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Abstract—Based on the requirements of the EPIDIF database as regards the interaction potentials and the dif-
fusion coefficients of species of gas-phase epitaxy of novel materials, the choice is justified of the set of the
collision integrals, of the range of reduced temperatures, and of the desired accuracy of approximation of tab-
ulated data. For the set of three-parameter m—6 Lennard—Jones potentials, the main collision integrals are
approximated in the range of reduced temperatures 7* = 0.4-200 and, for the first time, in almost the entire
range of the exponent m = 8—o with the standard deviation of 0.075-0.085%. The models and their parameters
are introduced to the EPIDIF database and used to analyze the surface of the binary diffusion coefficient as a

function of the variables 7* and m.

The development of databases in the transport prop-
erties of rarefied gases and their mixtures involves the
problem of convenient representation of the collision
integrals used to express appropriate kinetic coeffi-
cients in molecular physics [1, 2]. Obviously, every
database, in accordance with its subject and objectives,
imposes special demands on the completeness, authen-
ticity, and other features of the input data. Our purpose
was to satisfy the requirements of the EPIDIF database
with respect to interdiffusion of the species of gas-
phase epitaxy of semiconductor materials. This data-
base is installed at the Institute of High Temperatures of
the Russian Academy of Sciences as a part of the fed-
eral program on new materials. At the same time, we
had in mind the problem of obtaining numerical data
for the calculation of the transport properties of the
combustion products of organic fuels.

The special features of the EPIDIF database are as
follows.

(1) There is a great diversity of initial gaseous
reagents such as hydrides, halides, and metal-organic
compounds, which are used in chemical vapor deposi-
tion (CVD) process for epitaxially growing various
semiconductors (Si, GaAs), isolators (Al,0;, SiO,),
and metal bondings (W, Mo, Pt) on the solid surface of
a given structure [3]. The vapors of the reagents are
transported into the reaction zone with the aid of carrier
gases H,, He, N, etc.

(2) The CVD processes are usually performed at a
pressure from 1 to 10° mm Hg and at a temperature
from 500 to 2000 K, i.e., in the range of states, in which
the models of binary collisions of particles are valid for
the gas phase with high precision.

(3) In simulating the processes of gas-phase epitaxy,
the equations of gas dynamics and heat and mass trans-
fer for the species and for the reacting mixture as a
whole are treated simultaneously [4, 5]. For solving
them, one must know, in particular, the diffusion coef-
ficients, the coefficients of thermal diffusion of the spe-
cies, as well as viscosity and thermal conductivity of
the mixture. The natural basis for calculating a com-
plete and consistent system of kinetic coefficients is
provided by the modern apparatus of molecular kinetic
theory of rarefied gases [1, 2] and by pair potentials of
interparticle interactions, which are used to compute
the respective integrals in the kinetic theory.

The diverse species involved in CVD processes are
characterized, from the standpoint of types of interac-
tion, by different potentials ranging from central-sym-
metrical potentials for atoms and quasi-spherical mole-
cules (SiH,, WF;) to complex nonspherical potentials
for dipole molecules (HF, HCI, AsHj, etc.). Taking into
account the great number of the species and the mass
character of operations in the EPIDIF database, we did
not consider it possible to perform the computation of
the kinetic coefficients on the basis of individual multi-
parameter potentials presently known for inert gases
[6]. At the same time, the simplest two-parameter 12—-6
Lennard—Jones potential (L-J 12-6) widely used for
the calculation of properties of gases [1, 7-9] is not
flexible enough. In particular, this potential fails to con-
vey the soft repulsion of the particles of the carrier
gases in the CVD processes such as He [10] and H,
[11]. At the same time, this potential fails to provide the
high rigidity that is necessary for the description of the
properties of globular molecules such as SFg and
WF; [12].
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As a result of analysis of three-parameter potentials
of different types [13], we chose the set of inverse-
power L-J (m—6) potentials (with the parameters e—
the depth of the potential well, d—the collision diame-
ter, and m—the exponent of the repulsion branch). We
made this choice in view of the following.

