) + J21(f2f1) = 0
(2.51)

The subdivision of fi and Di follow the same procedure as the one outlined in the unary
case. For Ji, the function J

(r)
i takes the form

J
(r)
i ≡

r∑

k=0

Ji(f
(k)
i f

(r−k)
i′ ) + Jij(f

(k)
i f

(r−k)
j ). (2.52)
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Again, requiring that D (r)
i +J

(r)
i = 0 ∀ r gives solutions to the first approximation identical

to Equation (2.31). In the solution of the second approximation, a difference turns up.

Inserting f
(1)
1 = f

(0)
1 Φ

(1)
1 and f

(1)
2 = f

(0)
2 Φ

(1)
2 into the expression for J

(1)
1 yields

J
(1)
1 = ρ21I1(Φ

(1)
1 ) + ρ1ρ2I12(Φ

(1)
1 + Φ

(1)
2 ). (2.53)

Expanding D (1)
1 now yields

D (1)
1 = f

(0)
1

[(
U 2

1 − 5

2

)
U1∇ lnT +

m

kBT

◦
UUU 1UUU 1 : ∇un + x−1

1 d12U1

]
(2.54)

Where the only difference from Equation (2.37) is the appearance of the trailing term

d12 ≡ ∇x1 +
ρ1ρ2(m2 −m1)

ρρm
∇ ln p− ρm,1ρm,2

ρmp
(F1 − F2) , (2.55)

where xi denotes the mole fraction of species i, and ρm denotes the mass density. Just
as in the previous section, it is now clear that Φ

(1)
1 and Φ

(1)
2 must be linear functions of

∇ lnT , d12 and ∇un. Therefore, for some Λ, D and BBB, the Φ
(1)
i may be written as

Φ
(1)
i = −Λi∇ lnT −Did12 − 2BBBi : ∇un, i = {1, 2} (2.56)

Inserting Equations (2.56) and (2.54) for Φ
(1)
i and D (1)

i into Equations (2.51) and matching
the coefficients of the gradients now leads to a set of equations that uniquely determine
Λ, D and BBB, analogous to Equations (2.46),

f
(0)
1 (UUU 2

1 −
5

2
)U1 = ρ21I1(Λ1) + ρ1ρ2I12(Λ1 +Λ2)

f
(0)
2 (UUU 2

2 −
5

2
)U2 = ρ22I2(Λ2) + ρ2ρ1I21(Λ2 +Λ1)

x−1
1 f

(0)
1 U1 = ρ21I1(D1) + ρ1ρ2I12(D1 +D2)

−x−1
2 f

(0)
2 U2 = ρ22I2(D2) + ρ2ρ1I21(D2 +D1)

f
(0)
1

◦
UUU 1UUU 1 = ρ21I1(BBB1) + ρ1ρ2I12(BBB1 +BBB2)

f
(0)
2

◦
UUU 2UUU 2 = ρ22I2(BBB2) + ρ2ρ1I21(BBB2 +BBB1)

(2.57)

Thus, to a second approximation, the velocity distribution function is given as

fi = f
(0)
i (1 + Φ

(1)
i ), i = {1, 2}

= f
(0)
i [1−Λi∇ lnT −Did12 − 2BBBi : ∇un] .

(2.58)

Note that Λ, D and BBB have been established to be unique, but determining their exact
functional form still remains.

2.3.5 Diffusion

Now that an expression for the velocity distribution function has been obtained, the
analysis of diffusion can begin. The analysis of conductivity and viscosity is analogous,
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only considering the conservation equations for momentum and energy rather than the
particle number, these analyses will therefore not be covered in detail here. The two
components of a mixture are diffusing relative to each other if ū1 − ū2 ≡ Ū1 − Ū2 ̸= 0.
Where the bar denotes the mole averaged values of the velocities. From the velocity
distribution function, the differences in mean velocity are

Ū1 − Ū2 =
1

ρ1

∫
f1U1du1 −

1

ρ2

∫
f2U2du2. (2.59)

Inserting the velocity distribution function from Equation (2.58), and noting that f
(0)
i U,

and BBBi : ∇unU are odd functions such that their integrals vanish yields

Ū1 − Ū2 = −1

3

[(
1

ρ1

∫
f
(0)
1 U1D1du1 −

1

ρ2

∫
f
(0)
2 U2D2du2

)
d12

+

(
1

ρ1

∫
f
(0)
1 U1Λ1du1 −

1

ρ2

∫
f
(0)
2 U2Λ2du2

)
∇ lnT

] (2.60)

Now, from Equations (2.57) it can be shown that for any vector function a defined on u1

and u2,

ρ2{D, a} = x−1
1

∫
f
(0)
1 U1a1du1 − x−1

2

∫
f
(0)
2 U2a2du2. (2.61)

Since Λ and D are exactly such vector functions, Equation (2.60) may be contracted to

Ū1 − Ū2 = −1

3
ρ [{D,D}d12 + {D,Λ}∇ lnT ] . (2.62)

Considering the cases in which either d12 = 0 or ∇T = F1 = F2 = ∇p = 0 allows us to
identify the interdiffusion coefficient D12 and the thermal diffusion coefficient DT for a
binary mixture. In the first case,

ū1 − ū2 = − ρ2

ρ1ρ2
DT∇ lnT, d12 = 0

−1

3
{D,Λ}∇ lnT = − DT

x1x2
∇ lnT

DT =
ρ1ρ2
3ρ

{D,Λ}

(2.63)

and in the second,

ū1 − ū2 = − ρ2

ρ1ρ2
D12∇x1, ∇T = F1 = F2 = ∇p = 0

−1

3
{D,D}∇x1 = − D12

x1x2
∇x1

D12 =
ρ1ρ2
3ρ

{D,D}.

(2.64)

Additionally, the thermal diffusion ratio may be identified as

kT ≡ DT

D12

=
{D,Λ}
{D,D} (2.65)
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Conducting the same analysis, but regarding the heat flux

Jq =

∫
f1
1

2
m1U

2
1U1du1 +

∫
f2
1

2
m2U

2
2U2du2 (2.66)

rather than the mass flux, one finds that in the absence of a mass flux

Jq = −1

3
kBρ

2

(
{Λ,Λ} − {Λ,D}2

{D,D}

)
∇T

λ ≡ 1

3
kBρ

2

(
{Λ,Λ} − {Λ,D}2

{D,D}

)
,

(2.67)

where λ is the conductivity. Further, we may introduce the auxiliary function Λ̃i =
Λi − kTDi such that the conductivity can be written as

λ =
1

3
kBρ

2{Λ̃, Λ̃}. (2.68)

To acquire values for the diffusion coefficients and conductivity, it is thereby necessary
to evaluate the integrals {D,D}, {D,Λ} and {Λ̃, Λ̃}. To accomplish this, we write the
functions Λ̃i and Di as polynomial expansions using an orthogonal set of polynomials
known as the Sonine polynomials, denoted S

(n)
m (φ). These have the property

∫ ∞

0

e−φS(p)
m (φ)S(q)

m (φ)φmdφ =
Γ(m+ p+ 1)

p!
δpq (2.69)

where Γ denotes the gamma function and δpq is the Kronecker delta. D and Λ̃ are
expanded as

D1 =
∞∑

p=−∞

dpa
(p)
1 D2 =

∞∑

p=−∞

dpa
(p)
2 (2.70)

Λ̃1 =
∞∑

p = −∞
p ̸= 0

lpa
(p)
1 Λ̃2 =

∞∑

p = −∞
p ̸= 0

lpa
(p)
2 (2.71)

where

a
(p)
1 ≡ 0 a

(p)
2 ≡ S

(p)
3/2

(
U 2

2

)
UUU 2 p < 0 (2.72)

a
(0)
1 ≡M

1
2
1 ρm,2ρ

−1
m UUU 1 a

(0)
2 ≡ −M

1
2
2 ρm,1ρ

−1
m UUU 2 p = 0 (2.73)

a
(p)
1 ≡ S

(p)
3/2

(
U 2

1

)
UUU 1 a

(p)
2 ≡ 0 p > 0 (2.74)

Now, recall from Equation (2.61) that for any vector function a
(p)
i , we may write

ρ2{D, a(p)} = x−1
1

∫
f
(0)
1 U1a

(p)
1 du1 − x−1

2

∫
f
(0)
2 U2a

(p)
2 du2. (2.75)
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After inserting for a
(p)
1 from Equation (2.72) - (2.74) this integral can be evaluated ana-

lytically to give

{D, a(p)} = δp, δp =





3
2ρ

(
2kBT
m0

) 1
2
, p = 0

0, p ̸= 0,
. (2.76)

where m0 = m1 + m2. Thus, by substituting the expansion of D from Equation (2.71)
into Equation (2.76), and utilising the orthogonality properties of the Sonine polynomials,

∞∑

p=−∞

dp{a(p), a(q)} = δq. (2.77)

Exposing the integral {Λ̃, a(p)} to the same procedure yields

∞∑

p = −∞
p ̸= 0

lp{a(p), a(q)} = αq, αq =





−15
4
ρ1
ρ2

(
2kBT
m1

) 1
2

q = 1

0 q ̸= ±1

−15
4
ρ2
ρ2

(
2kBT
m2

) 1
2

q = −1

(2.78)

These sets of linear equations uniquely determine the dp and lp expansion coefficients,
and thereby uniquely determine the functions D, Λ̃ and Λ. For a finite approximation
|p| < N , |q| < N , termed the Nth-order approximation, they may be written in matrix
form as




a−N−N . . . a−N0 . . . a−NN
...

. . .
...

...
a0−N . . . a00 . . . a0N
...

...
. . .

...
aN−N . . . aN0 . . . aNN







d−N
...
d0
...
dN




=




0
...
0
δ0
0
...
0




, (2.79)




a−N−N . . . a−N−1 a−N1 . . . a−NN
...

. . .
...

...
...

a−1−N . . . a−1−1 a−11 . . . a−1N

a1−N . . . a1−1 a11 . . . a1N
...

...
...

. . .
...

aN−N . . . aN−1 aN1 . . . aNN







l−N
...
l−1

l1
...
lN




=




0
...
0
α−1

α1

0
...
0




, (2.80)

Where apq ≡ {a(p), a(q)} = aqp. Further, inserting the expansions of D and Λ̃ into the
integrals {D,D} and {Λ̃, Λ̃} one arrives at

{D,D} = d0δ0, {Λ̃, Λ̃} = l1α1 + l−1α−1, {D,Λ} = d1α1 + d−1α−1. (2.81)
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This means that evaluating the integrals apq is the final step to obtaining the transport
coefficients.

We now take a moment to summarise the significance of these results, and give an overview
of the procedure one must follow to obtain a value for the transport coefficients. The next
section will then cover how the evaluation is done in practice.

Thus far, we have identified a valid second approximation to the velocity distribution
functions for a binary system, given as

fi = f
(0)
i [1−Λi∇ lnT −Did12 − 2BBBi : ∇un] , i = {1, 2}. (2.82)

This function satisfies the Boltzmann equations, given that Λi, Di and BBBi satisfy certain
constraints posed by the summational invariants. That is, mass, momentum and energy
must be conserved. The three functions describe how the vdf will change in response
to different driving forces. BBB describes the response to pressure and is connected to the
viscosity, which is not investigated in further detail in this work. We have not obtained
an explicit functional form for Λi and Di, but have approximated them as a polynomial
expansion in the Sonine polynomials. Further, we have determined that the diffusion coef-
ficients and conductivity may be expressed as integrals over D and Λ, given in Equations
(2.63), (2.64) and (2.68). It is these integrals we aim to evaluate.

Since Λi and Di are subject to the constraints posed by the summational invariants,
formulated in Equations (2.57), we may impose these constraints on their polynomial
expansions. This yields two linear sets of equations which are given in matrix form
in Equations (2.79) and (2.80). The first determines the expansion coefficients dp for
the approximation to D, and the second determines the expansion coefficients lp for the
approximation to Λ̃.

Even without determining these expansion coefficients, we may use the orthogonality
properties to evaluate the integrals that determineDT ,D12 and λ in terms of the expansion
coefficients, leading to the expressions in Equation (2.81). To obtain numerical values
for the transport coefficients it is therefore necessary to compute the values apq, which
are integrals over the Sonine polynomials, such that we may solve the sets of linear
equations that determine the expansion coefficients. Evaluating the apq integrals is not
a trivial task, but in more recent years, solutions have been introduced that greatly
simplify it in practice. [37–40] It is these solutions that will be employed at the end of the
next section.

2.3.6 The summational expressions

To evaluate the integral {a(p), a(q)}, Chapman and Cowling begin by inserting the defini-
tions of a(p) into the integral, and simplifying the expressions by using the orthogonality
properties of the polynomials. This gives expressions for apq in terms of the square bracket
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integrals

apq = x21H
(1)
1 (p, q) + x1x2H

(1)
12 (p, q)

ap−q = x1x2H
(12)
12 (p, q)

a−pq = x1x2H
(21)
21 (p, q)

a−p−q = x22H
(2)
2 (p, q) + x1x2H

(2)
21 (p, q),

(2.83)

where

H
(1)
1 (p, q) ≡

[
S
(p)
3/2(U

2
1 )UUU 1, S

(q)
3/2(U

1
1 )UUU 1

]
1
, (2.84)

H
(2)
2 (p, q) ≡

[
S
(p)
3/2(U

2
2 )UUU 2, S

(q)
3/2(U

1
2 )UUU 2

]
2
, (2.85)

H
(1)
12 (p, q) ≡

[
S
(p)
3/2(U

1
1 )UUU 1, S

(q)
3/2(U

2
1 )UUU 1

]
12
, (2.86)

H
(2)
21 (p, q) ≡

[
S
(p)
3/2(U

1
2 )UUU 2, S

(q)
3/2(U

2
2 )UUU 2

]
21
, (2.87)

H
(12)
12 (p, q) ≡

[
S
(p)
3/2(U

2
1 )UUU 1, S

(q)
3/2(U

2
2 )UUU 2

]
12
, (2.88)

H
(21)
21 (p, q) ≡

[
S
(p)
3/2(U

2
2 )UUU 2, S

(q)
3/2(U

2
1 )UUU 1

]
21
. (2.89)

Notice that these integrals form three pairs with the same functional form,

H
(1)
1 (p, q) ↔ H

(2)
2 (p, q), H

(1)
12 (p, q) ↔ H

(2)
21 (p, q), H

(12)
12 (p, q) ↔ H

(21)
21 (p, q).

(2.90)
The only difference between the functions in each pair is swapping the indices. Therefore,
one only needs to acquire explicit expressions for half of the integrals.

Further, all information about the intermolecular potential is contained in the integral
over dbdg, the relative speed and impact parameter. Integrals over the directions of
the velocity may be carried out without specifying any such potential. It is therefore
convenient to define the collision integrals Ω

(ℓ)
12 (r) and Ω

(ℓ)
i (r), i = {1, 2} as

Ω
(ℓ)
12 (r) ≡

1

2
σ2
12

(
kBT

2πm0M1M2

) 1
2

W
(ℓ)
12 (r)

W
(ℓ)
12 (r) ≡ 2

∫ ∞

0

exp(−g2)g2r+3

∫ ∞

0

(
1− cosℓ(χ)

)( b

σ12

)
d

(
b

σ12

)
dg12

(2.91)

where g12 =
(
m0M1M2

2kBT

) 1
2
g12 is the non-dimensional relative speed, χ is the deflection angle

as illustrated in Figure 2.1, and σij is, in general, a scaling parameter with dimensions
of length, in the range of the molecular sizes. ℓ and r are integer indices that arise from
the manner in which these integrals are separated from those that do not depend on the
intermolecular potential. A change of integration variables has been employed to map

dbdg12 7→ d
(

b
σ12

)
dg12. The equivalent expression for Ω

(ℓ)
i (r) is

Ω
(ℓ)
i (r) ≡ σ2

i

(
πkBT

m1

) 1
2

W
(ℓ)
i (r), i = {1, 2} (2.92)
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where W
(ℓ)
i (r) is obtained by replacing σ12 with σi in Equation (2.91), and g12 with gii.

