a
    <b^)                     @   sn  d dl mZmZ d dlmZ d dlmZ d dlmZ d dl	m
Z
 d dlmZmZ d dlmZ d dlmZmZ d d	lmZ d d
lmZmZmZmZmZ d dlmZ d dlmZmZ d dl m!Z!m"Z" d dl#m$Z$m%Z% d dl&m'Z'm(Z( d dl)m*Z*m+Z+ d dl,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2 d dl3m4Z4 d dl5m6Z6 d dlm7Z7m8Z8m9Z9m:Z:m;Z;m<Z< d dl=m>Z>m?Z? d dl@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZI edZJeJsdZKedZLedZMdd ZNdd ZOdd  ZPd!d" ZQd#d$ ZRd%d& ZSd'd( ZTd)d* ZUd+d, ZVd-d. ZWd/d0 ZXd1d2d3d4eOd5d6fd7eAfd8d9eA fd:eAd9 fd;eAeNd<d= fd>eF fd?eDeE fd@eDeE fdAeDeE fdBeDeE fdCeNeDeE eD fdDe7eDd9 eEd9  eFd9 fdEeOeNeAeBeCfdFeOeNeAeBeCfdGeOeNeAeBeCfdHeOeNeAeBeCfdIeOeNeAeBeCfdJeOeNeAeBeCfdKeNd=d=fdLeNd d=fdMeOd=d9fdNeOd d=fdOe7eAeBfdPe8eAeBfdQe9eAeBfdRe;eAeBfdSe:eAeBfdTe<eAeBfdUe:eAeBfdVe<eAeBfdWe(eAfdXe'eAfdYe>d7fdZe?d7fd[e1eLfd\e1eLfd]e-eDfd^eOe1eDe.eEfd_e1e.eLfd`e1e.eLfdaeDeE fdbeOeDeE ePeFdcfddeOdeePd<dcfdfe/eAe0eB fdge6eDeAd<fdhe6eDeAd<fdie6eDeAd<fdje6eDeAd<fdke6eDeAd<fdle6eDeAd<dmdnfdoe6eDeAd<dpdnfdqefdre6ePeAdceAefdseeAeAfdteeAeGfdueMeAfdveMeAeBfdweMeAeBeCfdxeeMeAeAfdyeedeAeAfdPeeAeBfdzeSeAfd{eSe!eAfd|eSeAeSeB fd}eSeSeAeSeB fd~edeSeAeB  fde4eAeAfde4eAeLfde4eAd9 eB eAfde4eNeAeDeAfde4d=eDfde4d=eAd deffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eAeAeDeEffde4eMeCeCeMeDeMeEffde4eNeAeDeAfde4eNeNeDeEeFeAfde4eeCdceCfde4d<eeCdc eCfde4eeAdceAfde4eNePeDdceeEdceAfde4d<ePeLdc eLfde4eNePeAdcd=eAfdedfdedfdedfdedfdedfdedfdedededfdeTeAfdeTdfdeTeLfdeTeNeAd=fdeTeTeAfdeTeTeTeAfdeOeTdeTdefde+eAfde+eNeAeEfde*e1eAd<fde*e1eAeBfde*e1eAeLfdeQeOdePddcfdeReCfdeReReCfdeReNeAeBfdeReAeReB fdQeeAeBfdSeeAeBfdReeAeBfdTeeAeBfded7fdedfdedfdedfdeeFeHd=d<ffdeeFeHd=d<ffdeeFeHd=d<ffdeeFeHd=d<ffdeeHd9 eHd=dffdeePeTeIdceId effdeeAeDeEeFffdeeAeDeEeFffdeeAeDeEeFffdeeAeDeEeFffdeUeAfdeUeAfdeVeAefdeVeAeB efdeVeAdfdeVeAeB dfdeVeAd9fdeVeAeDfdeVeAdσfdeVeAePeDd9fdeAfdeNeDeEfdee2eAeAfdeWeIeHfdeWeIeHfdeWeIeHfdeWeId fdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfdeOeDeEfde4eAeAfdeVeAd9fdeVeAeDfdeNePdd eOdcePdd fgZYdd ZZg dZ[dd Z\g dZ]edd Z^dS )    )raisesXFAIL)import_module)Product)SumAdd)
DerivativeFunctionMul)EooPow)GreaterThanLessThanStrictGreaterThanStrictLessThan
Unequality)Symbol)binomial	factorial)Abs	conjugate)explog)ceilingfloor)rootsqrt)asincoscscsecsintan)Integral)Limit)EqNeLtLeGtGe)BraKet)	xyzabctknantlr4Tthetafc                 C   s   t | |ddS NF)evaluater   r4   r5    r@   n/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/parsing/tests/test_latex.py_Add$   s    rB   c                 C   s   t | |ddS r=   r   r?   r@   r@   rA   _Mul(   s    rC   c                 C   s   t | |ddS r=   r   r?   r@   r@   rA   _Pow,   s    rD   c                 C   s   t | ddS r=   )r    r4   r@   r@   rA   _Sqrt0   s    rF   c                 C   s   t | ddS r=   )r   rE   r@   r@   rA   