(1) For these potentials in a wide range of reduced
temperatures 7* = T/¢ = 0.1-200 and exponents m =
8-75, tabulated data on the classical collision integrals
Q9% have been published, calculated with the accu-
racy better than 1073 [14-17].

(2) By varying the exponent m, it is possible to
describe the transport properties of a great number of
gases that are typical of CVD processes with both soft
(m=8-9[10, 11]) and hard (m = 3040 [12]) repulsion.

(3) Finally, there exists preliminary experience of
approximating the integrals QU V* and Q@ 2* as func-
tions of the variables 7* and m.

The operating range of reduced temperatures for the
EPIDIF database is assumed to be 7* = 0.4-200. The
upper boundary is estimated for helium (e(He) ~ 10 K)
and the maximum temperature of CDV processes
Tax = 2000 K. The estimation of the lower boundary is
based on the presence in the database of species with
high values of € = 800-1000 K (e.g., Hg) and T,,;, =
500 K.

The accuracy of modern precision measurements of
the viscosity and diffusion coefficients of gases [2] is
not worse than 0.3-0.4%. Taking this into account, we
assumed that the calculation error for the collision inte-
grals in the EPIDIF database must be 2 X 103 or less.

For the light pair H,~CH,, the de Boer quantum

parameter is A* = h/(d,,J21u€,,) = 1, where h is the
Planck constant and  is the reduced mass. In this case,
the upper estimate for the quantum correction to the
classical integrals Q" ** at T =500 K [1, 17] does not
exceed (1.5-2) x 1073, which gives grounds for the use
of the classical collision integrals in the database.

Based on the results of analysis of the relations of
the molecular kinetic theory [1, 2], we chose the set of
integrals QU D* QL. 2% QL. 3% Q2. 2% and Q2 * or
the equivalent set of the coefficients Q! V* C* =
Q(l 2)*/9(1 I)* B* = (SQ“ 2)% _ 4Q(l 3)*/9(1 Dk —
1+3C* - C*2 (T*2/3)(9* Q! D% /9T*2), QO %,
and E* = Q2 9%/Q@ 2% to be represented in the
EPIDIF database. This set is sufficient for the computa-
tion of the kinetic coefficients for pure gases in the sec-
ond approximation of the theory, for the diffusion coef-
ficients of species of the mixture in the second approx-
imation, and for the coefficient of thermal diffusion in
the first approximation. The results of calculation of the
diffusion coefficient of a species in a mixture of gases
of sharply differing masses (H,~N,-Xe, Ne—Ar-Kr)
reveal that the difference in the coefficients computed
in the third and second approximations ([D;;/[D;l, - 1)
at T=300 K is less than 107 [19].

Therefore, the requirements of a concrete database
with regard to the kinetic coefficients permit one to
define the necessary set of collision integrals, the accu-
racy of representation, the range of reduced tempera-
ture, and, finally, some set of the potential functions.

The L-J (m—6) function is written in two ways,
namely, as a function of X = r/r,, where r, is the equi-
librium distance, U(X = 1) =—¢, and (QU/dX)y., =0, or
as a function of R = r/d, where UR = 1) = 0 (at
U(R — =) — 0). For example,

Ule = U* = [(m/(m=6))(m/6)0/"-O R™ - R). (1)

The exponent m is an empirical quantity and may
vary continuously within m = 6—ec [2, 20]. At m — oo,
relation (1) degenerates to the Sutherland potential [1].
The curvature of function (1) at its minimum is p =
(0*U*/0X?*)x-, = 6m. By varying the value of m, it is
possible to change in a wide range both the slope of the
repulsion branch and the curvature at the minimum. At
m = 10, we have p = 60, which is much closer to the
experimental data for inert gases than the value of 72
obtained for the L-J (12-6) potential.

