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a b s t r a c t

Classical density functional theory (DFT) is a powerful tool for studying solvation or problems where
resolution of interfacial domains or interfacial properties among phases (or thin films) is required. Many
interesting problems necessitate multi-dimensional modeling, which calls for robust and efficient
algorithmic implementations of the Helmholtz energy functionals. A possible approach for achieving
efficient numerical solutions is using the convolution theorem of the Fourier transform. This study is
meant to facilitate research and application of DFT methods, by providing a detailed guide on solving DFT
problems in multi-dimensional domains. Methods for efficiently solving the convolution integrals in
Fourier space are presented for Cartesian, cylindrical, and spherical coordinates. For cylindrical and
spherical coordinate systems, rotational and spherical symmetry is exploited, respectively. To enable easy
implementation, our approach is based on fast Fourier, fast Hankel, fast sine and cosine transforms on
equidistant grids, all of which can be applied using off-the-shelf algorithms. Subtle details for imple-
menting algorithms in cylindrical and spherical coordinate systems are emphasized. The work covers
functionals based on weighted densities exemplarily. Functionals according to fundamental measure
theory (FMT) as well as a Helmholtz energy functional based on the perturbed-chain statistical associ-
ating fluid theory (PC-SAFT) equation of state are worked out in detail (and given as Supporting
Information).

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Efficient numerical solution of convolution integrals is impor-
tant for solving classical density functional theory (DFT) or dynamic
density functional theory (DDFT) in multidimensional problems.
The solution of a DFT model, namely the densities of all species, is
obtained iteratively. The computational demand for the iterative
solution is the repetitive computation of numerous convolution
integrals. Naïve numerical convolution through integration leads to
long computation times and complicated integration schemes,
especially for multidimensional DFT problems. One approach to
address this problem is the utilization of the convolution theorem
of the Fourier transform. The O ðN log NÞ computational complexity
ierle), gross@itt.uni-stuttgart.
of fast Fourier transform (FFT) algorithms (compared to O ðN2Þ for
numerical convolution) leads to a significant advantage regarding
computational performance. Additionally, working with integral
transforms like FFT simplifies multidimensional convolutions,
because each dimension can be treated separately which averts
multidimensional integration schemes.

Several authors applied integral transforms to convolution in-
tegrals appearing in DFT. Knepley et al. [1] used the FFT approach
for convolutions in a DFT for ionic solutions. A short introduction to
usage of FFT for Rosenfeld's fundamental measure theory [2] (FMT)
was also given. Frink et al. [3,4] proposed Fourier space convolution
on a multidimensional Cartesian grid in combination with
nonlinear iterative solvers and Sears and Frink [5] proposed using
FFT in combination with a matrix-free scheme and compared
computational efficiency for one-, two- and three-dimensional
systems. Hlushak et al. [6] employed the FFT on a two-
dimensional Cartesian grid to analyze flexible chain molecules at

mailto:stierle@itt.uni-stuttgart.de
mailto:gross@itt.uni-stuttgart.de
mailto:gross@itt.uni-stuttgart.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fluid.2019.112306&domain=pdf
www.sciencedirect.com/science/journal/03783812
www.elsevier.com/locate/fluid
https://doi.org/10.1016/j.fluid.2019.112306
https://doi.org/10.1016/j.fluid.2019.112306


R. Stierle et al. / Fluid Phase Equilibria 504 (2020) 1123062
curved surfaces, whereas Hlushak et al. [7,8] studied attractive
particles in nanopores. While analyzing rotationally symmetric
systems, rotational symmetry was not exploited in the computa-
tion of the convolution integrals, leading to unnecessary compu-
tational overhead. Oettel et al. applied the Fourier convolution
approach within the framework of three-dimensional FMT and
compared results to those obtained by phase-field models [10] and
Monte Carlo simulations [9]. A similar analysis of crystal structures
and solid-liquid interfaces using three-dimensional FMT combined
with a Helmholtz energy contribution to account for attractive in-
teractions was conducted by Wang et al. [11]. Solvation effects in
water were studied by Levesque et al. [12]; solvation energies of
amino acid side chains by Liu et al. [13], both by three-dimensional
DFT. Zhou et al. [14] applied three-dimensional Cartesian DFT to
heterogeneous nucleation of Lennard-Jones fluids on solid walls.

For cylindrical systems, rotational symmetry can be exploited to
reduce dimensionality of the DFT problem. In one-dimensional
cylindrical coordinates, Gonz�alez et al. [15] proposed using the
Hankel transform for computation of the convolution in Fourier
space. The fast Hankel transform was not employed, however.
Malijevský [16] and Mariani et al. [17] took advantage of rotational
symmetry to formulate the convolution integrals of FMT for cy-
lindrical coordinates in real space. In Fourier space this was done by
Boţan et al. [18] for the analysis of hard-sphere fluids in annular
wedges. In cylindrical coordinates the Fourier transform can not be
computed using FFT, but requires a, preferably fast, Hankel trans-
form algorithm for the radial direction. Boţan et al. [18] reformu-
lated the DFT problem on a logarithmic grid to apply a fast Hankel
transform.

Spherical symmetry can be exploited to efficiently compute
spherical DFT systems in one dimension. This was applied by
Gonz�alez et al. [15] to hard spheres in a spherical cavity, utilizing
Fourier space convolution. For FMT in spherical coordinates pro-
jection of the weight functions onto one dimension was described
by Roth [19].

Convolution in Fourier space by exploiting the FFT or similar
algorithms is not the only approach to speed up the computation of
the convolution integrals appearing in DFT problems. Yatsyshin
et al. introduced a Chebyshev pseudo-spectral collocation method
in combination with Clenshaw-Curtis quadrature for computation
of the convolution integrals in one [20] and two dimensions [21] of
a Cartesian grid, extended by Nold et al. [22]. Contrary to FFT
convolution, equidistant grid spacing is not required, but possible.
Problem-specific grid spacing has potential to reduce computa-
tional effort. Xu and Cao [23] used a two-dimensional multiscale
finite element approach to reduce computational complexity for
the convolution integrals.

Computation time, of course, not only depends on the perfor-
mance of the Helmholtz functional computation and the involved
convolution integrals but also depends on the algorithm used to
solve the system of nonlinear equations as well. Previous work on
numerical algorithms can be found in Kovalenko et al. [24], Frink
and Salinger [25,26], Frink et al. [3,4], Frink et al. [27], a comparison
of different nonlinear solvers in Mairhofer and Gross [28].