These integrals contain all information about how the intermolecular potential effects the
collisions, and may be evaluated numerically for any given intermolecular potential by
using this potential to relate χ to b and g. This is done for a general spherical potential in
Section 2.3.9. In addition, Reid et al. give several methods of approximating the collision
integrals under various conditions. [12] However, for a HS-potential the integrals can be
evaluated analytically to give

Ω
(ℓ),HS
1 (r) = (σHS1 )2

(
πkBT

m1

) 1
2

W (ℓ),HS
r

Ω
(ℓ),HS
2 (r) = (σHS2 )2

(
πkBT

m2

) 1
2

W (ℓ),HS
r

Ω
(ℓ),HS
12 (r) =

1

2
(σHS12 )2

(
2πkBT

m0M1M2

) 1
2

W (ℓ),HS
r

W (ℓ),HS
r =

1

4

[
2− 1

l + 1

(
1 + (−1)l

)]
(r + 1)!.

(2.93)

Defining the collision integrals in this way, Chapman and Cowling expand the integrals
over u1 and u2 and determine that the complete bracket integrals of Equations (2.84)-
(2.89) may be written as linear combinations of the collision integrals,

H
(1)
1 (p, q) = 8

(min[p,q]+1)∑

l=2

(p+q+2−ℓ)∑

r=l

A′′′
pqrℓΩ

(ℓ)
1 (r)

H
(1)
12 (p, q) = 8

(min[p,q]+1)∑

l=1

(p+q+2−ℓ)∑

r=l

A′
pqrℓΩ

(ℓ)
12 (r)

H
(12)
12 (p, q) = 8M

(p+ 1
2
)

2 M
(q+ 1

2
)

1

(min[p,q]+1)∑

l=1

(p+q+2−l)∑

r=l

ApqrℓΩ
(ℓ)
12 (r)

(2.94)

with Apqrℓ, A
′′′
pqrℓ as yet undetermined weights, independent of any molecular properties.

A′
pqrℓ is an undetermined number that is a function of the particle masses. Note that

only three of the integrals of Equations (2.84)-(2.89) are given, the rest are obtained
via appropriate index swapping. Identifying explicit expressions for these weights is an
abnormally extensive exercise in analytical integration and pattern matching that was
carried out by Thompson et al. [37–40] For the derivation the reader is referred to their
papers. The results they give are

A′′′
pqrℓ =

(
1

2

)(p+q+1) (min[p,q,r,(p+q+1−r)])∑

i=(l−1)

8i(p+ q − 2i)!
(
1 + (−1)l

)

(p− i)!(q − i)!(ℓ)!(i+ 1− l)!

× (−1)(r+i)(r + 1)!(2(p+ q + 2− i))!22r

(r − i)!(p+ q + 1− i− r)!(2r + 2)!(p+ q + 2− i)!4(p+q+1)

× [(i+ 1− l)(p+ q + 1− i− r)− ℓ(r − i)] ,

(2.95)
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A′
pqrℓ =

min[p,q,r,(p+q+1−r)]∑

i=(l−1)

min[l,i]∑

k=(l−1)

(min[p,q,(p+q+1−r)]−i)∑

w=0

8i(p+ q − 2i− w)!

(p− i− w)!(q − i− w)!

× (−1)(r+i)(r + 1)!(2(p+ q + 2− i− w))!4(r+w)F (i+k)GwM i
1M

(p+q−i−w)
2

(r − i)!(p+ q + 1− i− r − w)!(2r + 2)!(p+ q + 2− i− w)!4(p+q+1)(k)!(i− k)!(w)!

×
(
M1(p+ q + 1− i− r − w)δk,l −M2(r − i)δk,(l−1)

)
,

F ≡ M2
1 +M2

2

M1M2

, G ≡ M1 −M2

M2

,

(2.96)

Apqrℓ =

min[p,q,r,(p+q+1−r)]∑

i=(l−1)

8i(p+ q − 2i)!

(p− i)!(q − i)!(ℓ)!(i+ 1− l)!(r − i)!

× (−1)(l+r+i)(r + 1)!(2(p+ q + 2− i))!4r

(p+ q + 1− i− r)!(2r + 2)!(p+ q + 2− i)!4(p+q+1)

× [(i+ 1− l)(p+ q + 1− i− r)− ℓ(r − i)] .

(2.97)

With explicit expressions for these factors, one must only evaluate the required collision
integrals in order to obtain the factors apq required to compute the diffusion coefficient,
thermal diffusion coefficient and conductivity up to an arbitrary order of approximation.
In practice, it is rare to pass beyond the 5th order approximation, [41] and it has been shown
that computational limitations regarding floating point precision make it non-trivial to
pass beyond the 7th-10th order of approximation, depending on conditions. [25]

2.3.7 The high density regime

The transport coefficients obtained from the Enskog solutions are known to deviate sig-
nificantly from those measured at high densities. This is due to the theory describing
a situation in which interactions are exclusively binary, and that the time between in-
teractions is far larger than the time during which interactions occur. This implies that
transport occurs via the motion of molecules between collisions, while the transfer of
e.g. momentum from one molecule to the next during a collision is neglected. This is
an inaccurate description of dense fluids, where interactions are far more common, and
transfer of momentum and energy during collisions accounts for a significant portion of
the total transport. As mentioned previously, the requirement of long time between col-
lisions is a manner of saying that one requires subsequent collisions between particles to
be uncorrelated.

The following ”high density corrections” to the Boltzmann equations, often termed the
Enskog equations, [36] take into account the first shortcoming of of the theory thus far;
namely the occurrence of transport during collisions and the increased frequency of col-
lisions due to a significant excluded volume at high densities. The latter issue, that of
subsequent collisions in fact being correlated in dense fluids is not treated here. This is
due to the first issue having explicit solutions that do not require additional parameters to
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be added to the model that is to be implemented, while still greatly improving accuracy
in the medium density regime. The latter issues requires that one has accurate available
information about the structure factor and/or radial distribution function of the fluid in
question. These are typically obtained either by simulation or experiment, and are in
general not directly available from an intermolecular potential. Including these correc-
tions would therefore somewhat restrict the fluids to which the model could be applied.
In this work, the possibility of applying the model to a wider variety of mixtures at low
to medium densities was considered to be of greater benefit than an increase in precision
at liquid-like densities.

To account for the increase in collision frequency due to the excluded volume, Enskog
introduces the function χ̃, such that the probability of any two particles of species 1
occupying a volume in phase space du1′du1dr is

χ̃(r)f1′f1du1′du1dr (2.98)

Where χ̃ is required to go to unity as the density goes to zero, and increase with increasing
density. This will later be recognised as the pair distribution function. Furthermore, χ̃
is assumed to be independent of the velocities. In the derivation outlined so far, this
modification only serves to change the form of ∂ef

∂t
, the change in the velocity distribution

function owing to collisions. Following the derivation with this modification yields both
easily applicable results, and some questions that are open to interpretation. For the full
derivation the reader is referred to the derivation by Thorne. [42] Here, focus will be placed
on the resulting correction factors, how to obtain them, and their interpretation.

The first result to note is that to a first approximation, for a single component system
of hard spheres, the equations of conservation may be written in a form identical to that
obtained without the density correction, only making the replacement

kBρT 7→ kBρT

(
1 +

2π

3
ρσ3χ̃

)
. (2.99)

Recognising kBρT as the hydrostatic pressure of an ideal gas gives the insight that χ̃ is
intimately related to the second virial coefficient. Furthermore, the perturbation function
of the second approximation to the vdf. given in Equation (2.49), is modified only by a
multiplicative factor giving

Φ
(1)
1 7→ 5 + 2πρσ3χ̃

5χ̃
Φ

(1)
1 . (2.100)

This prefactor leads to the results

λ =

(
1 + 2

5
πρσ3χ̃

)2

χ̃
λ∞ +

2kB
3m

χ̃ρ2σ4 (πmkBT )
1
2

D11 =
D∞

11

χ̃

(2.101)

where λ is the conductivity, D11 is the self diffusion coefficient, and the superscript ∞
indicates the solutions to the equations valid at infinite dilution, i.e. those presented
previously in Section 2.3.5.

25



The binary case follows the same approach as the unary. First, introduce the functions
χ̃1, χ̃2 and χ̃12 that modify the probability of any two particles occupying a volume in
phase space. Regarding the pressure, this leads to a result similar to the unary case,

p1 = ρkBT

(
x1 +

2π

3
ρ1
[
x1σ

3
1χ̃1 + x2σ12

3χ̃12

])

p2 = ρkBT

(
x2 +

2π

3
ρ1
[
x2σ

3
1χ̃2 + x1σ12

3χ̃12

])

p = p1 + p2.

(2.102)

Also for the interdiffusion coefficient, a simple correction is obtained with

D12 =
D∞

12

χ̃12

(2.103)

The corrections for the thermal conductivity and thermal diffusion ratio are somewhat
more involved, and are not given here. The question that remains is what value to
use for χ̃. In the the publications by Chapman and Cowling, a value for χ̃ for hard
spheres is computed by regarding the excluded volume, which increases the probability of
collisions, and the effect that particles can shield each other, which reduces the probability
of collision. Neglecting the possibility of ternary and higher order collisions, they end up
with the value

χ̃E(ρ;σHS) = 1 +
5

12
πρ
(
σHS

)3
(2.104)

Enskog suggests to use the connection between χ̃ and the second virial coefficient to esti-
mate its value either from measurements by computing the second virial coefficient from
some established EoS. [42] Other authors recognise χ̃ as the radial distribution function
(rdf.) evaluated at particle contact, and suggest that its value is obtained from either
experiments such as neutron scattering, simulations or some known expression for the
rdf. [36] For a system of hard spheres, one can obtain from the CS EoS that, [31]

χ̃CS(ρ;σHS) =
1− 1

2
η

(1− η)3
, η =

π

6
ρ
(
σHS

)3
, (2.105)

where χ̃CS is the rdf. at contact. This function is tempting to use, as it has the desired
property of describing the probability of two particles being in contact, and has been
shown to be accurate for hard sphere systems.

Making a Taylor expansion of χ̃CS about ρ = 0, one quickly finds that χ̃E is exactly
equal to the first order expansion. Chapman and Cowling also give a numerical value
for an expansion of χ̃E to second order in ρ that coincides closely with the second order
Taylor expansion of χ̃CS. These observations are in agreement with recommendations in
the literature that one should obtain a value for χ̃ from the rdf. at contact. [36] Therefore,
χ̃CS is chosen as the starting point from which to determine a value for χ̃ in Section
2.3.10.
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2.3.8 Intermediate summary

Though the derivations outlined above are somewhat lengthy, recognise that we have
arrived at an explicit set of equations that can be solved for the diffusion and thermal
diffusion coefficient once the collision integrals have been evaluated. For a hard sphere
potential an analytical expression for the collision integrals is available. To obtain the
transport coefficients for a hard sphere mixture at the Nth approximation, the procedure
is to first compute the apq, (p, q) ∈ (−N,N) × (−NN) matrix elements, by using the
summational expressions given in Equation 2.94. Then, the matrix Equation (2.79) can
be solved to obtain the coefficients d−1, d0 and d1. The transport coefficients are computed
from these with Equations (2.81) by using the definitions in Equations (2.63) and (2.64).
The procedure for computing the conductivity is equivalent, as the conductivity is related
to the integral {Λ̃, Λ̃}, and thereby the to the expansion coefficients lp.

The presented density corrections, which have been shown to be accurate at low to medium
densities, do not enter the computation until the final step. Employing them thus consists
of computing the non-corrected transport coefficients before applying Equations (2.101)
or (2.103). The only remaining question in this regard is what value one should use for χ̃
if the employed potential model is not that of a rigid sphere.

Note that the equations presented thus far are valid for any potential model. Information
about the intermolecular potential is contained within the collision integrals, and the
factor χ̃. For hard spheres analytical expressions for both have been presented. The
remainder of this section will treat the evaluation of the collision integrals and χ̃ for a
spherical potential that is not a hard sphere.

2.3.9 The dynamics of a collision

To evaluate the collision integrals for a more complex potential than the hard sphere, a
more detailed analysis of the particle collision dynamics than that presented in Section
2.3.1 is required. Here, the relationship between the deflection angle, χ, impact parameter
b and dimensionless relative speed, g will be derived for an arbitrary spherically symmetric
potential that vanishes at infinite separation. Thus making it possible to evaluate the
dimensionless collision integral

Wℓ,r = 2

∫ ∞

0

∫ ∞

0

exp
(
−g2

)
g2r+3

[
1− cosℓ (χ (g, b))

]( b
σ

)
d

(
b

σ

)
dg. (2.106)

Where ℓ and r are integer parameters that enter the equation through the derivation of
the summational expressions given in Section 2.3.6. The significance of the variables is
illustrated in Figures 2.3, 2.4 and 2.5. Chapman and Cowling give a derivation of the
relationship for a purely repulsive potential, [9] but it is not immediately clear what the
consequences are if the potential consists of both a repulsive and an attractive part. There-
fore, rather than directly using the results from Chapman and Cowling, the derivation
given here has been done to ensure that the results are valid for an arbitrary spheri-
cal potential. The final results are in accordance with those reported by Chapman and
Cowling.

27



The final evaluation of the results requires a combination of numerical root solving and
integration that is described further in Section 3.1.

The dynamics of a collision between two particles is governed by conservation of mass and
momentum. To begin, denote the position of the centre of mass of the particles as r1 and
r2. The intermolecular distance is r12 ≡ r2 − r1. The force acting on the particles is then
F1 =

∂u12(r12)
∂r1

= −∂u12(r12)
∂r12

= −∂u12(r12)
∂r2

= −F2 ≡ −F, where u denotes the intermolecular
potential. Newtons second law for the two particles is then

m1r̈1 = −F, m2r̈2 = F. (2.107)

Where Newton notation, φ̇ is used to indicate time-derivatives. To simplify further cal-
culations, recognise that

m1m2r̈12 = m1m2(r̈2 − r̈1) = (m1 +m2)F

= m0F

r̈12 =
m0

m1m2

F =
m0

m1m2

∂u12
∂r12

,

(2.108)

where m0 = m1 +m2. That is, the two-particle system behaves equivalently to a single
particle of unit mass orbiting a stationary potential m0

m1m2
u12, or a single particle of reduced

mass m1m2

m0
orbiting a stationary potential u12. The former, illustrated in Figure 2.3 is

arbitrarily chosen as a basis for the remaining analysis in this section, and will be referred
to as the single-particle frame of reference (FoR).

m = 1

r12

m0/(m1m2) F

Origin

Equivalent

m1

m2

r1

r2

r12

F

-F

Origin

r1˙
r2˙

g12

Figure 2.3: Illustration of two equivalent descriptions of the two particle system. Left:
Two particles, each the centre of a potential u12. Right: A single particle of unit mass
with velocity g12, orbiting a stationary potential m0

m1m2
u12.

Due to conservation of angular momentum, the plane of orbit is constant. It is therefore
convenient to define a polar coordinate system in this plane, as illustrated in Figure 2.4
to analyse the interaction. Furthermore, in the following analysis, the subscript on r is
dropped as the treatment is now that of a one-particle system. Keep in mind that the
distance r in the one-particle system is equivalent to r12 in the two-particle system. Keep
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m0/(m1m2) u12

(Origin)

g

r(t = 0)

θ(t)

r(t)

g

r(t = 0)

r(t)

y

x

θ(t)

Figure 2.4: The polar coordinate system, and corresponding cartesian coordinate system
in the plane of orbit.

also in mind that r(t = 0) = ∞, such that the velocity g is the relative velocity of the
particles before they begin to interact.