_Conjugate4   s    rG   c                 C   s   t | ddS r=   )r   rE   r@   r@   rA   _Abs8   s    rH   c                 C   s   t | ddS r=   )r   rE   r@   r@   rA   
_factorial<   s    rI   c                 C   s   t | ddS r=   )r   rE   r@   r@   rA   _exp@   s    rJ   c                 C   s   t | |ddS r=   )r   r?   r@   r@   rA   _logD   s    rK   c                 C   s   t | |ddS r=   )r   )r9   r8   r@   r@   rA   	_binomialH   s    rL   c                  C   s   ddl m} m}m} ~ ~~d S )Nr   build_parsercheck_antlr_versiondir_latex_antlr)Z&sympy.parsing.latex._build_latex_antlrrN   rO   rP   rM   r@   r@   rA   test_importL   s    rQ   )0r   )1   )z-3.14gQ	z(-7.13)(1.5)gQg      ?r1   Z2x   zx^2z	x^{3 + 1}   rT   z-cz	a \cdot bza / bza \div bza + bz	a + b - aza^2 + b^2 = c^2z	(x + y) zz\left(x + y\right) zz\left( x + y\right ) zz\left(  x + y\right ) zz\left[x + y\right] zz\left\{x + y\right\} zz1+1z0+1z1*2z0*1zx = yzx \neq yzx < yzx > yzx \leq yzx \geq yzx \le yzx \ge yz\lfloor x \rfloorz\lceil x \rceilz\langle x |z| x \ranglez\sin \thetaz\sin(\theta)z\sin^{-1} az\sin a \cos bz\sin \cos \thetaz\sin(\cos \theta)z\frac{a}{b}z\frac{a + b}{c}z\frac{7}{3}   z(\csc x)(\sec y)z\lim_{x \to 3} az\lim_{x \rightarrow 3} az\lim_{x \Rightarrow 3} az\lim_{x \longrightarrow 3} az\lim_{x \Longrightarrow 3} az\lim_{x \to 3^{+}} a+)dirz\lim_{x \to 3^{-}} a-z\inftyz\lim_{x \to \infty} \frac{1}{x}z\frac{d}{dx} xz\frac{d}{dt} xzf(x)zf(x, y)z
f(x, y, z)z\frac{d f(x)}{dx}z\frac{d\theta(x)}{dx}z|x|z||x||z|x||y|z||x||y||z
\pi^{|xy|}piz	\int x dxz\int x d\thetaz\int (x^2 - y)dxz\int x + a dxz\int daz\int_0^7 dxz\int_a^b x dxz\int^b_a x dxz\int_{a}^b x dxz\int^{b}_a x dxz\int_{a}^{b} x dxz\int^{b}_{a} x dxz\int_{f(a)}^{f(b)} f(z) dzz
\int (x+a)z\int a + b + c dxz\int \frac{dz}{z}z\int \frac{3 dz}{z}z\int \frac{1}{x} dxz!\int \frac{1}{a} + \frac{1}{b} dxz#\int \frac{3 \cdot d\theta}{\theta}z\int \frac{1}{x} + 1 dxZx_0zx_{0}zx_{1}Zx_azx_{a}zx_{b}zh_\thetaz	h_{theta}z
h_{\theta}zh_{\theta}(x_0, x_1)zx!z100!d   z\theta!z(x + 1)!z(x!)!zx!!!z5!7!   z\sqrt{x}z\sqrt{x + b}z\sqrt[3]{\sin x}z\sqrt[y]{\sin x}z\sqrt[\theta]{\sin x}z\sqrt{\frac{12}{6}}      z\overline{z}z\overline{\overline{z}}z\overline{x + y}z\overline{x} + \overline{y}z