Classical DFT or DDFT are theoretical approaches that carry
molecular detail through averaged quantities. DFT approaches are
predictive when a suitable Helmholtz energy functional is applied.
We aim at applying FFT convolution to a functional consistent with
the perturbed-chain statistical associating fluid theory (PC-SAFT)
equation of state [29,30]. The PC-SAFT equation of state is formu-
lated in terms of the Helmholtz energy allowing easy generalization
to Helmholtz energy functionals. PC-SAFT provides good de-
scriptions of thermodynamic properties in bulk phases for a wide
variety of real substances and mixtures, including components of
low molecular mass [30], but also complex species like polymers
[31] or associating substances [32]. The underlying molecular
model regards molecules as hard chains with attractive van der
Waals segment-segment interactions or hydrogen-bonding (asso-
ciating) [32e37] or dipolar and quadrupolar interactions [38e40].
Several approaches combining PC-SAFT and DFT have been pro-
posed. Gross [41] described a DFT for pure substances which was
generalized by Klink and Gross for mixtures and successfully
applied to vapor-liquid [42], liquid-liquid interfaces [43]. Klink et al.
[44] and Lamanna et al. [45] applied this PC-SAFT DFT to interfacial
transport resistivities. Sauer and Gross [46] suggested a Helmholtz
energy functional for the dispersion contribution based on a
weighted density approximation suitable for confined systems,
predicting physical phenomena like surface tension, contact angles
[47] and adsorption isotherms. Similar approaches were taken by
Shen et al. [48,49], Ye et al. [50] and Xu et al. [51].

This work provides a practical guide to implementing and
solving DFT models that are based on weighted densities. We wish
to facilitate the use of DFT approaches in engineering applications.
More specifically we demonstrate implementation of the ideal gas,
hard-sphere, hard-chain and dispersion contribution of PC-SAFT
DFT in Cartesian, cylindrical and spherical coordinate systems.
We use the FFT algorithm for Cartesian coordinates and the axial
contribution to cylindrical systems, the fast Hankel transform is
applied for the radial contribution to cylindrical systems and the
fast sine and cosine transform is adopted for systems described in
spherical coordinates. In contrast to previous work using cylindrical
coordinates [18], we apply the fast Hankel transform of Hansen
[52,53], which allows computation of Hankel transforms on equi-
distant (rather than logarithmic) grids by using a combination of
fast Abel [54] and fast sine and cosine transforms. Equidistant grids
reduce computational overhead because a smaller number of
overall grid points is usually possible, while maintaining the same
worst-case grid density as compared to logarithmic grids. Fourier
space convolution is easier to implement than naïve real space
convolution, which allows writing robust simulation codes.

The general procedure is shown for weighted density approxi-
mations in the main part of this work. A detailed description of
equations for Helmholtz energy functionals based on the PC-SAFT
equation of state is provided in the Supporting Information,
including functional derivatives of the model as well as a
comprehensive introduction to Fourier space convolution.
2. Classical density functional theory

The starting point for classical DFT is the grand potential func-
tional U, which, for a mixture of Nc components is written as

U½friðrÞg�¼ F½friðrÞg� þ
XNc

i¼1

ð
riðrÞ

�
Vext
i ðrÞ�mi

�
dr (1)

with Helmholtz energy functional F, chemical potential mi of
component i and the external potential Vext

i , acting on component i.
Although not made explicit in this notation, the specified variables
of U are temperature T, volume V, and chemical potentials mi of all
species. Square brackets denote a functional dependence and curly
brackets around friðrÞg indicate a vector of all densities within a
mixture, i ¼ 1;/;Nc.

In equilibrium the grand potential functional is minimal and the
value of the grand potential functional reduces to the grand po-
tential U0 ¼ U½fr0i g�. The minimum implies, that for the equilibrium
density profile fr0i ðrÞg, the functional derivatives of the grand po-
tential functional U with respect to the density profiles friðrÞg
vanish, according to
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dU½frig�
drjðrÞ

�����fr0i ðrÞg ¼0 (2)

which leads to the main equation of DFT

dF½frig�
drjðrÞ

¼mj � Vext
j ðrÞ cj (3)

that can be solved for the density profiles fr0i ðrÞg in the considered
volume, provided a model for the Helmholtz energy functional is
available.
2.1. Weighted density approximation functionals

Weighted density approximation functionals can be constructed
generically as

bF½friðrÞg�¼
ð
FðfnaðrÞ;nbðrÞgÞ dr (4)

where a2f1;/g is a generic index that denotes the scalar-valued
weighted densities and b2fV1;/g points at the vector-valued
weighted densities, with bF ¼ F

kBT
, where kB is the Boltzmann

constant, and with the reduced Helmholtz energy density F, which
is solely a function of the weighted densities na;b. The weighted
densities na;b are calculated via convolution of the density profile
frig as

na;bðrÞ¼
XNc

i¼1

ð
riðr0Þua;b

i ðr� r0Þ dr0 ≡
XNc

i¼1

riðrÞ5ua;b
i ðrÞ (5)

the respective weight functions ua
i are typically defined as func-

tions including Heaviside step functions Q, Dirac delta functions d,
or derivatives thereof d0 as shown for scalar-valued weight
functions

ua
i ðrÞ∝QðRi � jrjÞ (6a)

ua
i ðrÞ∝dðRi � jrjÞ (6b)

ua
i ðrÞ∝d0ðRi � jrjÞ (6c)

Vector-valued weight functions are expressed as combinations
of the previous weights with the position vector r as

ub
i ðrÞ∝

r
jrju

a
i ðrÞ (7)

For the case of eq. (6a) one averages over a spherical volume,
whereas for the case of eq. (6b), the weighting is defined on the
surface of a sphere with radius Ri. The functional derivative is
calculated as

dbFhs½frig
i

drjðrÞ
¼

ð
dF

drjðrÞ
dr0

¼
ðX

a;b

vF
vna;bðr0Þ

dna;bðr0Þ
drjðrÞ

dr0
(8)

with the functional derivative of the weighted densities, according
to
dna;bðr0Þ
drjðrÞ

¼ d

drjðrÞ
XNc

i¼1

ð
riðr00Þua;b

i ðr0 � r00Þ dr00

¼ PNc

i¼1

ð
dijdðr00 � rÞua;b

i ðr0 � r00Þ dr00

¼ ua;b
j ðr0 � rÞ

(9)

with dij as the Kronecker delta and d as the Dirac delta function.
Substitution of eq. (9) in eq. (8) allows the functional derivative to
be rewritten as a sum of convolution integrals, according to

dbFhs½frig
i

drjðrÞ
¼ P

a;b

ð
vF
vna;b

ua;b
j ðr0 � rÞ dr0

¼ P
a

vF
vna

5ua
j �

X
b

vF
vnb

5ub
j

(10)

The scalar-valued weight functions are even, with

ua
i ðr0 � rÞ¼ua

i ðr� r0Þ for a2f1;/g (11)

while the vector-valued weight functions are odd functions

ub
i ðr0 � rÞ¼ �ub

i ðr� r0Þ for b2fV1;/g (12)

leading to the minus signs in eq. (10).
3. Fourier space convolutions

Weighted density approximation functionals and functional
derivatives can be calculated efficiently in Fourier space, by making
use of the convolution theorem of the Fourier transform. In this
section we show how to compute the required Fourier transforms
in various coordinate systems using off-the-shelf FFT, fast Hankel,
fast sine/cosine transform algorithms.