Denoting the position in cartesian coordinates as s = [r sin θ, r cos θ], and the velocity as

ṡ =
[
ṙ sin θ + rθ̇ cos θ, ṙ cos θ − rθ̇ sin θ

]
, the angular momentum of the particle is

L = |s× ṡ|
=
∣∣∣r sin θ

(
ṙ cos θ − rθ̇ sin θ

)
− r cos θ

(
ṙ sin θ + rθ̇ cos θ

)∣∣∣
= r2θ̇.

(2.109)

At t = 0 the angular momentum is

L = |r× g|
= |r||g| sin (∠ {r,g})
= gb

(2.110)

Where the final equivalency is acquired by noting that r(0) sin (∠ {r,g}) = b, as can be
seen in Figure 2.5. The governing equation for angular momentum is thus

r2θ̇ = gb. (2.111)

Conservation of energy must also be obeyed. At any time, the kinetic energy of the
particle is 1

2
|ṡ|2, the total mechanical energy is thereby

Emec
tot =

1

2
|ṡ|2 + m0

m1m2

u12(r)

=
1

2

(
ṙ2 + r2θ̇2

)
+

m0

m1m2

u12(r).
(2.112)

At t = 0 the velocity of the particle is g and the potential vanishes at infinite distance,
such that the governing equation for conservation of energy is

1

2

(
ṙ2 + r2θ̇2

)
+

m0

m1m2

u12(r) =
1

2
g2. (2.113)
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m0/(m1m2) u12

(Origin)

g12

r(t = 0)

b R

�

θ(R)

Figure 2.5: The distance of closest approach R, impact parameter b and deflection angle
χ illustrated in the single-particle FoR.

Recognise that due to the symmetry of the intermolecular potential, χ(g, b) = π −
2θ(R; g, b), where R is the distance of closest approach, as illustrated in Figure 2.5, and
the semicolon indicates a parametric dependency. Now that the governing equations for
the orbit have been developed, χ(g, b) will be determined by obtaining an explicit expres-
sion for θ(R; g, b). As R, and thereby χ, is not time-dependent, time can be eliminated
from the governing equations without losing relevant information. This is accomplished
by rewriting Equation 2.113 as

1

2

[(
dr

dθ

)2

+ r2

]
θ̇2 +

m0

m1m2

u12(r) =
1

2
g2. (2.114)

Inserting for θ̇ from Equation 2.111 yields

1

2

g2b2

r4

[(
dr

dθ

)2

+ r2

]
+

m0

m1m2

u12(r) =
1

2
g2. (2.115)

To find the distance of closest approach, solve this equation as

dr

dθ
= ±

(
r4

b2

[
1− 2

g2
m0

m1m2

u12(r)

]
− r2

) 1
2

= ±
(
r4

b2

[
1− u12(r)

kBTg2

]
− r2

) 1
2

.

(2.116)

Where g =
(

m1m2

2m0kBT

) 1
2
g is the dimensionless relative speed introduced in Section 2.3. It

is evident that R is found at the point where dr
dθ

= 0, or

R4

b2

[
1− u12(R)

kBTg2

]
−R2 = 0. (2.117)
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For some general collision, this equation may have several roots, corresponding to stable
orbits. However, because we consider a situation where the particles start at infinite
separation, simply requiring that the particles rotational or vibrational energy cannot
change is enough to ensure that no such stable orbit exists. Due to conservation of
energy, even a particle starting with g = 0 at infinite distance will always remain exactly
at the escape velocity of the potential. Any particle with g > 0 will always have a velocity
greater than the escape velocity.

To obtain an expression for θ, we invert Equation (2.116) such that

dθ

dr
= ±

(
r4

b2

[
1− u12(r)

kBTg2

]
− r2

)− 1
2

. (2.118)

From the geometry of the encounter it is evident that

dθ

dr
=

(
r4

b2

[
1− u12(r)

kBTg2

]
− r2

)− 1
2

×
{
−1, θ < θ(R; g, b, T )

1, θ > θ(R; g, b, T )
(2.119)

As θ is strictly increasing as a function of time, while r is decreasing until θ = θ(R), after
which r increases. Integrating Equation (2.119) now gives an explicit expression for θ,

θ(r′) =

∫ r′

∞

(
dθ

dr

)
dr

∫ θ(R;g,b,T )

0

dθ =

∫ R

∞
−
(
r4

b2

[
1− u12(r)

kBTg2

]
− r2

)− 1
2

dr

θ(R; g, b, T ) =

∫ ∞

R

(
r4

b2

[
1− u12(r)

kBTg2

]
− r2

)− 1
2

dr.

(2.120)

The dimensionless collision integral may now be evaluated numerically, the specifics of
the numerics are presented in Section 3.1. In essence, for a given g, b, T the value of χ is
given as

χ(g, b;T ) = π − 2θ(R; g, b, T ), (2.121)

as shown geometrically in Figure 2.5. To evaluate the integrand of Equation (2.106) at
a single point one must first solve Equation (2.117) for R, then evaluate the integral of
Equation (2.120) to obtain θ from which χ is computed.

2.3.10 Evaluation of χ̃

Until now, the intermolecular potential has been regarded as some arbitrary, spherical
potential. From this point onwards, considerations will be restricted to a Mie potential,
given as

uMie
ij = Cεij

[(
σij
rij

)λr,ij
−
(
σij
rij

)λa,ij]
, C =

λrij
λr,ij − λa,ij

(
λr,ij
λa,ij

) λa,ij
λr,ij−λa,ij

, (2.122)
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where ε is the potential well depth, σij is the molecular size parameter and λa,ij and λr,ij
are adjustable exponents. The use of χ̃CS, introduced in Section 2.3 as

χ̃CS(ρ;σHS) =
1− 1

2
η

(1− η)3
, η =

π

6
ρ
(
σHS

)3
, (2.123)

thereby implies an assumption that the rdf. of a Mie fluid at distances in the order of σ
resemble that of a hard sphere fluid. There is also the underlying assumption that χ̃ is
independent of particle velocities, and that one may therefore use its equilibrium value
even in the non-uniform state.

The question arising now is what value to use for σ when employing the CS-rdf at contact.
As mentioned in Section 2.2, the SAFT-VR Mie EoS uses a hard sphere system as a
reference state, and utilises the Barker-Henderson diameter to represent the hard-sphere
diameter of the reference fluid. Papaioannou et. al. state that the choice of a hard sphere
reference is due to the requirement of a highly accurate rdf for the reference fluid. [43] Still,
the physical interpretation of the BH-diameter is dubious. Therefore a different diameter,
more closely related to the physics of the collision is chosen here.

For the particle diameter, the idea is to take the average distance of closest approach
(R) for particles that deflect, σ̄. Deflection is here taken to mean interactions where
R > b, that is, where the interaction has prevented one particle from entering the volume
occupied by another.

It can be shown from Equation (2.117) that for any Mie potential, R(σ, g) = σ, and
R(b, g) > b ∀ b < σ. Thereby, the average is to be taken over all velocities and for b from
0 to σ. Formally

σ̄ij =
1

ninjσij

∫ ∞

0

∫ ∞

0

∫ σij

0

fifjR(gij, b)dbduiduj (2.124)

where

ninjσij =

∫ ∞

0

∫ ∞

0

fifj

∫ σ

0

dbduiduj (2.125)

is a normalising factor. The integral of Equation (2.124) could be solved numerically, but
this was decided against, largely because the resulting expression for σ̄ij would contain
the parameter χ̃, leaving a polynomial equation in χ̃ with potentially several roots upon
inserting the expression into (2.123). While this would be a soluble problem, the benefit
of the potential increase in precision in the evaluation σ̄ is highly uncertain. Therefore
the integral was simplified, first by assuming that the effect of particles deviating from the
average particle velocity would largely cancel and therefore be insignificant. Specifically,
the effect of low collision velocities is to increase the value of the integrand of Equation
(2.124), while high collision velocities reduce it. Therefore, for particles of like type, the

integral is simplified by simply using the average particle speed ūi =
√

2kBT
mi

rather than

integrating over the velocity distributions. For particles of the same type, this together
gives the simplified integral

σ̄ii ≈
1

σi

∫ σi

0

R(ūi, b)db. (2.126)
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For particles of unlike type, under the standard assumption of uncorrelated collisions, the
average relative speed at collisions is

ḡij =
ūi + ūj

2
. (2.127)

Thereby,

σ̄ij =
1

σij

∫ σij

0

R(ḡij, b)db. (2.128)

This approach was chosen primarily for its simplicity, as this work focuses on behaviour
in the low density region. For the results presented on conductivity in mixtures in Section
4.3, the single component density correction given in Equation (2.101) was applied, using
the χ̃ computed from an average σ̄, computed as

σ̄ =
∑

i

∑

j

xixjσ̄ij. (2.129)

The value of χ̃ is thereby computed as

χ̃ij =
1− 1

2
η

(1− η)3
, η =

π

6
ρσ̄3

ij (2.130)

for pure fluids and for the diffusion correction in binary mixtures, whilst for the conduc-
tivity correction

χ̃ =
1− 1

2
η

(1− η)3
, η =

π

6
ρσ̄3 (2.131)

is used in combination with the conductivity correction for a pure fluid. More accurate
values for χ̃ can be obtained if one is interested in employing Enskog theory directly
to describe behaviour in the dense gas or low-density supercritical region, but this is
somewhat more involved than the solution presented here. [9,36]

2.4 The Kempers Model

In this section, the derivation of the models proposed by Kempers will be presented. [15,19]

The model is developed by regarding a closed two-bulb system, as illustrated in Figure
2.6, the two containers are kept at uniform temperature, pressure and composition, while
the connecting tube is of negligible volume. The underlying assumptions are that the
steady state of this system, when the containers are at different temperatures, is the state
with a maximum in the canonical partition function (Q). The bulbs will be denoted with
superscript α and β, symbols lacking a superscript will be used to refer to the system as
a whole. It is further assumed that the Soret coefficient in an ideal gas mixture, denoted
with superscript ig, is accurately described by kinetic gas theory.
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Figure 2.6: Illustration of the Kempers two-bulb system. The two containers are homo-
geneous, the connecting tube has negligible volume.

2.4.1 The 1989-approach

Instead of treating the problem of two bulbs that exchange particles, the bulbs may
be treated as independent subsystems, under the constraint of total particle number
conservation. In that case, Q = QαQβ and nαi + nβi = ni ∀ i. Additionally, the two
subsystems are held at constant and equal volume, such that

∑
i v

α
i n

α
i =

∑
i v

β
i n

β
i = V

2
,

with V as the total system volume and vi as the partial molar volume of species i. Under
the current assumptions, the steady state compositions for given temperatures Tα and
T β are then given by the constrained maximisation

max
nα
i ,n

β
i

{
QαQβ

}
= max

nα
i ,n

β
i

{
exp

(
− Aα

kBTα
− Aβ

kBT β

)}

= min
nα
i ,n

β
i

{
Aα

Tα
+
Aβ

T β

}

nαi + nβi = ni, ∀ i
∑

i

vαi n
α
i =

∑

i

vβi n
β
i

(2.132)

The subscripts on the min and max operators indicate the optimisation variables, and are
to be understood such that for some function ψ(φ1, φ2),

max
φ1,φ2

{ψ} =
(
φextrema1 , φextrema2

)
= min

φ1,φ2

{−ψ}

ψ
(
φextrema1 , φextrema2

)
= ψmax

(2.133)

By the Lagrange multiplier method, the target function corresponding to this optimisation
is

L
(
nα,nβ,ϕϕϕ, γ

)
=
Aα

Tα
+
Aβ

T β
−
∑

i

ϕi

(
nαi + nβi − ni

)
− γ

∑

i

vαi n
α
i − vβi n

β
i (2.134)

with ϕ and γ as the Lagrange multipliers. Differentiating with respect to the optimisation
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variables yields the set of equations

µαi
Tα

− ϕi − γvαi = 0

µβi
T β

− ϕi + γvβi = 0

(2.135)

Subtracting these two equations eliminates the ϕi, such that

µαi
Tα

− µβi
T β

− γ
(
vαi + vβi

)
= 0

∆
α,β

(µi
T

)
− γ

(
vαi + vβi

)
= 0, i = {1, ..., N}

(2.136)

where the notation ∆
α,β
φ ≡ φα − φβ has been introduced to denote the difference between

the bulbs. Solving this equation for γ with i = k gives

γ =
1

vαk + vβk
∆
α,β

(µk
T

)
(2.137)

Inserting this back into the remaining N − 1 equations gives

∆
α,β

(µi
T

)
−
(
vαi + vβi
vαk + vβk

)
∆
α,β

(µk
T

)
= 0, i = {1, ..., N} \ {k}. (2.138)

Dividing through by the length of the tube, ∆z and taking the limit ∆z → 0, ∆
α,β
T → 0

yields the set of equations

∇
(µi
T

)
−
(
vi
vk

)
∇
(µk
T

)
= 0, i = {1, ..., N} \ {k}. (2.139)

This set of equations may be solved, in combination with
∑

i ST,ixi(1− xi) = 0, following
from the definition of the Soret coefficient. However, the observant reader will notice that
the reference chemical potentials of the components do not cancel, leaving a result that
will depend on the choice of reference state. This is the issue Kempers resolves with the
2001-approach.

2.4.2 The 2001-approach

In the 2001-approach, [15] the function subject to maximisation is instead the ratio of the
partition function to the partition function in the ideal gas state. That is, the objective
is to find

max
nα
i ,n

β
i ,n

α,ig
i ,nβ,ig

i

{
Q

Qig

}
= max

nα
i ,n

β
i ,n

α,ig
i ,nβ,ig

i

{
QαQβ

Qα,igQβ,ig

}
(2.140)

The constraints are expanded to include nα,igi + nβ,igi = ni, where the superscript ig
indicates the ideal gas state. That is, the particle numbers in the ideal gas state are
treated as independent variables, with the constraint that the total number of particles in
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the ideal gas state must equal that in the real state. Kempers does not use the constraint
that

∑
i v

α,ig
i nα,igi =

∑
i v

β,ig
i nβ,igi = V

2
. The resulting optimisation problem is

min
nα
i ,n

β
i ,n

α,ig
i ,nβ,ig

i

{
Aα − Aα,ig

Tα
+
Aβ − Aβ,ig

T β

}

nαi + nβi = ni

nα,igi + nβ,igi = ni∑

i

vαi n
α
i =

∑

i

vβi n
β
i

(2.141)

Because the mole numbers in the ideal gas state and the real state are treated as inde-
pendent variables, and the Helmholtz energy in each state is only a function of the mole
numbers in that state (i.e. Aα = Aα(nα, Tα, V α), Aα,ig = Aα,ig(nα,ig, Tα, V α) etc.), this is
exactly equivalent to conducting the two independent optimisations

min
nα
i ,n

β
i

{
Aα

Tα
+
Aβ

T β

}
min

nα,ig
i ,nβ,ig

i

{
−A

α,ig

Tα
− Aβ,ig

T β

}
(2.142)

nαi + nβi = ni nα,igi + nβ,igi = ni (2.143)
∑

i

vαi n
α
i =

∑

i

vβi n
β
i (2.144)

(2.145)

The leftmost minimisation is equivalent to the problem in Equation (2.132), resulting in
the set of Equations (2.139). The rightmost minimisation yields the Lagrange target-
function

L
(
nα,nβ, ϕ

)
= −A

α,ig

Tα
− Aβ,ig

T β
−
∑

i

ϕi(n
α,ig
i + nβ,igi − ni). (2.146)

Differentiation with respect to the target variables yields the set of equations

−µ
α,ig
i

Tα
− ϕi = 0

−µ
β,ig
i

T β
− ϕi = 0

(2.147)

Subtracting the first equation from the second yields the set of equations

∆
α,β

(
µigi
T

)
= 0. (2.148)

As before, dividing by the length of the tube ∆z, and taking the limit ∆z → 0, ∆
α,β
T → 0

then gives

∇
(
µigi
T

)
= 0. (2.149)
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To arrive at the set of equations proposed by Kempers in 2001, first subtract Equation
(2.149) for i ̸= k from equation (2.139), arriving at

∇
(µi
T

)
−∇

(
µigi
T

)
−
(
vi
vk

)
∇
(µk
T

)
= 0, i = {1, ..., N} \ {k}

∆
ig

{
∇
(µi
T

)}
−
(
vi
vk

)
∇
(µk
T

)
= 0

(2.150)

where ∆
ig
φ ≡ φ−φig denotes the difference between the real state and the ideal gas state.