We treated several alternative versions of the repre-
sentation of the collision integrals QU 9*(T*, m) in the
database for preassigned potentials (1), in particular,
the possibility of computation using conventional soft-
ware packages [2, appendix A; 21, 22], the input of two-
dimensional tabulated data on QU D%(T*, m) [14-16],
and, ﬁnally their approximation by parametric depen-
dences " ¥*(T*, m, a). The last approach has been
chosen because it provides wider opportunities for
independent users.

Numerous attempts to approximate collision inte-
grals in a wide range of temperatures were made previ-
ously, mainly for the L-J (12-6) potential [18 23—26]

In choosing the type of the dependence 0),,, (7* a),

it is customary to assume that the importance of the
attraction branch of the potential at high temperature
may be ignored and that the process of collision is com-
pletely due to the repulsion forces. In contrast, it is
assumed that, at 7% < 1, the attraction forces play the
dominant role.

For monotonic inverse-power potentials, the follow-

ing equation is known:
QU (m/T*Y"T(s +2-2/m)AY (m),  (2)
where m is the exponent; I is the gamma-function; and
the coefficients A¥(m) are calculated at / = 1-4 (1) and
m = 2—oo for both attractive A, and repulsive A_ poten-
tials [1, 27].

Equation (2) gives ground to expect that @ 9% ~
T* -1/ potential and 7* > 1 and @ % ~ T* -13 at T* <
1 (i.e., in the classical limit). It is these asymptotics that
are used in the models [18, 23-25] in some or other
form. Note that it is possible to describe the collision
integrals in the temperature range 7* = 3-200 with the
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ANALYTICAL REPRESENTATION OF COLLISION INTEGRALS 47

accuracy of about 2% by the dependences of the type of
@& 9* ~ T*-1/ and this fact is often used to represent
the integrals at moderate and high temperatures [7].

Expressions have gained acceptance that approxi-
mate the tables of sixteen integrals for the L-J (12-6)
potential, which are refined with respect to [1], in the range
T* = 0.3-400 with the accuracy better than 103 [25],

3
o®9* = AT* B4 Zaiexp(—b;T*) 3)
1

+RT*Bsin(ST*Y - P),

where each ([, s) is assigned its parameters, and B =
0.152 + 0.004. The exponential terms introduce a cor-
rection for attraction to the repulsion core A/T*®. The
last term in (3) is intended to compensate for typical
wavelike deviations that occur during “nonstatistical”
approximation of smooth tables.

Fokin et al. [18] successfully performed separate
approximation of the tabulated data on 1/Q( V* and
1/Q@ 2% on the isolines of m = const (m =9-15 (1)) in
the range T* = 0.2-30 by the method of least squares.
Fractional rational functions were used, which joined
the low-temperature 1/Q® 9% ~ T*153 and high-temper-
ature 1/Q09* ~ T*16 agymptotics (2) of the integrals
for the L-J (12-6) potential. The parameters of the
model were found using the quasi-linearization proce-
dure described by Spiridonov [28].

It is interesting to treat the model [29], which
employs switching functions of the type [(1 + T*/B)]!
and [(1 + B/T*)P]"\. These functions join the low- and
high-temperature asymptotics of collision integrals (2).
The results of approximation of the isolines of Q! D*
and Q2% from [2] at m =9, 12, 18 in the range T* =
0.1-100 with the accuracy of about 0.5-0.9% are given
in [29].

The examples of two-dimensional approximation of
QU9%(T* m) are not numerous.

Previously, a short expansion of the integrals Q! D*
and Q@ ?* into the Taylor series relative tom =12 in a
narrow region of variation of the exponent m = 12 + 3
was used in the B-version of the EPIDIF database [30].