We show the procedure by considering weighted densities as
convolutions of density ri with weight function ui. One transforms
the density profile ri to Fourier space using a discrete transform
scheme and, after multiplication in Fourier space with the analyt-
ically transformed weight function, transforms the result back to
real space using the inverse discrete transform scheme, according
to

na;bðrÞ ¼
ð
riðr0Þua;b

i ðr� r0Þ dr0 ¼ riðrÞ5ua;b
i ðrÞ

¼ F �1
h
F ½riðrÞ�F

h
ua;b
i ðrÞ

ii
¼ F �1

hbriðkÞbua;b
i ðkÞ

i (13)

with the Fourier space vector k, and introducing the Fourier
transform F and inverse Fourier transform operator F �1. The
circumflex ^ above quantities indicates them being the Fourier
transforms of the respective quantity.

The scalar-valued weight functions in Fourier space, eq. (6), are
obtained using

bua
i ðkÞ¼F

�
ua
i ðrÞ

�
(14)

The vector-valued weight functions in Fourier space can be
described by
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bub
i ðkÞ∝ � i kbua

i ðkÞ (15)

where the position vector r
jrj in eq. (7) transforms to ð�i kÞ in

Fourier space, with the imaginary unit i.
3.1. Convolution in cartesian coordinates

For Cartesian coordinates we substitute r ¼ ½x; y; z�u and
k ¼ ½kx; ky; kz�u. The Fourier transform of the density profiles is
computed as

bri�kx; ky; kz�¼F xF yF z½riðx; y; zÞ� (16)

just as presented in Appendix A in eq. (A.6). For computation of the
scalar-valued weighted densities

naðx; y; zÞ¼
XNc

i¼1

F �1
x F �1

y F �1
z

hbri�kx; ky; kz�bua
i
�
kx; ky; kz

�i
(17)

the inverse Fourier transform for scalar functions, eq. (A.7), is
needed. For the vector-valued weighted densities we use the
vector-valued weight functions in Fourier space from eq. (15). The
inverse Fourier transform is obtained as

nbðx; y; zÞ¼
XNc

i¼1

F �1
h
� i kbua

i ðkÞbriðkÞi (18)

with

F �1
h
� i kbua

i ðkÞbriðkÞi

¼

0BBBBBB@
F �1

x F �1
y F �1

z

h
� i kx bua

i
�
kx; ky; kz

�bri�kx; ky; kz�i
F �1

x F �1
y F �1

z

h
� i ky bua

i
�
kx; ky; kz

�bri�kx; ky; kz�i
F �1

x F �1
y F �1

z

h
� i kz bua

i
�
kx; ky; kz

�bri�kx; ky; kz�i

1CCCCCCA
(19)

using the inverse Fourier transform for vector-valued functions
from eq. (A.14). The convolution integrals of the Helmholtz energy
density derivatives vF

vna
with the weight functions ua

i are computed
similarly.

The scalar-valued convolution integrals in eq. (10) are obtained
using the scalar inverse Fourier transform from eq. (A.7), leading to

vF
vna

5ua
i ¼F �1

x F �1
y F �1

z

�dvF
vna

�
kx; ky; kz

�bua
i
�
kx; ky; kz

��
(20)

with the scalar Fourier transform of the partial derivative of the
Helmholtz energy density, eq. (A.6), computed according to

dvF
vna

�
kx; ky; kz

�¼F xF yF z

�
vF
vna

ðx; y; zÞ
�

(21)

The vector-valued convolution integrals in eq. (10) can be
handled using the inverse Fourier transform of scalar-valued
functions, eq. (A.7), leading to
vF
vnb

5ub
i ¼F �1

x F �1
y F �1

z

"dvF
vnb

����
kx

bub
i jkx þ

dvF
vnb

����
ky

bub
i jky

þ
dvF
vnb

����
kz

bub
i jkz
# (22)

where the dot product in Fourier space is used, calculated according
to

dvF
vnb

,bub
i ¼

0BBBBBBBBBBBB@

dvF
vnb

����
kx

dvF
vnb

����
ky

dvF
vnb

����
kz

1CCCCCCCCCCCCA
,

0BBBBBB@
bub
i jkx

bub
i jky

bub
i jkz

1CCCCCCA

¼
dvF
vnb

����
kx

bub
i jkx þ

dvF
vnb

����
ky

bub
i jky þ

dvF
vnb

����
kz

bub
i jkz

(23)

whereby the vector-valued weight functions, eq. (15), in Fourier
space in each direction are defined as

bub
i jkx
�
kx; ky; kz

�¼ � i kx bua
i
�
kx; ky; kz

�
(24a)

bub
i jky
�
kx; ky; kz

�¼ � i kybua
i
�
kx; ky; kz

�
(24b)

bub
i jkz
�
kx; ky; kz

�¼ � i kz bua
i
�
kx; ky; kz

�
(24c)

The vector-valued Fourier transform, eq. (A.11), of the vector-
valued derivatives of the reduced Helmholtz energy yields

dvF
vnb

�
kx; ky; kz

�¼
0BBBBBBBBB@

F xF yF z

�
vF
vnb

jxðx; y; zÞ
�

F xF yF z

�
vF
vnb

jyðx; y; zÞ
�

F xF yF z

�
vF
vnb

jzðx; y; zÞ
�

1CCCCCCCCCA
(25)
3.2. Convolution in cylindrical coordinates

We regard problems in cylindrical coordinates with angular
symmetry, leading to two-dimensional problems. The presented
formalism follows Boţan et al. [18], but instead of separating the
external potential to obtain vanishing boundary conditions, we
separate the density profile directly. The fast Hankel transform al-
gorithm used for computing the Fourier transform requires the
function to vanish for large values of the radial coordinate r. That is
why we decompose the density profile into a part that approaches
zero at large r ¼ rmax and a part that only depends on the axial
coordinate according to

riðr; zÞ¼ rDi ðr; zÞ þ r∞i ðzÞ (26)