Finally, multiply Equation (2.149) for i = k with vi
vk

and add the result to Equation

(2.150), getting

∆
ig

{
∇
(µi
T

)}
−
(
vi
vk

)
∆
ig

{
∇
(µk
T

)}
= 0. (2.151)

To solve this equation for the Soret coefficient, begin by expanding the gradients

∇
(µi
T

)
=

(
∂

∂T

µi
T

)

p,x

∇T +
∑

j

(
∂

∂xj

µi
T

)

T,p

∇xj

= − hi
T 2

∇T +
1

T

∑

j

(
∂µi
∂xj

)

T,p

∇xj,
(2.152)

where the relationship

dH = TdS + V dp+
∑

j

µjdnj

(
∂H

∂ni

)

T,p

≡ hi = T

(
∂S

∂ni

)

T,p

+ µi

= −T
(
∂µi
∂T

)

n,p

+ µi

= −T 2

(
∂
(
µi
T

)

∂T

)

n,p

(2.153)

has been used, with hi denoting the partial molar enthalpy. Insert this expression into
Equation (2.151) and divide through by ∇T to obtain a set of N − 1 equations for the
Soret coefficients,

∆
ig

{
− hi
T 2

− 1

T

∑

j

(
∂µi
∂xj

)
xj(1− xj)ST,j

}

− vi
vk

∆
ig

{
−hk
T 2

− 1

T

∑

j

(
∂µk
∂xj

)
xj(1− xj)ST,j

}
= 0.

(2.154)

Given that the optimisation of the target function in Equation (2.146) does in fact yield
the bulb compositions in the ideal gas steady state, and that kinetic gas theory can
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accurately supply the Soret coefficients in the ideal gas state, this final set of equations
can be solved for the Soret coefficients in the real state. This set of equations is termed
the Kempers CoV model, due to the constraint of no volume translation. It can be shown
that this is equivalent to the constraint of no pressure gradient. [19]

If, instead of imposing the constraint of no volume translation, one constrains the system
such that the centre-of-mass is stationary i.e.

∑

i

nαimi =
∑

i

nβimi, (2.155)

wheremi are the molar masses, the only change to the resulting equation will be swapping
out the partial molar volumes with the molar masses. This result is termed the Kempers
centre-of-mass (CoM) model.
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3 Methods

The previously presented models and derivations have been implemented in a combination
of C++ and Python. Numerical procedures are implemented in a C++ module with a
Python interface, a Python wrapper was implemented to facilitate ease of use. This
section explains and summarises the relevant numerical methods and implementation
specific equations used in this work.

First, the numerical methods required to evaluate the integrals of Section 2.3.9 are covered.
Later, in Sections 3.3 and 3.2, the Equations required for a closer analysis of the Kempers
model and the assumptions behind it are presented.

3.1 Numerical methods

Before we begin, the goal of the Section is clearly stated: We wish to evaluate the double
integral

Wℓ,r = 2

∫ ∞

0

∫ ∞

0

exp
(
−g2

)
g2r+3

[
1− cosℓ (χ (g, b))

]( b
σ

)
d

(
b

σ

)
dg (3.1)

numerically. To do so, we must evaluate the deflection angle χ(g, b;T ), which is computed
as χ(g, b;T ) = π − θ(R; g, b, T ), where

θ(R; g, b, T ) =

∫ ∞

R

(
r4

b2

[
1− u12(r)

kBTg2

]
− r2

)− 1
2

dr. (3.2)

The lower limit of integration, R, is the distance of closest approach, obtained by solving
the Equation

R4

b2

[
1− u12(R)

kBTg2

]
−R2 = 0. (3.3)

The complete method therefore consists of several discrete parts: A root solver to deter-
mine R; a numerical integration scheme to determine θ(R; g, b, T ), and thereby χ(g, b;T );
and finally a 2d numerical integration scheme to evaluate Wℓ,r. Note that the tempera-
ture, T , is treated as a parametric dependency, meaning that Wℓ,r must be computed at
a given temperature.

These functions and equations are to a certain degree badly behaved, and applying com-
monly known integration schemes and root solvers was not directly successful. A part
of the problem lies in the fact that the behaviour of dθ

dr
(r; g, b, T ) and Equation (3.3),

which must be solved to obtain a value for R, depend upon the molecular parameters, as
well as having a parametric dependency on g, b and T . Therefore robust algorithms for
solving Equation (3.3) and evaluating the integral of Equation (3.2), which is required to
obtain a value for χ, that are reliable for a large set of parameters are required. Further,
the integrand of Equation (3.1), the dimensionless collision integral, is costly to evaluate
and badly behaved. This section describes the integration and root solving algorithms
implemented to handle these issues.
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3.1.1 Solving for R

When implementing Newtons method to solve Equation (3.3) it is desirable to express the
equation in such a way that the left hand side is either strictly increasing or decreasing
in a wide region around the root. This makes the method less dependent upon a good
initial guess, which is hard to obtain as the root is a function of the parameters g and b,
as well as the temperature. Analysing the Equation, one finds that this can be achieved
by dividing by R4

b2
to obtain

ψR(R; g, b, T ) ≡ 1− u12(R)

kBTg2
−
(
b

R

)2

= 0 (3.4)

Where ψR is only a placeholder to refer to the function whose root determines R. Differ-
entiation of ψR with respect to R yields

ψ′
R(R; g, b, T ) = −u

′
12(R)

kBTg2
+

2b2

R3
. (3.5)

For b >> σ12, there will be very little interaction between the particles, except for at very
small Tg (Tg < 150). Therefore b is used as an initial guess. However, note that due
to the attractive part of the interaction potential, ψR may have a local minima at r < b,
with the root residing at a yet lower value of r. This would result in the Newton iteration
continuing to infinity. Therefore, the implemented algorithm checks the second derivative
of ψR in each step, if the second derivative is negative, the iteration is restarted after
reducing the initial guess by a factor of 0.1. This was tested and found to be a robust
and efficient method of finding the root of Equation (3.4).

3.1.2 Evaluating θ

It is immediately clear that the integrand of Equation (3.2) is divergent at r = R, as this is
implied by the solution of equation (3.3). Further, as shown in Figure 3.1, the integrand
decreases rapidly at first, but does not converge very quickly. The algorithm used to
evaluate the integral implements a trapezoidal integration rule, denoting ψθ(r; g, b, T ) ≡
dθ
dr
,

I[ra, rb] =
∑

i

ψθ(ri) + ψθ(ri+1)

2
∆ri ≈

∫ rb

ra

ψθdr. (3.6)

Where I[ra, rb] denotes the numerical approximation to the integral on the interval from
ra to rb. This integration rule was chosen as it both gives solid control of the integration
error and is fairly simple to implement. Due to the large second derivative of ψθ with
respect to r when |r − R| ≈ 0, high resolution is required at small r. However, how high
the resolution must be varies greatly with the parameters g, b and T . Therefore it was
made use of the fact that for the trapezoidal integration scheme

ϵabs =

∣∣∣∣I[ra, rb]−
∫ rb

ra

ψθdr

∣∣∣∣ ≤
max
(ra, rb)

{|ψ′′
θ (r)|} (rb − ra)

3

12N2
(3.7)

where ϵabs denotes the absolute error in the integral, max
(ra, rb)

{|ψ′′
θ (r)|} denotes the maximum

absolute value of the second derivative of the integrand on the interval (ra, rb), and N
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denotes the number of intervals. Utilising this, a tolerance, ϵsteptol , may be selected for each
interval, and the length of that interval can be determined as

∆ri =

(
12ϵsteptol

max
(ri, ri + ∆ri)

{|ψ′′
θ (r)|}

) 1
3

(3.8)

ensuring that the error over a single integration step never exceeds ϵsteptol . The second

derivative of the integrand of Equation (3.2), i.e. d3θ
dr3

is obtained by straight forward
differentiation as

ψ′′
θ (r) =

3

4
φ− 5

2φ′(r)− 1

2
φ− 3

2φ′′(r)

φ =
r4

b2

(
1− u12(r)

kBTg

)
− r2

φ′(r) =
4r3

b2

(
1− u12(r)

kBTg

)
+
r4

b2
u′12(r)

kBTg
− 2r

φ′′(r) =
12r2

b2

(
1− u12(r)

kBTg

)
+

8r3

b2
u′12(r)

kBTg
+
r4

b2
u′′12(r)

kBTg
− 2

(3.9)

Noting that the second derivative is strictly decreasing in the most critical region (at small
r), the step length is computed as

∆ri =

(
12ϵsteptol

|ψ′′
θ (ra)|

) 1
3

. (3.10)

To assess whether the integral has converged at a given point, the integration algorithm
moves forward iteratively. In the first iteration, 100 integration steps are conducted, as
this was found to be slightly less that what was most often required to achieve convergence.
In the following iterations, the value of the integral is stored and N0.1 integration steps
are conducted, where N0.1 =

Nt

9
and Nt is the total number of integration steps that have

been conducted in previous iterations. This means that if Ni denotes the total number of
integration steps conducted after iteration i, N1 = 0.9N2 = (0.9)2N3 = ... = (0.9)i−1Ni.
The algorithm terminates when the change in the integral after an iteration is less than
a set tolerance, ϵconv. The integration is illustrated in Figure 3.1.

After termination, the relative error of the total integral is checked, and if exceeding a
tolerance ϵtottol , the step error tolerance ϵsteptol is reduced, and the integral is recomputed.

3.1.3 Evaluating Wℓ,r

The integrand of Equation (3.1) is expensive to evaluate, and as shown in Figure 3.2
high resolution is required in certain regions to achieve satisfactory precision due to large
first and second derivatives. It is unfeasible to conduct the integration with this high
resolution over a region large enough to ensure that the integral has converged, without a
higher capacity for parallelization than what was possible with the tools available during
this work. Additionally, the shape of the integrand varies with the parameters ℓ, r and
T as well as the molecular parameters. The evaluation of a single diffusion coefficient,
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Figure 3.1: Illustration of the need for high refinement of the integral of Equation (3.2),
and the manner in which convergence is determined.

at a given temperature, to the first Enskog approximation, requires that the integral of
Equation (3.1) is evaluated nine times for different combinations of ℓ, r, and the number
increases rapidly with increasing order of approximation. This makes it unfeasible to
manually consider each integral. The implementation developed in this work is written to
utilise two processor cores, with the option of using up to eight, to simultaneously evaluate
several integrals. Additionally, a solution for storing the value of evaluated integrals for
later use was implemented.

To achieve reliable and efficient evaluation of the dimensionless collision integral an adap-
tive meshing algorithm was developed and implemented. This was used in combination
with a planar linear interpolation scheme.

Planar linear interpolation

Given a set of three points, P = {p1, p2, p3} ⊂ R3, denote the corresponding set of points
in the (x, y)-plane as P̃ = {p̃1, p̃2, p̃3} ⊂ R2. A plane can be constructed to interpolate
the integrand in P , express this interpolating plane as

z(x, y) = Ax+By + C (3.11)

Further, ensure x1 ≤ x2 ≤ x3, by reordering the points if necessary. Now, determine the
functional form of the lines connecting each pair of points in P̃ , denoted lij for the line
passing through (p̃i, p̃j). These have the form

lij = A
(l)
ij x+B

(l)
ij , A

(l)
ij =

yj − yi
xj − xi

, B
(l)
ij = yj − A

(l)
ij xj (3.12)
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Figure 3.2: Illustrative example of the form of the integrand of Equation (3.1). Interpo-
lating the integrand in such a manner that one captures the ”valley” between the peaks
is non-trivial, as the form of said valley is dependent on the potential parameters and the
temperature, as well as the parameters r and ℓ. The function has been triangulated by
the adaptive meshing scheme described in Section 3.1.3, with exaggerated refinement to
clearly illustrate the form of the function. Note that the surface consists of triangles, areas
that look like parallelograms consist of two bordering triangles with the same colour.

The integral of the interpolating plane may now be written as

I[p1, p2, p3] =

∫ x2

x1

∫ l13

l12

z(x, y)dydx+

∫ x3

x2

∫ l23

l12

z(x, y)dydx, y2 < y3 ∨ (y2 = y3 ∧ y2 > y1)

(3.13)

I[p1, p2, p3] =

∫ x2

x1

∫ l12

l13

z(x, y)dydx+

∫ x3

x2

∫ l23

l13

z(x, y)dydx, y2 > y3 ∨ (y2 = y3 ∧ y2 < y1)

(3.14)

Only the first term of the first case is treated explicitly here, the remaining terms are
obtained by appropriate index-swapping.

∫ x2

x1

∫ l13

l12

z(x, y)dydx =

∫ x2

x1

[
(Ax+ C) y +

B

2
y2
]l13

l12

dx

=

∫ x2

x1

(Ax+ C)
((
A

(l)
13 − A

(l)
12

)
x+B

(l)
13 −B

(l)
12

)

+
B

2

[(
A

(l)
13x+B

(l)
13

)2
−
(
A

(l)
12x+B

(l)
12

)2]
dx

≡
∫ x2

x1

Ã
(13)
12 x2 + B̃

(13)
12 x+ C̃

(13)
12 dx

(3.15)
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where

Ã
(13)
12 = A

(
A

(l)
13 − A

(l)
12

)
+
B

2

[(
A

(l)
13

)2
−
(
A

(l)
12

)2]

B̃
(13)
12 = A

(
B

(l)
13 −B

(l)
12

)
+B

(
A

(l)
13B

(l)
13 − A

(l)
12B

(l)
12

)
+ C

(
A

(l)
13 − A

(l)
12

)

C̃
(13)
12 =

B

2

[(
B

(l)
13

)2
−
(
B

(l)
12

)2]
+ C

(
B

(l)
13 −B

(l)
12

)
(3.16)

The integral in question is then

∫ x2

x1

∫ l13

l12

z(x, y)dydx =
Ã

(13)
12

3

(
x32 − x31

)
+
B̃

(13)
12

2

(
x22 − x21

)
+ C̃

(13)
12 (x2 − x1) . (3.17)

Adaptive meshing

The implemented integration scheme is exact for any function ψ(x, y) that satisfies
(
∂2ψ
∂x2

)
=

(
∂2ψ
∂x∂y

)
=
(
∂2ψ
∂y2

)
= 0 over the entire integration domain. It is assumed that, similarly to

the analogous one-dimensional trapezoid scheme, the error in the two dimensional scheme
scales linearly with the second derivative, and is proportional to the cube of the step
length. That is, the absolute integration error in each subinterval (x, x+hx)× (y, y+hy)
is assumed to be of the form

∣∣ϵabs.i

∣∣ ∼
∣∣∣∣
(
∂2f

∂x2

)
h3x

∣∣∣∣+
∣∣∣∣
(
∂2f

∂y2

)
h3y

∣∣∣∣+
∣∣∣∣
(
∂2f

∂x∂y

)
(hx + hy)

3

∣∣∣∣ (3.18)

The following meshing algorithm increases the mesh resolution in regions with high second
derivatives to ensure precise integration. At the same time, large step sizes are permitted
in regions with small second derivatives to prevent unnecessary function evaluations from
making the integration unnecessarily computationally intensive.