The Q@ 2*(T*) isolines in the range T* = 0.3-10 for
m = 9-18 (1) were described in [18] by the depen-

dences of type ®* 2* = —p, InT* + 2‘:“’, T*(1 - and

then the parameters b(m) and a(m) were approximated
by polynomials in powers of 1/m.

We used the accumulated experience [18, 23-26,
29-30] in view of the foregoing requirements of the
EPIDIF database to perform a two-dimensional
approximation of the tabulated data on the collision
integrals Q! D* and Q@ 2* [14-16] in the ranges of
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temperature 7* = 0.4-200 and exponents m = 8o
using expressions of the (k = 1, 2) form,

Ino®P* = 2 InT* + S(k'k)ln(l - l—)
3m

T m
l . (k, k) (4)
+3 " Pmy1 /T
i=1
where the coefficients am), in their turn, had the form
(4a)

In view of the special features of equation (2), it is
assumed that 8-V = 0 and 6% ? = 1. Relations (4) and
(4a) include the empirical correction for the forces of
attraction to the collision integrals of the repulsion
branch of the L-J (m—6) potential. At T* — oo, we
have C* — 1 — 2/(3m) and B* — 1 + 4/(3m) -
4/(3m?).

Because the L-J (m—6) potential degenerates to the
Sutherland potential at m — oo, for whose collision
integrals the high-temperature expansion has the form
Q9% ~ 1 + §/T* wearrive at a')” = a'v > =0in (4)
and (4a).

The approximation by expressions (4) and (4a) to
the tabulated data was performed by parametric mini-
mization of the following quadratic functional:

S = W, [InQf:D*(T*, m)

a(m) = a; + ap/m + az/m? + a,/m’.

1,1 2
—Inno V*(T*, m,a" )]

2
+IWCHT*, m) = cF(T*, m,a"")]
+ szi[lnﬂfz'z)*(]‘*’ m)

~ Inno®?*(T*, m,a*”)]’ 5)
% * 22)\;
+EWLIET(T*, m)— e/ (T*, m,a™")]

+ W, [InA*(T*, m)
—Innw®2*(T*, m, a%?)

1,1 2
+Inno V*T*, m a" )1

The coefficients C* and E* were found with the aid
of the expression [1, 2]

Qs+ D% Q9% = | 4 @InQE9*/dInT*)/(s +2) (6)

by differentiating (4) and (4a) with respect to InT*. In
this case, the functions remain linearly dependent on
the parameters a* ®,

In functional (5), a simultaneous approximation of
functions (4), and their temperature derivatives is per-
formed. This leads to the intrinsic consistency of the

TIB Hannover licenced customer copy, supplied and printed for SINTEF Energi AS, 4/17/23 at 10:01 AM



48 FOKIN et al.

Table 1. The results of approximation of collision integrals

o Functional
umber
No. | Tabulated data of points | S(a;_, =| S(a;=
const) var)
1 | Qb 770 - 27.06
2 !t 796 | 36.89 | 30.05
3 +Clo 1250, 937 | 61.68 | 51.82
4| +Che_ga 951 | 12606 | 64.55
5 [ Q@D 770 = 68.67
6 N 797 | 84.16 | 80.87
%
7 +Ely1rs0) 938 | 110.16 | 104.85
*
8 FE o g 952 | 218.48 | 131.71
+QUID* 4 Cx 4
9 | Toedx, p 1903 | 296.25 | 196.25
%
10 | +A450 2044 | 201.49 | 201.22
11 +A:‘T* ) 2058 | 202.20 | 201.92

integrals o Y* and o"?*, on the one hand, and of
®22* and > Y*, on the other hand. Functional (5)
includes the coefficient A* = Q& 2%/Q( ¥ which is
used, in particular, to compute the diffusion coefficient
in the second approximation of the theory.