The contribution that shifts the density profiles is defined at the
r-boundary r∞i ðzÞ≡riðr¼ rmax; zÞ. The remaining contribution
rDi ðr; zÞ is well-behaved for a treatment with the fast Hankel
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transform.
The Fourier transform of the density profiles is computed ac-

cording to eq. (A.26) as presented in Appendix A

briðkr ; kzÞ¼F zH 0
�
rDi ðr; zÞ

�þ F z
�
r∞i ðzÞ� dðkrÞ

2pkr
(27)

with the Hankel transform of order zero H 0. The solely z-depen-
dent contribution r∞i is transformed via a Fourier transform in
z-direction, while the analytical Hankel transform in the constant

r-direction yields dðkrÞ
2pkr

.

The scalar-valuedweighted densities na, are calculated using the
inverse Fourier transform for scalar functions, eq. (A.27), leading to

naðr; zÞ ¼ PNc

i¼1

	
F �1

z H �1
0

hbrDi ðkr; kzÞbua
i ðkr; kzÞ

i
þF �1

z

hbr∞	kz
bua
i

	
kr ¼ 0; kz


i
 (28)

For the vector-valued weighted densities we use the vector-
valued weight functions from eq. (15). The inverse Fourier trans-
form is obtained as

nbðr; zÞ ¼ PNc

i¼1

0BBBBB@

0BBBBB@
F �1

z H �1
1

h
kr bua

i ðkr ; kzÞbrDi ðkr; kzÞi
0

F �1
z H �1

0

h
� i kz bua

i ðkr; kzÞbrDi ðkr; kzÞi
1CCCCCA

þ

0BBBB@
0

0

F �1
z

h
� i kz bua

i ðkr ¼ 0; kzÞbr∞i ðkzÞ
i
1CCCCA
1CCCCA

(29)

with the Hankel transform of zeroth and first order, H 0 and H 1,
respectively. For this result we made use of the inverse Fourier
transform for vector-valued functions, eq. (A.42). The convolution
integrals of the Helmholtz energy density derivatives vF

vna;b
with the

weight functions ua;b
i are computed similarly. The partial de-

rivatives vF
vna;b

at the r-boundary do not approach zero in general.

Analogous to eq. (26) we therefore shift the profile by splitting the

partial derivatives into a r- and z-dependent contribution vFD

vna;b
ðr;zÞ,

which approaches zero at the r-boundary, and the z-dependent
value at the r-boundary vF∞

vna;b
ðzÞ, according to

vF
vna;b

ðr; zÞ¼ vFD

vna;b
ðr; zÞ þ vF∞

vna;b
ðzÞ (30)

For the scalar terms one obtains

vF
vna

5ua
i ¼ F �1

z H �1
0

�d
vFD

vna
ðkr; kzÞbua

i ðkr; kzÞ
�

þF �1
z

� dvF∞

vna
ðkzÞbua

i ðkr ¼ 0; kzÞ
� (31)

using the scalar inverse Fourier transform from eq. (A.27). With the
scalar Fourier transform of the partial derivative of the Helmholtz
energy density, eq. (A.26), according to
dvF
vna

ðkr; kzÞ¼F zH 0

�
vFD

vna
ðr; zÞ

�
þ F z

�
vF∞

vna
ðzÞ
�

dðkrÞ
2pkr

(32)

For the vector-valued contributions we have

vF
vnb

5ub
i ¼F �1

z H �1
0

�dvF
vna

����
kr

bua
i jkr þ

dvF
vna

����
kz

bua
i jkz
�

(33)

where the expression in angular brackets results from the dot
product in Fourier space

dvF
vnb

, bub
i ¼

0BBBBBB@

dvF
vnb

����
kr

0dvF
vnb

����
kz

1CCCCCCA ,

0BB@ bu
b
i jkr
0bub
i jkz

1CCA¼
dvF
vnb

����
kr

bub
i jkr þ

dvF
vnb

����
kz

bub
i jkz

(34)

requiring the weight functions from eq. (15)

bub
i jkr ðkr; kzÞ¼ � i kr bua

i ðkr; kzÞ (35a)

bub
i jkz ðkr; kzÞ¼ � i kz bua

i ðkr; kzÞ (35b)

using the inverse Fourier transform for scalar functions from eq.
(A.27). Equation (33) further requires the vector-valued Fourier
transform, eq. (A.35), of the vector-valued derivatives

dvF
vnb

ðkr; kzÞ¼

0BBBBBBB@
F zH 1

�
� i

vFD

vnb
jrðr; zÞ

�
0

F zH 0

�
vFD

vnb
jzðr; zÞ

�

1CCCCCCCA

þ

0BBBBB@
0

0

F z

�
vF∞

vnb
ðzÞ
�

dðkrÞ
2pkr

1CCCCCA

(36)

Combining eqs. (35) and (36) in eq. (33) we obtain for the
vector-valued contributions

vF
vnb

5ub
i ¼ F �1

z H �1
0

h
� i bua

i ðkr; kzÞ

�
�
kr
d
vFD

vnb
jkr ðkr; kzÞ þ kz

d
vFD

vnb
jkzðkr; kzÞ

��

þF �1
z

�
� i kz bua

i ðkr ¼ 0; kzÞ
dvF∞

vnb
jkz ðkzÞ

�
(37)

3.3. Convolution in spherical coordinates

The fast sine/cosine transform algorithms used for computing
the Fourier transform in spherical coordinates require the function
to vanish for large values of r. If the density profiles riðrÞ do not
approach zero, we define shifted profiles rDi ðrÞ which do approach
zero at large radial distances r ¼ rmax by splitting the density profile
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riðrÞ¼ rDi ðrÞ þ r∞i (38)

into a r-dependent contribution rDi ðrÞ, vanishing at the boundary,
and the constant value at the boundary r∞i ðr¼ rmaxÞ. The Fourier
transform of the density profiles is computed as presented in
Appendix A, according to eq. (A.52) while the constant boundary
value can be computed analytically, leading to

briðkrÞ¼ 2
kr

S I N
�
rDi ðrÞ r

�þ r∞i dðkrÞ (39)