Let S = {(x0, x0 +∆x)× (y0, y0 +∆y)} be the total domain of integration. Further, let

S∗ =
{
(xS

∗

i , y
S∗

i , hS
∗

x , h
S∗

y ) | (xS∗

i , y
S∗

i ) ⊆ S ∧ hS
∗

x = xS
∗

i+1 − xS
∗

i , h
S∗

y = yS
∗

j+1 − yS
∗

j

}

S∗
ij (S

∗) =
{
(x, y) ∈

(
xS

∗

i , x
S∗

i + hS
∗

x

)
×
(
yS

∗

j , yS
∗

j + hS
∗

y

)}

S∆
ij (h

′
x, h

′
y,S

∗) =
{
(xi′ , yj′) ⊂ S∗

ij (S
∗) | xi′+1 − xi′ = h′x ∧ yj′+1 − yj′ = h′y

}

(3.19)

Such that S∗ is some discrete subset of S, S∗
ij is a continuous subset of S, bounded by
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S∗, and S∆
ij is a discrete subset of S∗

ij. The mappings

Sx
ij (S

∗) : S∗ 7→
{
(xk, yℓ, h

′
x, h

′
y) | (xk, yℓ) ∈ S∆

ij (h
′
x, h

′
y,S

∗) : h′x =
hS

∗
x

2
, h′y = hS

∗

y

}

(3.20)

S
y
ij (S

∗) : S∗ 7→
{
(xk, yℓ, h

′
x, h

′
y) | (xk, yℓ) ∈ S∆

ij (h
′
x, h

′
y,S

∗) : h′x = hS
∗

x , h
′
y =

hS
∗

y

2

}

(3.21)

S
xy
ij (S∗) : S∗ 7→

{
(xk, yℓ, h

′
x, h

′
y) | (xk, yℓ) ∈ S∆

ij (h
′
x, h

′
y,S

∗) : h′x =
hS

∗
x

2
, h′y =

hS
∗

y

2

}

(3.22)

may then be used to recursively generate discrete subsets of S with increased resolution
in each iteration, the domains and mappings are illustrated in Figure 3.3.

S

S
*

S12
*

y
S12

S12

xx xy
S12

x0 x1 x2

y1

y2

y3

y0

x0 x1

y0

y1

y2

y0

y1

x0 x1 x2 x0 x1 x2

y0

y1

y2

Figure 3.3: Domains and mappings of Equations (3.19)-(3.22), used to recursively refine
the mesh used to interpolate the integrand of Equation (3.1).

To integrate a function ψ(x, y) over S, the integration algorithm starts with a large
step size in each direction, denoted hx = Nxδx and hy = Nyδy, where (Nx, Ny) =
{(2nx , 2ny) : (nx, ny) ∈ N2} and δx, δy denote the minimum step size (i.e. maximum re-
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finement) in each direction. The numerical second derivatives of ψ are computed as

(
∂2ψ

∂x2

)
≈
(
∆2
xψ
)
i,j

≡ ψi,j − 2ψi+1,j + ψi+2,j

(hx)2(
∂2ψ

∂y2

)
≈
(
∆2
yψ
)
i,j

≡ ψi,j − 2ψi,j+1 + ψi,j+2

(hy)2(
∂2ψ

∂x∂y

)
≈
(
∆2
xyψ
)
i,j

≡ ψi,j − 2ψi+1,j+1 + ψi+2,j+2 − h2x∆
2
xψ − h2y∆

2
yψ

2hxhy

(3.23)

where ψk,l = ψ(x0 + khx, y0 + lhy) and the equivalencies define the ∆2
xψ, ∆

2
yψ and ∆2

xyψ
- finite difference operators. Once the numerical second derivatives are computed, the
conditions of Equations (3.24)-(3.28) are checked successively.

(I)
∣∣∣
(
∆2
xz
)
i,j

∣∣∣ > ϵ ∧
∣∣∣
(
∆2
yz
)
i,j

∣∣∣ < ϵ ∧
∣∣∣
(
∆2
xyz
)
i,j

∣∣∣ < ϵ ∧ Nx > 1, (3.24)

(II)
∣∣∣
(
∆2
xz
)
i,j

∣∣∣ < ϵ ∧
∣∣∣
(
∆2
yz
)
i,j

∣∣∣ > ϵ ∧
∣∣∣
(
∆2
xyz
)
i,j

∣∣∣ < ϵ ∧ Ny > 1, (3.25)

(III)
∣∣∣
(
∆2
xz
)
i,j

∣∣∣+
∣∣∣
(
∆2
yz
)
i,j

∣∣∣+
∣∣∣
(
∆2
xyz
)
i,j

∣∣∣ > ϵ ∧ Nx > 1 ∧ Ny > 1, (3.26)

(IV)
∣∣∣
(
∆2
xz
)
i,j

∣∣∣+
∣∣∣
(
∆2
yz
)
i,j

∣∣∣+
∣∣∣
(
∆2
xyz
)
i,j

∣∣∣ > ϵ ∧ Nx > 1, (3.27)

(V)
∣∣∣
(
∆2
xz
)
i,j

∣∣∣+
∣∣∣
(
∆2
yz
)
i,j

∣∣∣+
∣∣∣
(
∆2
xyz
)
i,j

∣∣∣ > ϵ ∧ Ny > 1, (3.28)

Here, ϵ is some predetermined tolerance value. Upon reaching a condition that is true,
the algorithm selects a map, following the rules

(I) ∨ (IV) 7→ Sx
ij, (II) ∨ (V) 7→ S

y
ij, (III) 7→ S

xy
ij ,

to generate a subdomain and calls itself recursively on that subdomain.

If no condition is true, the algorithm steps across the current domain, following the
pattern p0 = (x0, y0), p1 = (x0, y1), p2 = (x1, y0), ..., p2k = (xk, y0), p2k+1 = (xk, y1).
Upon reaching the edge of the current domain, at xk = xN , two steps are conducted in
the y-direction, and the step in the x-direction is reversed, such that the stepping follows
the pattern pN+2k = (xN−k, y1), pN+2k+1 = (xN−k, y2). The pattern is illustrated in Figure
3.4.

To verify the reliability of the implemented integration algorithm, several functions with
analytic integrals were meshed and integrated numerically. As shown in Figure 3.5, the
meshing algorithm successfully increased resolution in areas with large second derivatives.
The resulting numeric integrals had errors of typically less than 3 %, even with large initial
grid size. To minimise the number of function evaluations, the integrands’ value in each
gridpoint is stored, such that it will not be recomputed for each triangle that uses the
point.
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Figure 3.4: The stepping algorithm used to generate the recursively refined integration
mesh. Arrows indicate integration steps, numbers indicate the order in which the inter-
polating triangles are generated, going in the order 1a−12a−1b−12b−1c−20c. Refined
regions are indicated, with yellow regions refined by the map Sx

ij, orange regions refined
by S

y
ij and purple regions refined by S

xy
ij . The region 3c − 6c is doubly refined, first by

Sx
ij, then by S

y
ij.

Refining the algorithm parameters

From geometric considerations one will find that for a hard sphere

χHS = cos−1

[
1− 2

(
1−

(
b

σHSij

)2
)]

×
{
1, b < σHSij
0, b > σHSij

(3.29)

After testing the implemented algorithm for the functions shown in Figure 3.5, appro-
priate parameters required to precisely and efficiently evaluate the dimensionless collision
integral were determined. This was done by using the pseudo-hard-sphere potential,

up−HS(rij) =





(
σij
rij

)φ
+ φ(φ+1)

2

(
rij
σij

)2
− φ

(
φ− φ

σij
+ 1
)
rij

+φ
(
(φ+ 1)σij − φ

2
− 3

2

)
− 1 rij < σij

0 rij > σij

(3.30)

to compute χ, R and Wℓ,r numerically, and comparing the result to the known analytical
solutions for hard spheres. This potential was chosen due to the root solver and integration
scheme requiring continuous first and second derivatives to behave as intended, and the
given potential satisfies

up−HS(σ) = u′p−HS(σ) = u′′p−HS(σ) = 0. (3.31)

An exponent of φ = 20 was chosen arbitrarily as a large exponent to force the potential
to rise steeply. Using the integration parameters shown in Table 3.1, the integration error
when compared to the analytic solutions for a hard sphere were consistently below 1 %
for ℓ, r < 9.

The entirety of the implementation developed in this work will be made available in a
public repository on GitHub, and can be supplied upon request. [44]
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(a) ϵr = 0.38 % (b) ϵr = 0.48 %

Figure 3.5: Visualisation of the triangulation of two test functions. ϵr =
|Iexact−Inumeric|

Iexact
is

the relative error in the numeric integrals. In (a), notice the individual refinement in the
x- and y- directions.

Table 3.1: Parameters used with the integration scheme presented in Section 3.1 through-
out this work. ϵ0 refers to the tolerance for refinement, used in Equations (3.24)-(3.28), δ
is the minimum step size along each axis and N is the initial step size in multiples of δ.
gN and

(
b
σ

)
N

are the cutoff values of the integration domain.

Parameter Value Parameter value

Ng 4 N( b
σ )

16

δg 0.5 δ( b
σ )

0.05

gN 7.5
(
b
σ

)
N

5
ϵ0 10−5
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3.2 A modified Kempers approach

When one views the 2001-approach as two independent optimisations, it is not immedi-
ately clear why the real state is assumed to obey Equation (2.139), given as

∇
(µi
T

)
−
(
vi
vk

)
∇
(µk
T

)
= 0, i = {1, ..., N} \ {k}. (3.32)

while the ideal gas state does not. Additionally, it has previously been noted that the
Enskog solutions for hard spheres without density corrections do not represent an ideal
gas, but an infinitely dilute mixture of hard spheres. [25] The difference between the two
is discussed in more detail in Section 4.6. It has been proposed that one should therefore
not use the ideal gas state as a reference, but rather a hard sphere state, which may be
accurately described within the Boubĺık formalism. [45,46]

If, following Kempers, one assumes that all systems obey Equation (3.32) in the steady
state, and that the Soret coefficient in an infinitely dilute mixture of hard spheres is
accurately described by kinetic gas theory, one can set up Equation (3.32) for both the
hard sphere state and the real state,

∇
(µi
T

)
− vi
vk

∇
(µk
T

)
= 0

∇
(
µHSi
T

)
− vHSi
vHSk

∇
(
µHSk
T

)
= 0

(3.33)

Now, subtracting the two, as in the 2001-approach, and inserting the expansion of ∇
(
µi
T

)

from Equation (2.152), one arrives at

∆
HS

{
− hi
T 2

− 1

T

∑

j

(
∂µi
∂xj

)
xj(1− xj)ST,j

}

− ∆
HS

{
vi
vk

(
−hk
T 2

− 1

T

∑

j

(
∂µk
∂xj

)
xj(1− xj)ST,j

)}
= 0,

(3.34)

where ∆
HS
φ ≡ φ−φHS indicates the difference between the real value and the hard sphere

value for some variable φ. Together with the condition that
∑

j xj(1 − xj)ST,j = 0, and

with SHST,i supplied from kinetic gas theory, this set of equations can be solved for the
Soret coefficients in the real state.

All thermodynamic quantities required to solve this set of equations, with the exception

of
(
∂µi
∂xj

)
T,p

, are directly available in the thermodynamic library ThermoPack. [32] A rela-

tionship allowing one to compute
(
∂µi
∂xj

)
T,p

from quantities that are available is derived in

Appendix C. The entirety of the implementation of the Kempers model can be found in
a public repository on GitHub. [47]
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3.3 Kempers: Evaluation of the steady state assumptions

To compare the predictions by the Kempers model to Kinetic gas theory, and investigate
how the two relate to the Helmholtz energy of the two-bulb system, Kempers target
function of minimisation,

τ ≡ Aα

Tα
+
Aβ

T β
(3.35)

is computed for a two-container system with a small, finite temperature difference. The
system average temperature is taken to be

T =
Tα + T β

2
. (3.36)

Note that this choice is made for simplicity, using a mole-average temperature may be rea-
sonable, but makes the mathematics of the problem far more involved. It is assumed that
when dealing with temperature differences on the order of 0.1K, the difference between
the bulb average used here, and the mole average is negligible. The two bulb temperatures
are related to the temperature difference, ∆T as

Tα = T − 1

2
∆T, T β = T +

1

2
∆T. (3.37)

The bulbs are considered as two separate, closed volumes held at Tα and T β, with a fixed
total number of moles n = nα + nβ. The volume of the two bulbs is held constant, and
for simplicity is set to be equal. Given a distribution of component 1, ∆n1 = nβ1 −nα1 and
component 2, ∆n2 = nβ2 − nα2 , one can compute

nα1 =
n1 −∆n1

2
, nβ1 =

n1 +∆n1

2
. (3.38)

Such that instead of considering the four mole numbers, we may instead consider the two
component separations. These will be our free variables. Given that we have two degrees
of freedom, imposing any constraint on the system will uniquely define a curve in the
(∆n1,∆n2)-plane. Thus, the consequence of constraining the minimisation of τ can be
investigated. The first curve we consider is that of equal bulb mass, ∆m = 0, given by

∆m = m1∆n1 +m2∆n2 = 0

∆n2 = −m1

m2

∆n1.
(3.39)

According to the Kempers-CoM model, the steady state is the minima in τ along this
curve. The second to consider is the curve corresponding to no pressure difference, ∆p = 0.
From the total differential of pressure at constant volume,

dp =

(
∂p

∂T

)

n,V

dT +
∑

i

(
∂p

∂ni

)

T,V,nk

dni = 0

∆n2 ≈ −

(
∂p
∂T

)
n,V

∆T +
(
∂p
∂n1

)
T,V,n2

∆n1

(
∂p
∂n2

)
T,V,n1

.

(3.40)
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The minima in τ along this curve is the steady state predicted by the Kempers-CoV
model.

Finally, to investigate the steady state predicted by the Enskog solutions, we find the
curve of fixed compositional difference xβ1 − xα1 = ∆x, given by

∆x1 =
nβ1

nβ1 + nβ2
− nα1
nα1 + nα2

=
n1 +∆n1

n+∆n
− n1 −∆n1

n−∆n

∆x1
(
n2 − (∆n)2

)
= (n1 +∆n1) (n−∆n)− (n1 −∆n1) (n+∆n)

= 2 (n∆n1 − n1∆n)

−∆x1 (∆n)
2 + 2n1∆n+∆x1n

2 − 2n∆n1 = 0.

(3.41)

Closer investigation reveals that only one of the roots of this equation will be a physical
solution, the other will have |∆n| > n or |∆n1| > n1.

In addition to computing these curves, it is of interest to investigate the steady state
pressure gradient as predicted by the Enskog solutions. Recall Equation (2.55),

ū1 − ū2 = −1

3
ρ [{D,D}d12 + {D,Λ}∇ lnT ] . (3.42)

In the steady state, the left hand side vanishes. Expanding d12 and inserting the transport
coefficients for the bracket integrals yields

0 = −1

3
ρ

[
3ρ

ρ1ρ2
D12

(
∇x1 +

ρ1ρ2(m2 −m1)

ρρm
∇ ln p

)
+

3ρ

ρ1ρ2
DT∇ lnT

]

∇x1 = − DT

TD12

∇T − ρ1ρ2(m2 −m1)

pρρm
∇p.