The statistical weights are supposed to be W, =

A;7? =(2x 10-%)2 for all tabulated values in (5) with the

exception of those for the Sutherland potential. Certain
difficulties arise in the application of the tabulated data

for Q‘gl' D* and Q_iz’ 2* for the Sutherland potential [1]

calculated by Kotani in 1941 [31]. The results of anal-
ysis at T* > 2 demonstrate that the isotherms QU 9% =
f(1/m) at m = 8-75 in [14-16] as functions of 1/m and
extrapolated to zero agree naturally with the integrals
from [31]. However, at T* < 1.5, a discrepancy occurs,
and at T* = 0.4 the difference QU D*(m — oo) — QU D
[31] reaches 1.5%.

The problem of extrapolation of the isotherms of
high-temperature collision integrals to m — oo is dis-
cussed in [32]. It is at low temperatures 7* < 1.5 that the
observed disagreement occurs and the reason for this is
as yet unknown. That is why we performed the approx-
imation using the integrals given in [31] at T* = 0.25-
1.33 with the accuracy of 4-0.4% and further at 7* >
1.5 with the accuracy of 0.2%. The tables of the coeffi-
cients C*, E* and A* [14—16] with all fourteen values

of m on the isotherm T* = 0.4 are also included in the
data processing. The number of points in the array
(Q D% _ () i3 952, and that in the array (Q 2% + E*)
is 953. The total number of points including the data for
the coefficient A* is 2058.

The parameters of model (4) and (4a) were found
with the aid of the FUMILI package [33], which is the
FORTRAN version of the least squares method, with
the double precision representation of the data.

An adequate agreement between model (4) and (4a)
and the tabulated data discussed above is obtained with
the number of about 20-24 for each of the parameters
a~Yand a??. In so doing, the standard deviation in the
data array (QU- D 4 C*) is about 0.07%, and in the
array (Q% 2% + E*) it is about 0.085%. The deviations
of the calculated values from tabulated ones on the
m-isolines have a typical wavelike form. The deviations
in the former array are less than 0.2% in all cases except
for the low-temperature points [31], and in the latter
array they may be as great as 0.25%, especially at T* =
0.4-0.6.

The optimal values of two nonlinear parameters
A% K in (4) were determined at minimization (5) by the
trial-and-error method for each data array. These values
turned out to be in the range of 0.5 £ 0.02. To facilitate
the calculation, we assumed AP = AZ2 = (0.5, The
details of the calculation and the values of the respec-
tive parameters are given in [34].

Note that the coefficients B*, which were not
involved in the approximation procedure and the calcu-
lation of which involves second-order derivatives, can
be found by (4) and (4a) with an error of less than 0.5%.

In the implementation of the least squares method
[33] in a preset data array, the functional was observed
to decrease monotonically with the increase of the
number of parameters. This is evidence of an insignifi-
cant effect of the calculation errors, particularly, in the
matrix inversion procedure performed by the FUMILI
package. Nevertheless, we performed independent
computations by computer codes based on the use of
the least squares method [35], adapted to multidigit
arithmetic software [36] in order to quantitatively esti-
mate the calculation errors in the parameters of model
(4) and (4a). In doing so, we used the “standard” array

of the integrals (Q" D* + Q" *Y [14-16, 31] in the

range of 7* = 0.4-200 and m = 8—ec with the statistical
weights as given above. The array contained 796 points.

The package [35] includes the procedures of trans-
formation of the initial system of the least-squares
equations to the orthogonal decomposition basis. The
orthogonalization was performed using recurrent
expressions enabling one to efficiently use the com-
puter memory, which is especially important for the
memory-intensive package of multidigit arithmetic
[36]. The computation was carried out with the data
representation with 42 digits. During the approxima-
tion of the “standard” data array in a model character-
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Q(l.l)"‘_m(l.l)*
0.0015F Aam=9 A
+ oem=12
0.0010} ¢ + m=50
At
+ a® b A
0.0005 - A ; PPN AAA
* s ‘o .
0 N
+
L 9 A8 40 ° % ..Aﬁ +
—0.0005"' AAAA
A
A
-0.0010+ Kﬁ
®
_0_0015 R N W T | 1 N T T T O W A | 111l 1
0.1 1 10 100 T*