The scalar-valued weighted densities na, are then calculated
based on the inverse Fourier transform for scalar functions, eq.
(A.53), leading to

naðrÞ¼
XNc

i¼1

�
2
r
S I N

h
kr bua

i ðkrÞbrDi ðkrÞiþ bua
i ðkr ¼0Þr∞i

�
(40)

For the vector-valued weighted densities we use the vector-
valued weight functions, eq. (15), and transform them back to
real space using the inverse Fourier transform for vector-valued
functions from eq. (A.71). For the vector-valued weight functions

nbðrÞ ¼ PNc

i¼1

�
er

i

pr2
S I N

�
� i kr bua

i

�
kr

�brDi �kr��

�er
2i
r
C O S

�
� i kr bua

i

�
kr

�
krbrDi �kr���

(41)

the convolution with the constant value from shifting the density

profile vanishes due to bub
i ðkr ¼ 0Þ ¼ 0. The convolution integrals of

the Helmholtz energy density derivatives vF
vna;b

with the weight

functions ua;b
i are computed similarly. If the partial derivatives vF

vna;b

do not vanish, we shift the profile to zero by splitting the partial

derivatives into a r-dependent contribution vFD

vna;b
ðrÞ, vanishing at the

boundary, and the constant value at the boundary vF∞

vna;b
according to

vF
vna;b

ðrÞ¼ vFD

vna;b
ðrÞ þ vF∞

vna;b
(42)

For the scalar terms one obtains

vF
vna

5ua
i ¼

2
r
S I N

�d
vFD

vna
ðkrÞbua

i ðkrÞ kr
�
þ vF∞

vna
bua
i ðkr ¼0Þ

(43)

using the scalar inverse Fourier transform from eq. (A.53). With the
scalar Fourier transform of the partial derivative of the Helmholtz
energy density, eq. (A.52), obtained from

dvF
vna

ðkrÞ¼ 2
kr

S I N

�
vFD

vna
ðrÞ r

�
þ vF∞

vna
dðkrÞ (44)

For the vector-valued derivatives we compute the dot product
dvF
vnb

,bub
i ¼

d
vFD

vnb

����
kr
ekr,bub

i jkrekr þ
vF∞

vnb
jkrdðkrÞekr,bub

i jkrekr

¼
d
vFD

vnb

����
kr

bub
i jkr þ

vF∞

vnb
jkrdðkrÞbub

i jkr
(45)

in Fourier space, the convolution with the constant value from
shifting the density profile vanishes due to bub

i ðkr ¼ 0Þ ¼ 0. The
weight functions, eq. (15), are obtained from

bub
i jkr ðkrÞ¼ � i kr bua

i ðkrÞ (46)

In real space, this results in

vF
vnb

5ub
i ¼

2
r
S I N

�d
vFD

vnb

����
kr

bub
i jkr kr

�
(47)

with the inverse Fourier transform for scalar functions, eq. (A.53).
With the vector-valued Fourier transform, eq. (A.62), of the vector-
valued derivatives obtained from

dvF
vnb

ðkrÞ ¼ ekr
2i
kr

C O S

�
vFD

vnb
jrðrÞ r

�

�ekr
i

pk2r
S I N

�
vFD

vnb
jrðrÞ

�
þ ekr

vF∞

vnb
jkrdðkrÞ

(48)

Combining the above equations for the vector-valued convolu-
tion, we obtain

vF
vnb

5ub
i ¼

2
r
S I N

�
� i kr bua

i ðkrÞ
d
vFD

vnb

����
kr
kr

�
(49)

4. From integral transform to discretized representation

In this section we discuss the transition from continuous inte-
gral transforms to discrete representations of the inhomogeneous
field variables (e.g. ri). For Cartesian coordinates, the fast Fourier
transform is used. For cylindrical coordinates we apply a combi-
nation of the fast Fourier and the fast Hankel transform (from a
combination of fast Abel and fast Fourier transform, appearing as
fast sine and cosine transform). For spherical coordinates the fast
sine and cosine transforms are utilized. Because the weight func-
tions from the weighted density approaches ui are transformed to
Fourier space analytically, we also show the connection of the
r-grid in real space to the k-grid in Fourier space. The fast Fourier,
fast sine and fast cosine transforms are taken from FFTPACK [55,56],
while the fast Abel transform follows Hansen [53] and Hansen and
Law [54], described in detail in Appendix C. Strategies to minimize
Gibbs phenomenon are presented in Appendix E.

4.1. Cartesian grid

For Cartesian coordinates, we use the FFT in each dimension. A
schematic grid is visualized in Fig. 1. FFT algorithms require real
space samples evaluated on an equidistant grid. Even though a
physical problem may be non-periodic in the domain of interest
Lin;z, fast Fourier transformswill treat the considered domain as is it



Fig. 1. Schematic equidistant Cartesian grid with N ¼ 8 grid points and grid spacing Dz.
The partitioned elements represent a discretization used for finite volume methods,
while the function to be transformed is evaluated at the center of those elements zi .
The density profiles are computed on the inner domain Lin;z , while the buffer zones
Lout;z compensate the periodic continuation of the FFT and serve as boundary
conditions.
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was surrounded by infinitely many (i.e. periodic) images of itself. To
suppress the unwanted effect of periodic copies of the regarded
domain, definition of a buffer region Lout;z on each side of the
domain is needed. The two outer buffer regions Lout;z also serve as
constant boundary conditions for the evaluation of the weighted
densities at the boundary. Due to the functional nature of the
problem a buffer domain is required as boundary condition, in
contrast to boundary conditions for functions where information
about a single point is sufficient.
4.1.1. Grid and boundary conditions
We thus consider a grid covering three domains, the two outer

buffer domains with length Lout;z, and the inner domain of interest
with length Lin;z, where the density profiles are iterated. To better
connect this section to the previous one, we remind that the grand
potential functional U is a functional of density profiles frig and a
function of the variables ðfmig;T ;VÞ, whereby the system volume V
is defined by the domain length Lin;z in z-direction. The choice for
the value of the buffer length Lout;z is determined by the influence
length of the weight functions. Here, the weight functions, eq. (6),
have an influence length of Ri. For the hard-sphere fluid as
described with the modified FMT [57,58], two times the influence
length corresponds to the closest approach of two hard spheres of
type i. Because two types of convolutions are computed (one for
computation of the weighted density profiles and one for the
convolution of the reduced Helmholtz energy with the weight
functions), the buffer length Lout;z has to be at least twice the value
of Ri. After each of the two convolutions, a fraction of the buffer
domain with length Ri is tainted due to possible inhomogeneous
boundary conditions and periodic continuation of the FFT, which
leads to the length of the buffer zone, as

Lout;z � max
i

f2RiðTÞg (50)
4.1.2. Discrete representation for FFT algorithm
We now explain the k-grid in Fourier space for the computation

of the weight functions, eqs. (14) and (15). The approach is shown
for one dimension only. Higher dimensions are the result of mul-
tiple consecutive Fourier transforms and can be treated
analogously.