(3.43)

Inserting for Equation (3.41), and taking finite differences as an approximation to the
gradients yields

n1 +∆n1

n+∆n
− n1 −∆n1

n−∆n
≈ − DT

TD12

∆T − ρ1ρ2(m2 −m1)

pρρm
∆p. (3.44)

From the total differential of pressure,

∆p ≈
(
∂p

∂T

)

n,V

∆T +
∑

i

(
∂p

∂ni

)

T,V,nk

∆ni. (3.45)

Given a thermal diffusion ratio, and a separation of component 1, Equation (3.44) and
(3.45) can be solved numerically for ∆n2. The resulting curve describes the steady state
relation between ∆n1 and ∆n2 for a given thermal diffusion ratio. Along this curve, both
∆x1 and ∆pmay vary while Equation (3.43) is obeyed. That is, if a thermal diffusion ratio
is supplied from the Enskog solutions, this curve describes the steady states permitted by
the Enskog solutions.
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To summarise, the relation between the molar separation of the components of a binary
system, ∆n1 and ∆n2, subjected to a temperature difference ∆T have been derived under
three constraints. The first is that of equal container mass, the second is equal container
pressure, the third is that the Enskog solutions are obeyed. Kempers assumes that the
steady state is characterised by a minimum in the target function τ , given in Equation
(3.35), along one of the first two curves.
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4 Results

This Section consists of two main parts: The first focuses on the Enskog solutions, the
second on the Kempers model.

First the stability and convergence of the implementation of the Enskog solutions for Mie
fluids is investigated. The results are similar to what has previously been found regarding
the stability and convergence of these equations when using a hard sphere potential. [25]

Then a review of the Mie potential parameters used in this work is conducted. After
these preliminary investigations, the Enskog solutions for Mie fluids are used to predict
transport coefficients at different conditions, for a variety of both mixtures and pure fluids.
The results of these predictions are compared to both experimental and simulation data
as well as predictions obtained from the Enskog solutions for hard spheres.

The second part begins with testing the proposed modification to the Kempers model,
before an analysis of the assumptions behind the Kempers model is conducted. In this
analysis the implementation of the Enskog solutions is used to investigate whether Kem-
pers assumptions regarding the steady state being at a maximum in the canonical partition
function is consistent with the Enskog solutions. Furthermore, the assumption that ki-
netic gas theory may be used to predict the thermal diffusion coefficient in the ideal gas
state is investigated, and the concept of transport coefficients in an ideal gas mixture is
discussed in more detail.

4.1 Stability and convergence of the Enskog solutions

Before studying the physical predictions acquired from the Enskog solutions a conver-
gence and stability analysis was conducted. It has previously been shown that using the
analytic hard sphere solutions for the collision integrals the solutions converge at around
approximation order ≈ 4-5, and that numerical instability becomes significant at orders
> 7. [25] The notable result from the previous analysis is the dramatic increase in the con-
dition number of the matrix of Equation (2.79) with increasing order of approximation,
resulting in floating point error propagating to large errors in the matrix inversion.

A simple convergence analysis reveals that the same is true when employing a Mie po-
tential as when using the HS-potential, the solutions destabilise at approximation order
≈ 7− 8. Given the previously obtained results regarding the nature of this instability, it
was not investigated further. [25] An interesting discovery however, was that the diffusion
factors d−1, d0 and d1 converged far more quickly for a Mie potential than for a HS model.
In most cases the changes were on the order of 1 % from the first approximation to the
converged value at the 3rd to 5th approximation.

The reason for this more rapid convergence for the Mie potential was investigated, but
no clear explanation was found. However, it was noted that if one component was in
trace concentrations (< 1 ‰) the convergence took longer, requiring up to the 6th or 7th
approximation before converging. As previously found, [25] having one component in trace
concentration stabilises the numerics, such that one can go to higher order approximations
before the solutions become unstable.

Following these observations, the 3rd Enskog approximation was chosen as the default for
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all computations. This order of approximation is used unless a different order is explicitly
stated.

4.2 Review of Mie parameters

With the exception of H2O, all Mie parameters used to represent real fluids in this work
are currently available in the ThermoPack database. [32] This section gives an overview
regarding what physical properties the parameters have been fitted to, and to what degree
the parameters have been successful in reproducing those properties. A summary of the
parameters and some reported deviations from data, either obtained from experiment, a
reference EoS, or simulations, is given in Table 4.1.

With the exception of hydrogen and deuterium heat capacities, and CO2 and deuterium
speed of sound, SAFT-type equations of state appear to quite reliably reproduce the
equilibrium behaviour of these fluids. Aasen et al., who have regressed the parameters
for hydrogen, deuterium and neon, report significantly improved accuracy when using the
Feynman-Hibbs quantum corrected Mie potential. [31] The implementation of the Enskog
solutions developed in this work makes it possible to utilise such a potential, but this
route was not pursued. However, Aasen et al. also report mixing parameters kij and ℓij
for mixtures of helium, neon and deuterium. These are used in this work when computing
cross-interaction parameters for mixtures of these components.

For computations involving water, the temperature dependent parameters reported by
Lobanova et. al. were used. [48] These are given as

σ = 3.119− 4.554 · 10−4T − 8.720 · 10−8T 2 + 1.262 · 10−9T 3, [Å]

ε = 586.8− 0.3077T + 1.105 · 10−5T 2, [kB]
(4.1)

with (λr, λa) = (8, 6). These parameters have been regressed to reproduce the vapour-
liquid equilibrium properties of water. As shown in Table 4.1, the agreement with experi-
mental data is not excellent. However, water is commonly known as a notoriously difficult
molecule to model with a simple potential model such as the Mie potential, due to the
high degree of hydrogen bonding, and the polar nature of the molecule. It is worth men-
tioning that when using these parameters in MD simulations they report systematically
under-predicting the self diffusion coefficient of water.

An important point to note is that, with the exception of oxygen, the parameters here
are fit to equilibrium properties. This carries the implication that quality of the model
predictions should be representative of the predictive power of the Enskog solutions for
Mie fluids, rather than a result of parameter fitting.

4.3 Analysis of the Enskog solutions

The Enskog solutions provide a means of computing both diffusion coefficients and con-
ductivities of gases, in addition to the Soret coefficient. The implemented model was
tested with regard to it’s ability to reliably reproduce the conductivities, diffusivities and
thermal diffusion coefficient of a large number of gases and supercritical fluids. The Mie
potential parameters given in Table 4.1 were used for all computations. In computations
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Table 4.1: Mie potential parameters used in this work. The rightmost columns show
deviations from reference data for some common properties, the vapour pressure pvap, the
saturated liquid density ρsatliq , the enthalpy of vaporisation ∆vapH, the critical temperature
Tc, the speed of sound us and the isobaric heat capacity Cp, predicted by either a SAFT-
type EoS or MD simulations, as reported by those that have regressed the parameters.
The reference data is obtained either from experimental measurements, MD or a reference
EoS.

Reported deviations [%]
Specie σ [Å] ε [kB] λa [-] λr [-] pvap ρsatliq ∆vapH Tc us Cp Ref.

Xe 3.9011 227.55 6.0 12.0 3 0.5 2 [49]

O2
(a) 3.433 113.0 6.0 12.0 [50]

CO2 3.1916 231.88 5.1646 27.557 0.40 1.18 3.26 10.70 3.49 [43]

Ne 2.8019 29.875 6.0 9.6977 0.06 0.4 1.69 1.37 5.98 [31]

CH4 3.7412 153.36 6.0 12.65 0.63 0.78 2.86 1.29 4.73 [43]

D2 3.1538 21.2 6.0 8.0 2.15 5.24 1.25 9.34 45.15 [31]

He(b) 3.353 4.44 6.0 14.84 [51]

H2 3.2574 17.931 6.0 8.0 3.84 9.01 3.38 3.35 93.32 [31]

Kr(c) 3.64 166.66 6.0 12.0 [52]

Ar 3.404 117.84 6.0 12.085 0.21 0.66 3.09 2.19 2.13 1.77 [53]

N2
(d) 3.656 98.94 6.0 12.26 [54]

H2O (e) (e) 6 8 4 1 15.9 3.09 - 34.6 [48]

(a)Fitted to diffusion coefficient for use in metallurgical modelling.
(b)Values obtained from the correlation proposed by Meija et al. [55]
(c)It is not reported how the parameters are obtained.
(d)Deviations in the order of 2-5 % measured against interfacial tensions.
(e)Temperature dependent parameters given in Equation (4.1).

using a hard sphere potential, the Mie potential σ-parameter was used for the hard sphere
diameter.

The average absolute deviation (AAD) between predictions and measurements is reported
as

AAD =
1

N

∑

i

|φi − φ̂i|
φi

(4.2)

where φi are the measured values, φ̂i are the predicted values, and N is the number of
measurements. Similarly, the average deviation (AD) is reported as

AD =
1

N

∑

i

φi − φ̂i
φi

. (4.3)

Both values are used, as a large AAD may be due to large spread in experimental data that
centres around model predictions, in which case the AD should be small. If both the AAD
and AD are large, this is indicative of a systematic discrepancy between model predictions
and reported data. There may be systematic discrepancies that are not captured by these

55



measures, but they are deemed sufficient to give a good first indication of the models
quality. In section 4.3.3 an additional measure, the Pearson correlation coefficient, ρP ,
computed as

ρP =
Cov[φ, φ̂]

Var[φ]2Var[φ̂]2
(4.4)

where Cov[φ, φ̂] is the covariance of predicted and reported values, and Var[φ] is the
variance of φ, is used to analyse the discrepancy between measured and predicted val-
ues.

4.3.1 Diffusion

For a large variety of binary noble-gas mixtures, the Enskog solutions for Mie fluids
reliably reproduced experimental results, as shown in Figure 4.1. The average absolute
deviation over 193 data points was 2.77 %, with 88 % of the predictions lying within ±5
%, and 96.8 % of predictions lying within ±7.5 % of data reported by Hogervorst, with a
reported accuracy of 1-3 %. [56]

In contrast, using a hard-sphere potential the AAD was 26.4 %, with a large, systematic
under-prediction of the diffusion coefficient, especially at high temperatures. Predictions
using hard sphere potentials are shown in Figure B.1.
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Figure 4.1: Predicted (lines) and measured (marks) diffusion coefficients of noble-gas
mixtures at p = 1atm, densities supplied to the Enskog solutions were computed using
the SAFT-VR Mie EoS. Predctions made using Mie potentials. Helium mixtures contain
98.5 % Helium, the remaining mixtures contain 99 % of the first component. Data reported
by Hogervorst. [56]

Yoshida et al. report the self diffusion coefficient of water along several super-critical
isotherms. [57] As shown in Figure 4.2 the Enskog solutions for Mie fluids reproduce the
diffusion coefficient at the lower reported densities, but becomes unreliable at higher
densities and temperatures, with predicted values deviating by 10-20 % from those re-
ported.
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It is evident that the density corrections discussed in Section 2.3.7 are unable to capture all
the effects of increased density. However, as previously mentioned, the water molecule is
notoriously difficult to model, as it is highly polar and prone to forming hydrogen-bonds.
In light of this, the discrepancies of 10-20 % are in fact smaller than what one might
expect. Additionally, it is notable that the clear trend of under-predicting the diffusion
coefficient is the same as that reported by Lobanova et al. when using these parameters
in MD-simulations. [48]

Predictions using a hard sphere potential are shown in Figure B.2. Deviations from
reported data when using a hard sphere potential is significant, ranging up to 40 % even
at lower densities.
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Figure 4.2: Self-diffusion coefficient of supercritical water at several isotherms. Lines are
predictions by the Enskog solutions for Mie fluids, marks are data reported by Yoshida
et al. [57]

Despite the discrepancy between the Enskog solutions and reported data for water at
high temperatures and densities, the disagreement was notably ≲ 10 % at temperatures
at or below 573K when using a Mie potential. Therefore, the high-density regime was
investigated further. As shown in Figure 4.3, the deviation from measured data increases
rapidly as the density becomes liquid-like.

Afshin et al. report their simulation results in reduced units, and do not report the po-
tential parameters they have used, other than the exponents. The values shown in Figure
4.3 are computed using the Mie parameters of Helium but with repulsive and attractive
exponents 14 and 7. Using other sets of Mie parameters only resulted in scaling of the
results. These results were not compared to predictions using a hard sphere potential, as
the results would depend upon the choice of the ε-value one uses to obtain the temperature
from the reported dimensionless temperature.
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Figure 4.3: The self-diffusion coefficient of the Mie-14-7 fluid, as predicted by the Enskog
solutions for Mie fluids and measured by MD-simulation, along several isotherms. Mea-
surements by Afshin et al. [58] Values computed using Mie parameters for helium.

To compare the different data sets, the reduced phase point of the measurements shown
in Figures 4.1, 4.2 and 4.3, in addition to measurements for a CO2/CH4 mixture reported
by Geuvara-Carrion et al, [59] is shown in Figure 4.4. The reduced phase point is computed
as

ρ∗ = ρNAσ
3, σ =

∑

i

∑

j

xixjσij,

T ∗ = T
kB
ε
, ε =

∑

i

∑

j

xixjεij

(4.5)

where the cross-interaction parameters are obtained via the LB mixing rules. It is clear
from Figure 4.4 that the deviation between the predicted and measured diffusion coef-
ficient is stable and on the order of ≲ 10 − 15% until a reduced density of ≈ 0.1, after
which it increases rapidly. There does not appear to be a clear correlation between the
temperature and the deviation from measured data. Notably, a reduced density of 0.1 cor-
responds to an average inter-particle distance of only ≈ 2.15σ, a relatively short distance
when having in mind the assumptions behind the Enskog solutions.
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Figure 4.4: Relative discrepancy between the Enskog solutions for diffusion using a Mie
potential and reported values presented in Section 4.3, and the reduced phase point of the
reported data. The black solid line in the central figure indicates the phase envelope of the
LJ-fluid as computed with SAFT-VR Mie. Dotted and dashed lines indicate the 10th and
20th percentiles respectively. (a)Hogervorst, [56] (b)Yoshida et al., [57] (c)Guevara-Carrion et
al., [59] (d)Afshin et al. [58]

4.3.2 Conductivity

Further, the Enskog solutions’ ability to reproduce experimental conductivities was inves-
tigated. As shown in Figure 4.5, the predictive capability of the solutions varies notably
between different species, and deteriorates rather quickly with increasing density for some
species.

Using hard sphere potentials the disagreement between predictions and measurements
ranged from -40 % to +30 %, even at the lowest densities. Very few predictions made with
the hard sphere potentials were within ±10 % of measurements. Conductivity predictions
made with hard sphere potentials are shown in Figure B.3.

For predictions made with Mie potentials, the reduced state point of the various mea-
surements was investigated. This revealed that the disagreement between predictions and
measurements increases far more rapidly at low reduced temperatures, as shown in Figure
4.6. As all the presented conductivity measurements are in the gas phase, it is deemed
unlikely that long time-correlations and thereby correlated collisions are the reason for
the deviations, even at low temperature. However, it was commented in Section 2.3.10
that the implemented density corrections for conductivity in mixtures are a simplification.
These results may be indicative that the assumptions made when simplifying the density
corrections are better at higher temperatures.
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Figure 4.5: Conductivity of noble gases and noble gas mixtures at varying density. Pre-
dictions by the Enskog solutions with Mie potentials. All measurements at 35 °C.(a)xHe =
0.2172, (b)xHe = 0.4662, (c)xHe = 0.6823, (d)xHe = 0.7156, (e)xAr = 0.4088, (f)xAr = 0.7059.
Measurements reported by Assael et al. [60]

4.3.3 The thermal diffusion ratio

Vargaftik has compiled an extensive set of thermal diffusion ratios for dilute gas mixtures
at varying composition and temperature. [61] For 970 of these data points, Mie potential
parameters have been acquired, as presented in Section 4.2. Before comparing the exper-
imental values to model predictions, the data set for each mixture was visually inspected.
In total 32 data points were disregarded as clear outliers, these were evenly distributed
throughout the data set when regarding mixture components, composition, temperature
and reduced temperature.