Deviation of the tabulated integrals Q!> D* from the calculated ones ot D¥,

ized by 24 parameters (a;; = 0), the divergence of the
coefficients calculated previously by the FUMILI pack-
age and the coefficients produced by the package of
[35] did not exceed unity in the fifth order of decimal
mantissa. This difference is negligible with the preas-
signed computation accuracy of the collision integrals.
The increase from 24 to 46 of the number of the param-
eters in model (4) and (4a) used for the approximation
in the regime of multidigit arithmetic results in a mono-
tonic decrease of the functional from S,, = 55.17 to
S = 10.08.

The employed model (4) and (4a) is in fact an
expansion in powers of (1/T*) and (1/m) of the term
correcting for the attraction to the integrals for the
repulsion potential (2). On the other hand, one can see
from (2) (see also [32]) that the dependence InQ* 9" =
fim) may include terms of the form (1/m)In(1/m). The
possibility is studied of the representation of the coeffi-

cients a(m) in (4) in the form
a{m) = a; + ay/m+ az/m? + (ai,/m*)In(1/m). (4b)
This results in a 1.5-fold decrease of the functional

S of the array of (Q( D* + Q" D*Y in comparison with
the initial functional used in model (4) and (4a) [34].
The version of the model (4) and (4b) is used below.
Table 1 shows the dynamics of variation of the func-
tional at constant increments of the data arrays. One can
clearly see the advantages of the procedure involving
the simultaneous approximation of the function and its
derivative (see the arrays (Q(!: D* + C*) and (Q@ ?* +
E*), respectively).

For formal reasons, one parameter of the vector
a®:D and three parameters of a®? are additionally
assumed to be insignificant in the final version (4) and
(4b). The values of the coefficients for the functional
S = 201.97, rounded off to six significant digits, are
given in Table 2.

Table 2. The parameters of approximating expressions (4) and (4b), AV = A®2 = 0.5

a® b k=(1,1) k=(22) ak® k=(,1) k=(22)

ay 0 0 ay 0.485352 0.697682

a, -0.145269 x 10 0.113086 x 10 as 0.245523 x 10? 0.590192 x 10?
ap 0.294682 x 107 0.234799 x 10? az -0.336782 x 10° -0.143670 x 10°
a4 0.242508 x 10 0.310127 x 10 Ay 0.814187 x 10? -0.123518 x 10°
ay 0.107782 x 10~ 0 as -0.385355 —0.564238

ay 0.587725 0.551559 x 10 as, —0.206868 x 107 -0.430549 x 10?
ay -0.180714 x 10° -0.137023 x 10 as; 0.132246 x 10° 0

ay 0.595694 x 10? 0.185848 x 10? asy 0 0.137282 x 10°
ay 0.546646 x 107! 0.325909 x 107! ag 0.847232x 107! 0.126508

asy -0.651465 % 10 -0.292925 x 10? ag, 0.521812 % 10 0.104273 x 10?
as 0.374457 x 10° 0.243741 x 10° ag; -0.181140 x 10? 0.150601 x 10?
ay -0.137807 x 10 0 Ags -0.747215x 10 —0.408911 x 10?
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A typical graph of the deviations of the tabulated
integrals Q- D* from the calculated ones @ '* on the
isolines of m =9, 12, 50 is given in the figure.

The resultant model is a convenient tool for the anal-
ysis of collision integrals and kinetic coefficients
proper.

For example, the collision integrals Q! D*(7*, m)
and Q2 2*(T*, m) have a singular feature according to
which the isolines of constant m intersect at close tem-
peratures. It is easy to find, using expressions (4) and
(4a), that for the integrals Q' D* at m = 6-100 the
region of the intersection of the curves is located at
T* =1.58 £ 0.08.
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