The discrete Fourier transformwith Fourier variable k as used in
FFT algorithms is defined as the following sum
bf k ¼ XN�1

j¼0

fj e
�2pi jk

N with k¼0;/; ðN�1Þ (51)

which transforms a finite series of N equally-spaced samples
zj ¼ j Dz of a function fj into a series of equally-spaced samples of
the function in Fourier space bf k. Index j denotes the discrete grid
points in real space, while k denotes the grid points in Fourier
space.

In comparison, the continuous Fourier transform can be dis-
cretized as well with zj ¼ jDz and f ðzjÞ ¼ fj. The continuous Fourier
transform then leads to a similar equation as the discretization of
the Fourier transform, eq. (51), namely to

bf ðkzÞ¼ ð∞
z¼�∞

f ðzÞ e�2pi zkz dzz
XN�1

j¼0

fj e
�2pi jDzkzDz (52)

where the result is multiplied with Dz compared to the unscaled
version in eq. (51). Comparison of the arguments of the exponential
functions in eqs. (51) and (52) jk

N ¼ jDzkz yields the discretization in
Fourier space, as

kz ¼ k
NDz

¼ k
Ltot;z

with k¼0;/; ðN�1Þ (53)

At first glance, this result differs from the one proposed by
Knepley et al. [1], because we define Ltot;z differently. We evaluate
the function to be transformed at the center of the elements in Fig.1
instead of the edges, as done by Knepley et al. [1], so that the
regarded overall domain for the work of Knepley et al.
ð~Ltot;z ¼ Ltot;z �DzÞ is different to our overall domain length ðLtot;zÞ
for the same number of grid points N and the same discretization
step size Dz. Complex-valued FFT algorithms include negative k-
values as well. For an even number of grid points, the k-vector for
the computation of the discrete representation of the weight
functions, eqs. (14) and (15), is

kz ¼ 1
Ltot;z

�
0;1;/;

�
N
2
�1
�
;

�
�N
2

�
;/; �1

�
(54)

For real-valued FFT algorithms, the k-vector looks differently

kz ¼ 1
Ltot;z

�
0;1;1;2;2;/;

�
N
2

��
(55)

this yields a kz-grid in Fourier space which is used for the analytical
computation of the weight functions bui, eq. (14) and (15). These
weight functions bui are then multiplied in Fourier space with the
FFT output of the function to be convolved, the result of which is
transformed back to real space using the inverse FFT. For higher
dimensions, the k-grid becomes a two- or three-dimensional array,
while kx and ky are constructed equivalently to eq. (54) or eq. (55)
with their respective length scale Ltot;x and Ltot;y. The absolute value
of k is calculated as

jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
(56)

4.2. Cylindrical grid

For cylindrical coordinates, we use the fast Fourier in axial and
the fast Hankel transform (as a combination of fast Abel and fast
sine and cosine transform) in radial direction. The procedure of the
axial direction is equivalent to the approach for Cartesian



Fig. 2. Schematic equidistant radial grid with N ¼ 6 grid points and grid spacing Dr.
The partitioned elements represent a discretization used for finite volume methods,
while the function to be transformed is evaluated at the center of those elements ri .
The density profiles are computed on the inner domain Lin;r , while the buffer zone Ltot;r
serves as boundary condition, where the density profiles rDi go to zero.
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coordinates as described in the previous section, therefore, only the
radial direction is regarded here. A schematic grid is visualized in
Fig. 2. As opposed to the approach of Boţan et al. [18], who
computed discrete Hankel transform on a logarithmic grid, we
adopt the ideas of Hansen [52,53] and Hansen and Law [54], using a
combination of Abel and Fourier transforms, which allows
computation of the Hankel transform on equidistant grids.

4.2.1. Grid and boundary conditions
The radial grid is divided into two domains, the outer domain

with length Lout;r , which is needed as boundary condition for the
evaluation of the weighted densities at the boundary, and the inner
domain with length Lin;r , where the density profiles are iterated.
Due to even and odd continuation of the fast sine and fast cosine
transform, respectively, no boundary domain for r< 0 is needed.
The size of the outer domain Lout;r is determined as described in
section 4.1.1. Therefore, the size of the outer domain is determined
as

Lout;r � max
i

f2RiðTÞg (57)

4.2.2. Discrete representation for FFT and fast hankel transform
algorithms

The k-grid in Fourier space for the computation of the weight
functions, eqs. (14) and (15), is computed as follows. The axial di-
rection is equivalent to the Cartesian grid, eq. (53), whereas for the
radial component the k-values correspond to twice the domain
shown in Fig. 2. Instead of the Fourier, the discrete sine and cosine
transform are used, which exploit symmetry and, therefore, require
only half of the Fourier domain. The length of the whole Fourier
domain in radial direction is ð2Ltot;rÞ. This leads to the following k-
grid for the radial component

kr ¼ k
2NDr

¼ k
2Ltot;r

with k¼0;/; ðN�1Þ (58)

This yields a kr-grid in Fourier space which, together with the
kz-grid, is used for the analytical computation of the weight func-
tions bui, eqs. (14) and (15). These weight functions bui are then
multiplied in Fourier space with the FFT and fast Hankel transform
output of the function to be convolved, and this result can be
transformed back to real space using the inverse FFT and inverse
fast Hankel transform algorithms. For two dimensional problems in
cylindrical coordinates, the k-grid becomes a two-dimensional
array. The absolute value of k is calculated as
jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r þ k2z

q
(59)

In this work, we utilize the projection-slice theorem for the
computation of the Hankel transform, where the Hankel transform
is replaced by

H 0½ f ðrÞ�¼F rA ½f ðrÞ� (60)

a combination of Fourier F and Abel transform A . The algorithm
for computation of the fast Hankel transform is based on work of
Hansen [52] and described in detail in Appendix C. The inverse
transform is computed from a combination of inverse Abel and
inverse Fourier transform, as

H �1
0
�bf ðkrÞ�¼A �1F �1

r
� bf ðkrÞ� (61)

The Abel transform is computed as described in Appendix C. As a
result of rotational symmetry, all density profiles are even with
respect to r ¼ 0. This allows using the cosine instead of the Fourier
transform. Because some calculations require a division by the
radius r, we locate the first grid point at r ¼ Dr