As shown in Figure 4.7, there is a clear trend of the Enskog solutions over-predicting the
thermal diffusion ratio when supplied with a Mie potential. However, closer inspection
revealed that practically all the bias could be attributed to various mixtures contain-
ing hydrogen. Aasen et al. have shown that hydrogen mixtures can exhibit significant
non-ideality, and that quantum effects can play a significant role in the behaviour of hy-
drogen. [31] When predicting equilibrium properties of hydrogen and hydrogen mixtures
they find that a Feynmann-Hibbs corrected Mie potential gives significant improvement
in model predictions compared to an ordinary Mie potential. Additionally, they report
mixing parameters kij and lij for mixtures of hydrogen with neon and helium. Using the
mixing parameters they report in the computation of the cross interaction parameters,
as described in Section 2.2 removed the bias in the predictions regarding these mixtures.
It is therefore likely that the mixtures of hydrogen with carbon dioxide, nitrogen, and
oxygen, indicated in Figure 4.7a also have a bias due to the mixing rule being skewed,
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Figure 4.6: The reduced phase point of the measurements presented in in Figure 4.5. The
solid black line in the central figure indicates the vapour-liquid equilibria for the Lennard-
Jones fluid, computed using the SAFT-VR Mie EoS. Dotted and dashed lines indicate the
5th and 10th percentiles respectively. (a)xHe = 0.2172, (b)xHe = 0.4662, (c)xHe = 0.6823,
(d)xHe = 0.7156, (e)xAr = 0.4088, (f)xAr = 0.7059. Measurements reported by Assael et
al. [60]

and possibly due to quantum effects that are not captured by the Mie potential.

Separating the hydrogen mixtures for which no mixing parameters are supplied from the
remaining data set, as shown in Figure 4.7b, clearly demonstrates that the bias for over-
predicting the thermal diffusion ratio with the Mie potential is largely confined to these
specific mixtures. The remaining data points, indicated as blue dots and a blue field in
Figure 4.7, are close to normally distributed about the model predictions. It is noted
that all the mixtures with large, systematic discrepancies between predictions and mea-
surements contain multi-atomic species, all of which have a non-zero quadrupole moment.
For these species, the approximations of a spherical potential and neglecting rotational
or vibrational energy are expected to be worse than for monoatomic species.

The AAD of the thermal diffusion coefficients is significant at 16.4 % for the data set as a
whole, and looking at Table 4.2 it is clear that very few mixtures have average deviations
close to zero. However, the bias does not appear to correlate clearly with anything other
than the presence of hydrogen. The correlation between the relative deviation and molar
masses, molar mass differences, temperature, reduced temperature, molecular size, molec-
ular density and potential well depth was checked, as shown in Appendix A. The largest
correlation coefficient was observed between the deviation and the maximum well depth
among the two components, but this appears to arise more from the varying size of the
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Figure 4.7: (a) Correlation between predicted and reported thermal diffusion ratio using a
Mie potential. Mixtures that showed systematic deviations when using the Mie potential
are indicated. (b) Stacked distribution of deviation between predicted and measured ther-
mal diffusion ratios using a Mie potential. Red fields are the specific mixtures indicated
in (a), blue fields are the remaining mixtures, indicated with blue dots in (a). AAD and
AD are computed using all points.

data sets than any actual underlying correlation. Furthermore, the apparent correlation
of error with the presence of hydrogen may be due to systematic experimental errors, as
hydrogen gas is notorious for being able to diffuse well through most substances, possibly
leading to systematically erroneous measurements.

Due to the manner in which the entirety of the data centres around the model predictions,
even though few of the individual mixtures’ data sets do, it is believed that the large
deviations are primarily due to experimental error. This is supported by the large standard
deviation in the discrepancy both within the individual data sets, and the the data set as
a whole, as well as the lack of a clear correlation between the deviation and any physical
property of the mixtures.

For comparison, Figure 4.8 shows the predictions obtained from the Enskog solutions
when using a hard sphere (HS) potential. The HS diameters were set to be equal to the
σ-parameters of the Mie potentials used for the predictions displayed in Figure 4.7. There
is no doubt that there is a large, systematic error in the predictions. Additionally, as can
be seen in Figure 4.8b, the errors to not appear to follow a normal distribution as one
would expect if they were the result of experimental error.

Just as with the Mie-potential predictions displayed in Figure 4.7, an investigation was
made into whether the errors correlated with any physical parameters. It was found that
the error correlated weakly with the inverse temperature, but that this correlation was
amplified by the reduced mass of the particles, the combined descriptor

ϵ̂T =
m1m2

m1 +m2

1

T
(4.6)

visually appeared to capture a correlation in the discrepancy between measurements and
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Table 4.2: Average deviation (AD) and average absolute deviation (AAD) between data
reported by Vargaftik and predictions by the Enskog solutions for Mie fluids and hard
spheres (HS). [61] The mixtures for which mixing parameters reported by Aasen et al. were
available, these were used in the computations for Mie fluids. [31]

AD [%] AAD [%] AD [%] AAD [%]
Mixture Mie HS Mie HS NDP Mixture Mie HS Mie HS NDP

H2/CO2 15.8 49.8 16.2 49.8 194 H2/D2 -6.7 45.2 19.5 45.2 27
H2/N2 12.3 55.3 14.7 55.3 165 H2/O2 21.0 63.9 21.0 63.9 22
He/Ar -3.3 33.2 10.7 33.2 85 N2/Ar -29.3 58.9 29.8 58.9 22
He/Ne -16.5 25.1 16.7 25.1 66 D2/N2 6.2 55.0 7.8 55.0 15
H2/He 17.0 50.5 19.2 50.5 58 He/N2 -25.8 21.7 25.9 21.7 14
N2/CO2 32.1 66.2 32.5 66.2 58 Ne/Xe 9.6 55.6 14.2 55.6 11
Ne/Ar 0.0 50.9 8.2 50.9 48 D2/Ne 9.1 53.3 9.1 53.3 11
O2/CO2 7.7 54.4 14.9 54.4 43 He/Xe 4.6 38.5 8.1 38.5 11
H2/Ne -11.0 40.4 15.3 40.4 42 Ar/Xe 17.1 76.7 17.1 76.7 5
H2/Ar 12.6 55.3 13.6 55.3 39 H2/CH4 24.9 54.3 24.9 54.3 2

predictions, shown in Figure A.4. Further, the discrepancy appeared to correlate with the
inverse of the mass difference. This correlation was also amplified by the reduced mass of
the species, this correlation was largely captured by the descriptor

ϵ̂m =
m1m2

m1 +m2

1

|∆m| , (4.7)

as shown in Figure A.5. Finally, there appeared to be a positive correlation between the
mole fraction of the heavier component and the discrepancy. From these observations,
the combined descriptor

ϵ̂ =
m1m2

m1 +m2

(
1

T
+

0.05

|∆m|

)
+ 0.05x2 (4.8)

was constructed, where x2 is the mole fraction of the heavier component. The scaling
factors of 0.05 were introduced such that the different terms of the descriptor would
be of approximately the same order of magnitude. The correlations for the individual
descriptors ϵ̂T , ϵ̂m and x2 are shown in Appendix A.

As shown in Figure 4.9 there is a convincing correlation between ϵ̂ and the discrepancy,
and the correlation coefficient is 0.59. This is not a very high correlation coefficient,
but given the large spread in the data, it is significant. More important is the fact that
visually, it is clear that the discrepancy increases with ϵ̂, both within most of the mixtures
and between mixtures.

The fact that a simple function of the physical parameters of the system correlates sig-
nificantly with the discrepancy between predictions and measurements indicates that this
discrepancy cannot be wholly attributed to measurement error or inaccurate estimates for
the hard-sphere diameters. In fact, taking a closer look at the three terms that constitute
ϵ̂ one can deduce a physical significance.
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Figure 4.8: (a) Correlation between predicted and reported thermal diffusion ratio using
a HS potential, with HS-diameters equal to the σ-parameters of the Mie potentials used
for the predictions in Figure 4.7. Mixtures that showed systematic deviations when using
the Mie potential are indicated. (b) Stacked distribution of deviation between predicted
and measured thermal diffusion ratios using a HS potential. Red fields are the specific
mixtures indicated in (a), blue fields are the remaining mixtures, indicated with blue dots
in (a). AAD and AD are computed using all points.
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Figure 4.9: Correlation between the descriptor ϵ̂ and the discrepancy between thermal
diffusion ratios measured by Vargaftik, [61] and predicted by the 5th order Enskog solutions
with a HS potential. Different mixtures are indicated with different colours and markers.
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The first term, ϵ̂T = m1m2

m1+m2

1
T
, is closely related to the average relative speed as, ḡ12 ∝

ϵ̂
− 1

2
T . That is, the discrepancy increases with decreasing average relative speed during
collisions. Assuming that the Mie potential is a somewhat realistic model for the molecular
interactions, this makes sense. The softness of the potential and the attractive part of the
potential have a larger impact on the collision dynamics at low relative speeds, while the
particles behave more like hard spheres during high-speed collisions.

The second term, ϵ̂m = m1m2

m1+m2

1
|∆m| is largest for particles of similar mass. In fact, taking

m2 to be the larger mass, ϵ̂m can be rewritten to only be a function of the mass ratio,

ϵ̂m =
m1m2

m1 +m2

1

|∆m| =
m1/m2

1− (m1/m2)2
, m2 > m1. (4.9)

As mentioned in Section 1.1, several authors discuss that the Soret effect may be split
into an isotope effect and configurational or chemical effects. [1,23] This term captures the
fact that for particles of similar mass, the isotope effect will be weak, and the thermal
diffusion ratio will to a larger degree be determined by chemical effects, which in turn are
determined by the interaction potential. Therefore, it is reasonable that the hard sphere
potential systematically gives worse predictions for particles of similar mass.

The final term, x2, the mole fraction of the heavier component, captures the fact that
for most mixtures, the discrepancy between predictions and measurements increased with
the mole-average molecular mass. This may also have its roots in the fact that molecular
masses are connected to the average molecular speed, such that at high mole fractions of
the heavy component, the average molecular speed is lower. As argued when interpreting
the significance of ϵ̂T , faster moving molecules behave more like hard spheres. Therefore
it is not unreasonable that a hard sphere model will become less accurate as the number
of heavy molecules increase, at the expense of lighter molecules. Thus, this term also
appears to have a reasonable physical interpretation.

Despite this analysis, one could argue that using the σ-parameters from a Mie potential
to approximate the HS diameters is inaccurate, and that one could achieve more accurate
predictions by estimating the HS-diameters in some other way. However, the dependency
of the thermal diffusion ratio of hard spheres on temperature and molecular masses, as
predicted by the Enskog solutions, is independent of the hard sphere diameters. This
means that improving accuracy at some temperature, or for some mixture, even by fitting
the hard sphere diameters would likely decrease accuracy at another temperature or for
another mixture. This is discussed in more detail in Section 4.6.

4.4 The modified Kempers model

Using the the modified Kempers approach presented in Section 3.2, the Soret coefficient
for several mixtures was predicted and compared to simulation data for Mie fluids. The
SAFT-VR Mie EoS was used to compute the required thermodynamic properties, using
the parameters indicated in Table 4.3. Computing the Soret coefficient for only a few
mixtures, shown in Table 4.3 quickly indicated that this approach did not give systematic
improvement compared to Kempers 2001 model.

Further investigation was made into how the discrepancy between model predictions and
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reported data varied with potential parameters, molecular masses and the state point.
However the results were the same as those previously seen, [25] namely that the Kempers
model varies between giving predictions in somewhat agreement with data to missing by
orders of magnitude. Additionally, the disagreement did not clearly correlate with any
meaningful property, other the fact that predictions improved in the low density regime
in which the model reduces to the Enskog solutions. The modified Kempers approach
was therefore quickly abandoned, and for the case of brevity only the values in Table
4.3 are reported, as an illustrative example of the quality and consistency of the model
predictions across the board.

Table 4.3: Soret coefficients of the first component in various equimolar mixtures at the
reduced state point T ∗ = 0.85, ρ∗ = 0.81. Reported values by Reith and Müller-Pathe. [62]

Predicted values using (a) the modified Kempers CoV model, (b) the Kempers 2001 CoV
model. The state point has been reduced using the cross interaction parameters obtained
via the LB mixing rules. All mixtures used the Lennard-Jones (12-6) exponents.

Mixture
Reported Predicted (a) Predicted (b)
ST [mK−1] ST [mK−1] ST [mK−1]

Xe,Kr 5.1 10.3 8.2
Ar,CH4 9.3 20.6 9.0
Xe,Ar 18.6 3.8 44.7
Kr,CH4 22.3 25.5 6.4
Xe,CH4 23.1 17.6 28.2

Component σ [Å] ε [kB]

Ar 3.405 120.27
Kr 3.633 167.18
Xe 3.975 206.87
CH4 3.740 152.75
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4.5 Kempers assumptions of the steady state

To investigate the assumption that the steady state for a two-bulb system such as the one
described in Section 2.4 is a minimum in the target function

τ =
Aα

Tα
+
Aβ

T β
(4.10)

the target function was computed as a function of ∆n1 and ∆n2 for an ideal gas, using the
Sackur-Tetrode equation to compute the pure component entropies. Then, the placement
of the curves corresponding to ∆p = 0, ∆m = 0 and the steady state predicted by the
Enskog solutions, as derived in Section 3.3, were superimposed on this surface.

Note that without density corrections, the Enskog solutions predict that the Soret coef-
ficient is independent of density. The predicted value is that at infinite dilution. Also,
without density corrections, the Enskog solutions recover the ideal gas law, regardless of
the intermolecular potential that is used. Because the Enskog solutions for Mie fluids
are consistent with the ideal gas law, τ is computed for an ideal gas, rather than using
e.g. the SAFT-VR Mie EoS at very low density. It should be commented that SAFT-VR
Mie reduces to the ideal gas law at infinite dilution. As a consistency check, the anal-
ysis presented in this section was also conducted using the SAFT-VR Mie EoS at very
low density. This gave results that, for all practical purposes, were equivalent to those
presented here.

The procedure of superimposing the curves corresponding to various constraints on the
target function surface allows visualisation of how the target function is permitted to vary
with bulb mole numbers when subjected to these constraints. Figure 4.10 displays the
target function of an ideal He/Xe mixture with xHe = 0.5 (blue grid). Note that the
absolute value of the global minimum has been subtracted, such that the global minimum
is at 0 JK−1, this is simply for clearer visualisation and only changes the absolute value
of the target function, not the location of any minima. The red line indicates the path
along the surface satisfying ∆p = 0, as determined from Equation (3.40). Likewise, the
green line indicates the path along which ∆m = 0. The blue line indicates the steady
state predicted by the Enskog solutions, as derived in Section 3.3. The marks on each
line indicate the constrained minimum in the target function along that line.

To elaborate, the Enskog solutions permit that the steady state lies somewhere on the
blue curve, along which the compositional- and pressure difference may vary. The steady
state with no pressure difference that satisfies the Enskog solutions is thereby the inter-
section between the red and blue curves. The steady state with equal container mass is
the intersection between the green and blue curves. It is immediately clear neither of
these intersections coincide with the constrained minima along the curves, as assumed by
Kempers.