\mathit{x}z\mathit{test}testz\mathit{TEST}TESTz\mathit{HELLO world}zHELLO worldz\sum_{k = 1}^{3} cz\sum_{k = 1}^3 cz\sum^{3}_{k = 1} cz\sum^3_{k = 1} cz\sum_{k = 1}^{10} k^2
   z"\sum_{n = 0}^{\infty} \frac{1}{n!}z\prod_{a = b}^{c} xz\prod_{a = b}^c xz\prod^{c}_{a = b} xz\prod^c_{a = b} xz\exp xz\exp(x)z\ln xz\ln xyz\log xz\log xyz
\log_{2} xz
\log_{a} xz\log_{11} x   z\log_{a^2} xz[x]z[a + b]z\frac{d}{dx} [ \tan x ]z\binom{n}{k}z\tbinom{n}{k}z\dbinom{n}{k}z\binom{n}{0}za \, bza \thinspace bza \: bza \medspace bza \; bza \thickspace bz	a \quad bz
a \qquad bza \! bza \negthinspace bza \negmedspace bza \negthickspace bz\int x \, dxz\log_2 xz\log_a xz	5^0 - 4^0   c                  C   s2   ddl m}  tD ]\}}| ||ksJ |qd S )Nr   )parse_latex)sympy.parsing.latexrf   
GOOD_PAIRS)rf   	latex_strZ
sympy_exprr@   r@   rA   test_parseable  s    rj   )&()z\frac{d}{dx}z(\frac{d}{dx})z\sqrt{}z\sqrtz\overline{}z	\overline{}z\mathit{x + y}z\mathit{21}z
\frac{2}{}z
\frac{}{2}z\int!z!0_^|z||x|z()z"((((((((((((((((()))))))))))))))))r[   z\frac{d}{dx} + \frac{d}{dt}zf(x,,y)zf(x,y,z\sin^xz\cos^2@#$%&*\~z\frac{(2 + x}{1 - x)}c               	   C   sN   ddl m} m} tD ]4}t| | | W d    q1 s>0    Y  qd S Nr   )rf   LaTeXParsingError)rg   rf   r|   BAD_STRINGSr   rf   r|   ri   r@   r@   rA   test_not_parseable3  s    
r   )
z\cos 1 \coszf(,zf()za \div \div bza \cdot \cdot bza // bza +z1.1.1z1 +za / b /c               	   C   sN   ddl m} m} tD ]4}t| | | W d    q1 s>0    Y  qd S r{   )rg   rf   r|   FAILING_BAD_STRINGSr   r~   r@   r@   rA   test_failing_not_parseableG  s    
r   N)_Zsympy.testing.pytestr   r   Zsympy.externalr   Zsympy.concrete.productsr   Zsympy.concrete.summationsr   Zsympy.core.addr   Zsympy.core.functionr	   r
   Zsympy.core.mulr   Zsympy.core.numbersr   r   Zsympy.core.powerr   Zsympy.core.relationalr   r   r   r   r   Zsympy.core.symbolr   Z(sympy.functions.combinatorial.factorialsr   r   Z$sympy.functions.elementary.complexesr   r   Z&sympy.functions.elementary.exponentialr   r   Z#sympy.functions.elementary.integersr   r   Z(sympy.functions.elementary.miscellaneousr   r    Z(sympy.functions.elementary.trigonometricr!   r"   r#   r$   r%   r&   Zsympy.integrals.integralsr'   Zsympy.series.limitsr(   r)   r*   r+   r,   r-   r.   Zsympy.physics.quantum.stater/   r0   Z	sympy.abcr1   r2   r3   r4   r5   r6   r7   r8   r9   r:   disabledr;   r<   rB   rC   rD   rF   rG   rH   rI   rJ   rK   rL   rQ   rh   rj   r}   r   r   r   r@   r@   r@   rA   <module>   s    ,
































  .)