2 . For this grid dis-
tribution, we require the discrete cosine transform II (DC T II)
which is available in FFTPACK as subroutine COSQ1B. More details
on the discrete cosine transform are presented in Appendix D. The
Fourier transform of scalar functions f ðr; zÞ, using the Hankel
transform of zeroth order as in eq. (A.26), is computed from

bf ðkr ; kzÞ¼F z DC T II A ½ f ðr; zÞ� (62)

with the Abel transform A . The inverse transform uses the discrete
cosine transform III (DC T III ¼ DC T �1

II ) which is available in
FFTPACK as subroutine COSQ1F and can be computed via

f ðr; zÞ¼A �1 DC T III F
�1
z
�bf ðkr ; kzÞ� (63)

For vector-valued functions, the Hankel transform of first order
is computed from the zeroth order Hankel transform with eq. (B.3)
from Appendix B, leading to

bf ðkr; kzÞjkr ¼ F zH 1½ f ðr; zÞjr �

¼ F z

�
1

2pkr
DC T IIA

�
f ðr; zÞjr

r
þ vf ðr; zÞjr

vr

��
(64)

The application of this is limited to the radial contribution in eq.

(36), where f ðr; zÞjr ¼ �i vFD

vnb
jrðr; zÞ is an odd function in r. This leads

to the derivative vf ðr;zÞjr
vr being an even function. Even continuation

of the DC T II allows neglecting the odd contribution f ðr;zÞjr
r , which

leads to the simpler form

bf ðkr ; kzÞjkr ¼F z

�
1

2pkr
DC T IIA

�
vf ðr; zÞjr

vr

��
(65)

The derivative vf ðr;zÞ
vr can be approximated using central differ-

ences with vanishing boundary conditions from

vf
�
z; rðnÞ

�
vr

z
f
�
rðnþ1Þ; z

�� f
�
rðn�1Þ; z

�
rðnþ1Þ � rðn�1Þ (66)

The inverse transform is computed similarly, according to



Fig. 4. Shift of indices to match DS T II and DC T II to D S T III . Filled spheres
represent the k-grid of the respective forward (red) and inverse (blue) transform.

Fig. 5. Shift of indices to match DS T II and DC T III to DS T II . Filled spheres
represent the k-grid of the respective forward (red) and inverse (blue) transform.
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f ðr; zÞjr ¼ H �1
1 F �1

z
�bf ðkr ; kzÞjkr �

¼ 1
r
H �1

0

"
F �1

z
�bf ðkr; kzÞjkr �
2pkr

þ vF �1
z
�bf ðkr ; kzÞjkr �
vkr

#

¼ 1
r
A �1F �1

r

"
F �1

z
�bf ðkr; kzÞjkr �
2pkr

þ vF �1
z
�bf ðkr ; kzÞjkr �
vkr

#
(67)

The derivative in the second term of eq. (67) can be replaced
using the identity

F �1
r

�
vbgðkr; zÞ

vkr
i
�
¼2prF �1

r ½bgðkr; zÞ� (68)

with bgðkr; zÞ ¼ F �1
z ½bf ðkr; kzÞjkr �. This is applied to eq. (29) where

bgðkr; zÞ is a real even function in kr , making
�
vbgðkr ;zÞ

vkr
i
�

purely

imaginary and odd in kr . The purely imaginary and odd inverse

Fourier transform F �1
r

�
vbgðkr ;zÞ

vkr
i
�
can, therefore, be replaced by the

sine transform 2prD S T III½bgðkr; zÞ�. The first term in eq. (67)
transforms an even function and allows for replacing the Fourier
transform F �1

r with the DC T III, according to

f ðr; zÞjr ¼ 1
r
A �1

"
DC T IIIF

�1
z

"bf ðkr; kzÞjkr
2pkr

#

þ2prD S T IIIF
�1
z

hbf ðkr; kzÞjkrii
(69)

Equation (65) with eq. (66) and (69) are our final equations for
the forward and inverse transform in radial direction, respectively.

Here we require the discrete sine transform III (D S T III) which
is available in FFTPACK as subroutine SINQ1F. The grid for the
D S T III algorithm has to be shifted in Fourier space. The proced-
ure is described in section 4.3.2 and visualized in Fig. 5. More details
on the discrete sine and cosine transform are presented in
Appendix D.
4.3. Spherical grid

In spherical coordinates we only consider one-dimensional
problems, where angular symmetry exists. We use the fast sine
Fig. 3. Schematic equidistant spherical grid with N ¼ 6 grid points and grid spacing Dr.
The partitioned elements represent a discretization used for finite volume methods,
while the function to be transformed is evaluated at the center of those elements ri .
The density profiles are computed on the inner domain Lin, while the buffer zone Lout
compensates for periodic continuation of the fast sine and cosine transform, and serves
as boundary condition, where the density profiles rDi go to zero.
and fast cosine transform. A schematic grid is visualized in Fig. 3.
Fast sine and cosine transform algorithms require real space sam-
ples evaluated on an equidistant grid.

4.3.1. Grid and boundary conditions
Similar to cylindrical coordinates, no boundary domain for r<0

is needed, because the used algorithms for the discrete sine and
cosine transform assume odd and even continuation, respectively,
which can be exploited here due to spherical symmetry re-
quirements. The size of the outer domain Lout is determined as
described in section 4.1.1. Therefore, the size of the outer domain is
determined as

Lout � max
i

f2RiðTÞg (70)

4.3.2. Discrete representation for sine and cosine transform
algorithms

The k-grid in Fourier space for the computation of the weight
functions, eqs. (14) and (15), is computed as follows. The discrete
sine and cosine transform are recovered by discretization of the
derived Fourier transform in spherical coordinates. There are four
relevant variants of the sine and cosine transform, eachwith a set of
different boundary conditions and discretization schemes. Due to
the singularity at the origin in spherical coordinates, we locate the
first grid point at r ¼ Dr

2 . For this grid distribution, we need the
discrete sine transform II (DS T II), according to

bf k� ¼ XN�1

j¼0

fjsin
�
p

N

�
jþ 1

2

��
k� þ 1

��
with k� ¼ 0;/; ðN � 1Þ

(71)

which is available in FFTPACK as subroutine SINQ1B. More details on
the discrete sine transform are presented in Appendix D. The iter-
ation variable k� does not represent the true Fourier variable k,
which for the DS T II is obtained from k ¼ k� þ 1.