While Figure 4.10 is an illustrative example, this was checked for a variety of mixtures and
at varying conditions. For some mixtures the steady states were closer to the minima, for
others further away. There did not appear to be a systematic manner of predicting how
far away from the minima the steady states would be for a given mixture. Furthermore,
for some mixtures the steady state of equal pressure was closer to the minima than that
of equal mass, while for others the opposite was true.
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Figure 4.10: The objective function in the Kempers approach, normalised to the global
minimum A◦, for an ideal He/Xe mixture, with xHe = 0.5 at T = 300K, with a total mole
number of n = 1000mol. The red line indicates the curve of no pressure difference, the
green line indicates no mass difference, the blue line indicates the separation determined
by the Enskog solutions at the bulb average conditions, as derived in Section 3.3. Marks
indicate the constrained minimum along each curve, the black mark indicates the global
minimum.

These observations are very similar to what has been observed regarding the predictions of
the Kempers model: Sometimes predictions are close to measurements, but determining
beforehand whether the model will work for a given mixture beforehand has proven itself
to be a significant challenge. [25] Also, sometimes the Kempers centre-of-volume model
yields better predictions than the centre-of-mass model, while other times the opposite is
true, with no clear manner of determining which is appropriate for a given system without
checking.

This draws the fundamental assumptions behind the Kempers model heavily into ques-
tion, and two possible explanations for these observations immediately present themselves:
Either the Enskog solutions do not correctly predict the Soret coefficient, even for an ideal
gas; or the steady state is not at a minimum, constrained or otherwise, in the target func-
tion. Both possibilities are in direct contradiction to Kempers’ initial assumptions.

4.6 Thermal diffusion in an Ideal gas

As mentioned in Section 3.2 there is a distinction between a fluid at infinite dilution, and
an ideal gas. Strictly, an ideal gas consists of non-interacting point particles. Although
both hard spheres and Mie fluids behave as such when regarding equilibrium properties
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at infinite dilution, this is not the case regarding non-equilibrium properties. From the
derivation in Section 2.3, one will find that the collision integrals vanish for non-interacting
particles. Investigating the limiting case in which the collision integrals vanish, one finds
that the solutions to Equation (2.79), that yield the polynomial expansion coefficients
from which the thermal diffusion ratio is determined, become ill defined, depending on
the manner in which the integrals vanish. Explicitly, the limit is different if one lets the
radius of the spheres in a hard sphere mixture approach zero from the case in which one
lets the well depth parameters of a Mie fluid approach zero. Even restricting the case to
that of hard spheres, the limit will be different depending on the mixing rule employed
to obtain the cross-interaction diameter, and the ratio of the hard sphere diameters.
It should be mentioned that this was only investigated for the 3rd approximation, i.e.
there may exist a well defined limit to some Nth approximation, even though the limit
to a lower order approximation is not well defined. This is however of little immediate
practical consequence. The argument still stands that for some finite approximation to
the Enskog solutions, the transport coefficients in the limit of non-interacting particles
depends on how one approaches the limit and is therefore ill-defined.

Table 4.4: Mie potential parameters, and the hard sphere diameters producing the same
thermal conductivity for the pure fluids at 300K, 10molm−3 at the 3rd Enskog approxi-
mation.

Potential σ [Å] m [g mol−1] ε [kB] λa [-] λr [-]

uMie
1 3.5 10 250 6 12
uMie
2 3 5 150 6 12
HS1 4.2747 10
HS2 3.2978 5

To demonstrate the consequences of this, the hard sphere diameter of two species, simply
termed HS1 and HS2, were fit to the pure component conductivity of two Mie fluids, using
the potentials uMie

1 and uMie
2 at T = 300K, ρ = 10molm−3, where the state point was

chosen arbitrarily. The Mie potential parameters and the regression results are shown in
Table 4.4. As shown in Figure 4.11, using these HS-diameters gave a reasonable match
between the HS-conductivity and Mie-conductivity of the mixture at the same state point.
However, as shown in Figure 4.12, the temperature dependency is completely different.
Furthermore, the diffusion coefficient in the mixtures is completely different. This is by no
means surprising, but recognise the fact that because these predictions are made using the
non-density corrected Enskog solutions, both these predictions are for an ideal gas.

This underlines the fact that speaking of the transport properties of an ideal gas, as
Kempers does, is not fruitful. The transport properties of a fluid at infinite dilution depend
upon the interaction potentials, even though equilibrium properties do not. This is by
no means news, [9,23,36] but in the context of the Kempers model it shows that predicting
the thermal diffusion coefficient through residual properties that may be determined from
equilibrium thermodynamics is bound to fail. This is because different equations of state,
based on different underlying potentials, will predict the same ideal gas behaviour in
the low density limit, while the transport coefficients behave differently based on the
underlying potential.
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These results also tie into the argument presented in Section 4.3, regarding the possibility
that the poor predictions obtained from the Enskog solutions using hard sphere poten-
tials were due to poor estimates of the hard sphere diameters. Even when fitting the hard
sphere diameters to pure component conductivities predictions for the mixture deviated
from those obtained from a Mie potential. Recall from Figure 4.5 that the Enskog solu-
tions using a Mie potential predicted the conductivities of mixtures with high accuracy.
This demonstrates that using a Mie potential is a significant improvement, even compared
to fitting hard sphere diameters to data. Furthermore, the results shown in Figure 4.12
illustrate the fact that fitting hard sphere diameters to one property, in this case conduc-
tivity, at a given temperature does not give reasonable predictions for another property,
diffusion, or even for conductivity at other temperatures.
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5 Conclusion

The Enskog solutions for Mie fluids have been shown to reliably predict diffusion coef-
ficients, conductivities and thermal diffusion coefficients in dilute gas systems, both for
pure fluids and mixtures. Notably, the parameters used in the predictions have almost
exclusively been obtained from fitting to equilibrium properties rather than transport
properties. This is remarkable for several reasons, one is that the issue of obtaining good
parameters for the prediction of transport coefficients becomes a far simpler one to solve.
There is a plethora of available experimental and simulation data for the equilibrium
behaviour of fluids, and SAFT-type equations of state provide a connection between po-
tential parameters and equilibrium behaviour. The results presented here show that one
can safely transfer parameters from a SAFT-type EoS to the Enskog solutions and reli-
ably predict transport coefficients. Further, the fact that the SAFT-VR Mie EoS and the
Enskog solutions yield reliable predictions of equilibrium and non-equilibrium behaviour
respectively, when supplied with the same potential parameters, indicates that the un-
derlying theories are consistent with each other regarding the mechanisms of interaction
between particles.

The hard sphere Enskog solutions have been widely used, sometimes with various correc-
tions to the collision integrals, as mentioned in Section 2.3.6. Here, it has been shown
that using a Mie potential to explicitly compute the collision integrals not only accurately
captures the temperature dependency of the transport coefficients, but also reliably cap-
tures the compositional dependency in a manner that hard sphere potentials do not. In
summary, explicitly solving the collision integrals using Mie potentials not only provides
a great increase in prediction reliability, but also makes obtaining good potential pa-
rameters simpler and additionally provides a powerful link between the equilibrium and
non-equilibrium behaviour of Mie fluids.

A closer investigation into the Kempers model revealed that the underlying assumptions
likely do not hold. The assumption that the steady state of an ideal gas is at a maximum
in the canonical partition function appears to be inconsistent with Enskog theory. Given
the demonstrated reliability of the predictions obtained from the Enskog solutions in the
low density regime, it is deemed unlikely that this is due to a fault in Enskog theory.
Regardless, part of Kempers assumptions are that Kinetic gas theory will accurately
predict the Soret coefficient in the ideal gas state.

Further, the concept of transport coefficients in an ideal gas was discussed. Both a hard
sphere system and a Mie fluid are thermodynamically ideal gases at infinite dilution, but
the Enskog solutions provide different transport coefficients for the two. The argument
can then be made that even the concept of thermal diffusion in an ideal gas is at best
imprecise and at worst meaningless, at least within the framework of Enskog theory.
This has ramifications for the manners in which it can be reasonable to split the Soret
coefficient into different contributions. Specifically, separating the Soret coefficient into
an ideal part and a residual part does not appear to be fruitful, while a separation into
an isotopic and a chemical part may still be reasonable.
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6 Further work

In light of the fact that the Kempers model is likely fundamentally flawed, the search
for an approach to developing a first-principles model of the Soret effect should continue.
Approaches with their roots in irreversible thermodynamics or transition theory are so far
largely unable to reproduce gas-phase behaviour. [23] For large, complex molecules, kinetic
gas theory is also known to be imprecise. [36] In light of this, it should be recognised that
modern developments within computer simulations the past 10-20 years greatly facilitates
the expansion of an accurate kinetic theory to more advanced molecules, and the possi-
bility of using a kinetic theory in combination with one of the aforementioned approaches
to modelling thermal diffusion may be fruitful to pursue.

Work has been conducted on incorporating long time-correlations into a kinetic theory
to account for cage- and vortex effects that become significant at high densities. [36] Fur-
thermore, there have been attempts at including vibrational and rotational terms to the
energy transfer into the Chapman-Enskog solution method. [63–65] These are interesting
developments, that appear fruitful to follow further. The implementation of the Enskog
solutions developed in this work may prove useful in this regard. If one wishes to accu-
rately describe more advanced systems, having a good starting point that is reliable for
simple molecules at low-medium densities is a necessary prerequisite.

The solution implemented here for Mie potentials is valid for an arbitrary spherical po-
tential, which makes it possible to use in combination with somewhat more complex
potentials, such as the Feynman-Hibbs quantum corrected Mie potential. [31] This poten-
tial has been shown to reliably reproduce the low-temperature behaviour of some fluids
that are poorly described by the Mie potential. The approach used in this work; using
a potential that gives reliable predictions for equilibrium properties in combination with
the Enskog solutions, should be investigated further, as it appears to be fruitful. Regard-
ing the fact that parameters fit to equilibrium data yield reliable predictions regarding
transport phenomena: It is tempting to suggest that one could fit parameters to mea-
sured transport coefficients before using them to model equilibrium behaviour. There are
likely several potential pitfalls to this approach, but a preliminary investigation into its
feasibility may be of interest.
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A Correlation of deviation between kinetic gas the-

ory and reported kT

To closely investigate the substantial deviation between thermal diffusion ratios obtained
from the Enskog solutions and those reported by Vargaftik, [61] the discrepancy between
the two was investigated as a function of temperature, molar masses, the potential size
parameters, σ, the potential well depth parameters, ε, and combinations of these, collec-
tively termed the descriptors. For the hard sphere solutions, only descriptors involving
the molar masses, temperature and hard sphere diameters were considered. The corre-
lation between each descriptor and the discrepancy was inspected visually in addition to
computing the Pearson correlation coefficients.

For the Mie fluid solutions, no convincing trends presented themselves, as shown in Figures
A.1-A.3. Some of the correlation coefficients were relatively large, at 0.4, but visually this
appears to arise from the large variance in the number of measurements for each mixture.
The combined descriptors ε

σ3 ,
m
σ3 and T ∗ = kBT

ε
were also investigated, yielding similar

results to those shown in Figures A.1-A.3.
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Figure A.1: Correlation between deviation between thermal diffusion ratios obtained from
the Enskog solutions for Mie fluids and data reported by Vargaftik, and various descriptors
derived from the Mie potential σ-parameter. [61] ρP is the Pearson correlation coefficient
for each descriptor.

For the hard-sphere solutions, some more convincing trends revealed themselves. These
are discussed in detail in Section 4.3.3, the results for the individual descriptors are
presented here for completeness. As shown in Figure A.4 and A.5, the correlation of the
discrepancy with the descriptors ϵ̂T and ϵ̂m is clear and convincing. For the case of the
descriptor x2, the mole fraction of the heavier component, one must view each mixture
individually to see that there appears to be a weak correlation, as shown in Figure A.6.
When used in combination with the other descriptors, as shown in Figure 4.9 and discussed
in Section 4.3.3, the result is convincing.
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descriptors derived from the molar masses. [61] ρP is the Pearson correlation coefficient for
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Figure A.3: Correlation between deviation between thermal diffusion ratios obtained from
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Figure A.5: Correlation between the deviation between the Enskog hard sphere solutions
for the thermal diffusion ratio and data reported by Vargaftik, and the descriptor ϵ̂m.
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B Enskog solutions with a hard sphere potential

For comparison with the predictions made by the implementation of the Enskog solutions
with a Mie potential, presented in Section 4.3, the same computations were made with
a hard sphere potential. In all cases, the hard sphere diameter was set equal to the Mie
potential σ-parameter. The results using a hard sphere potential are discussed in Section
4.3, and are collected here for reference.
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Figure B.1: Predicted and measured diffusion coefficients of noble-gas mixtures at p =
1atm, densities supplied to the Enskog solutions were computed using the SAFT-VR Mie
EoS, predictions made using a hard sphere potential. Helium mixtures contain 98.5 %
Helium, the remaining mixtures contain 99 % of the first component. Data reported by
Hogervorst. [56]

v



0

1

2

3

D
[m

2
s−

1
]

×10−5

T [K]

473

573

673

10−1 100

ρ [kmol/m3]

−40

−20

0

D
−D̂ D

[%
]

Figure B.2: Self-diffusion coefficient of supercritical water at several isotherms. Lines are
predictions by the Enskog solutions with a hard sphere potential, marks are data reported
by Yoshida et al. [57]

Figure B.3: Conductivity of noble gases and noble gas mixtures at varying density. Pre-
dictions by the Enskog solutions with a hard sphere potential. All measurements at
35 °C.(a)xHe = 0.2172, (b)xHe = 0.4662, (c)xHe = 0.6823, (d)xHe = 0.7156, (e)xAr = 0.4088,
(f)xAr = 0.7059. Measurements reported by Assael et al. [60]
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C Evaluating partial molar properties required by

the Kempers model

The Kempers model requires several partial molar properties, most of which are directly

available in the EoS-package ThermoPack. [32] Here, the quantity
(
∂µi
∂xj

)
T,p

is related to

other quantities that are directly available.

Begin from the definition of the chemical potential as the derivative of Helmholtz energy
and invert the order of differentiation,

(
∂µi
∂nj

)

T,p

=

(
∂

∂nj

(
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∂ni

)

T,V

)

T,p
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. (C.1)

From the total differential of the Helmholtz energy, dA = −SdT − pdV +
∑

i µidni,
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(
∂A

∂nj

)

T,p

)

T,V

=

(
∂µj
∂ni

)

T,V

− vj

(
∂p

∂ni

)

T,V

− p

(
∂vj
∂ni

)

T,V︸ ︷︷ ︸
=0(

∂µi
∂nj

)

T,p

=

(
∂µj
∂ni

)

T,V

− vj

(
∂p

∂ni

)

T,V

.

(C.2)

The total differential of the chemical potential at constant pressure and temperature is

dµi =
∑

j

(
∂µi
∂nj

)

T,p,nk ̸=j

dnj. (C.3)

Further inserting for the total differential of the mole number of each species yields

dµi =
∑

j

(
∂µi
∂nj

)

T,p,nk ̸=j

(xjdn+ ndxj)

dµi =
∑

j

(
∂µi
∂nj

)

T,p,nk ̸=j

ndxj +




∑

j

(
∂µi
∂nj

)

T,p,nk ̸=j

xj

︸ ︷︷ ︸
=0



dn

=
∑

j

(
∂µi
∂xj

)

T,p,nk ̸=j

dxj

(C.4)

where the second term on the right hand side of the second line vanishes by the Gibbs-

Duhem relation, and the partial derivative of interest may be readily identified as
(
∂µi
∂xj

)
T,p,nk ̸=j

=

vii



n
(
∂µi
∂nj

)
T,p,nk ̸=j

. This expression was validated numerically by evaluating the total deriva-

tive of µi at varying composition and total number of moles.
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