R. Stierle et al. / Fluid Phase Equilibria 504 (2020) 11230610
The matching discrete cosine transform is the DC T II,
computed as

bf k ¼ XN�1

j¼0

fjcos
�
p

N

�
jþ 1

2

�
k
�

with k ¼ 0;/; ðN � 1Þ
(72)

which is available in FFTPACK as subroutine COSQ1B. More details
on the discrete cosine transform are presented in Appendix D. Both
transforms transform a finite series of equally-spaced samples zj ¼
1
N

�
jþ1

2

�
of a function fj into a series of equal length in Fourier space

bf k. The index j denotes the discrete grid points in real space, while k
denotes the grid points in Fourier space.

For both transforms, indices k and k� run from 0;/; ðN�1Þ in
Fourier space, but the D S T II treats the point k ¼ 0 implicitly asbf D S T

k¼0 ¼ 0, while the DC T II treats the value bf DC T

k¼0 explicitly. In
contrast, the DC T II does not provide a value for k ¼ N, while the
DS T II does (as k� ¼ N� 1). Because the transformation to Fourier
space in eqs. (41) and (48) requires f ðrÞ to be multiplied with r, the
argument of the sine and cosine transform are always zero at r ¼ 0,

which leads to bf DC T

k¼0 ¼ 0.
For the computation of eq. (48) a combination of DS T II and

DC T II is needed. Because the inverse transform, eq. (47), uses

solely the DS T III the value bf DC T

k¼0 ¼ 0 can be neglected, but the
value for k ¼ N (or k� ¼ N� 1) for the DS T III has to be added:bf D S T

k¼N ¼ 0. This approach is not exact, but a reasonable approxi-

mation as bf DC T

k/∞ /0 for smooth functions and appropriate number
of grid points. This procedure is necessary to match the different k-
values of theDS T II,DC T II andD S T III. The shifting of indices
is visualized in Fig. 4.

The inverse of the DS T II and DC T II are the DS T III and
DC T III, respectively. The DS T III is available from FFTPACK as
subroutine SINQ1F andDC T III as subroutine COSQ1F. Again, the k-
values of theDS T III andDC T III do not match. For computation
of eq. (41), a function in Fourier space as result of a D S T II is
transformed back to real space using the D S T III and DC T III.
The D S T III can be performed immediately. For the inverse

transform using the DC T III, the exact value bf DC T

k¼0 ¼ 0 has to be

added. Therefore, bf DS T

k¼N is disregarded, which has negligible effect

as bf DC T

k/∞ /0 for smooth functions and appropriate number of grid
points. The shifting of indices is visualized in Fig. 5.

For computation of the appropriate discrete k-grid, the analyt-

ical sine transform can be discretized with rj ¼
�
jþ1

2

�
Dz and

f ðrjÞ ¼ fj. This leads to a similar equation as the discrete sine
transform, eq. (71), according to

bf ðkrÞ ¼
ð∞

r¼0

f ðrÞsinð2prkrÞ dr

z
PN�1

j¼0
fjsin

�
2p
�
jþ 1

2

�
Drkr

�
Dr

(73)

Comparison of the arguments of the sine functions in eqs. (72)

and (73), p
N

�
jþ1

2

��
k� þ1Þ ¼ 2p

�
jþ1

2

�
Drkr yields the discretiza-

tion in Fourier space, according to
kr ¼ k� þ 1
2NDz

¼ k� þ 1
2Ltot

with k� ¼0;/; ðN�1Þ (74)

In contrast to eq. (53), we divide by ð2LtotÞ, because theD S T II
assumes odd continuation by considering only half of the domain
compared to the corresponding Fourier transform. For N grid
points, the k-vector for the computation of the discrete represen-
tation of the weight functions, eqs. (14) and (15), is

kDS T
r ¼ 1

2Ltot
½1;/;N� (75)

while the same approach leads to a k-vector for the DC T II, ac-
cording to

kDC T
r ¼ 1

2Ltot
½0;/; ðN�1Þ� (76)

this yields a kr-grid in Fourier space which is used for the analytical
computation of the weight functions bui, eqs. (14) and (15). These
weight functions bui are then multiplied in Fourier space with the
DS T II andDC T II output of the function to be convolved, while
this result can be directly transformed back to real space using the
DS T III and DC T III algorithms.
5. Performance analysis of FFT convolution

To compare the efficiency of convolution algorithms using fast
Fourier or similar transforms (i.e. discrete sine, cosine and Abel
transforms), we compare the performance of one-dimensional FFT
convolutions, computed via

r5u¼F �1
z ½F z½rðzÞ�buðkzÞ� (77)

with three real space convolution algorithms. We adapt the nota-
tion of the weighted densities defined in eq. (5).

The first real space convolution algorithm, hereafter referred to
as naïve convolution, approximates the convolution integral of a
density profile r with the weight function u (each with N dis-
cretization points) over thewhole discrete domain, where the value
for the i-th element of the discrete sequence is computed according
to Ref. [59].

ðr5uÞi ¼
1
N

XN�1

k¼0

ukri�k ci (78)

The second real space algorithm, referred to as compact
convolution, exploits the fact that weight functions are nonzero on
a finite domain. As a consequence, the sequence for the weight
function is shorter (lengthM<N) than the sequence for the density
profile. Therefore, the value for the i-th element is computed as

ðr5uÞi ¼
1
M

XM�1
2

k¼�M�1
2

ukri�k ci (79)

with the number of discretization points M2f2nþ1
��n2Nþg for

the weight function, which is always an odd number due to the
symmetry of the weight function.

The third real space algorithm uses dense matrix multiplication

r5u ¼ ur (80)

with the convolution matrix u and the density profile vector r.
Fig. 6 depicts the computing time for one convolution using the



Fig. 6. Comparison of computing time t for one convolution using Fourier space, naïve,
compact and matrix multiplication convolution, eqs. (77)e(80) respectively, for
different number of grid points N, including scaling behavior O . Length of the inner
domain is Lin;z ¼ 100�A and the radius for convolution is R ¼ 1:8�A.
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four algorithms defined in eqs. (77)e(80) with respect to the
number of spatial discretization points N. Additionally, scaling
behavior O of the used algorithms is presented (non-continuous
lines).

For small system sizes N, convolutions with convolution
matrices perform best, while computing times for naïve, compact
and FFT convolutions are higher (staying in the same order of
magnitude). For N ¼ 214, the scaling behavior of the FFT, O ðNlogNÞ,
renders the FFT convolution at least one order of magnitude faster
than the remaining algorithms. For a large number of discretization
points, convolutions using a matrix product, eq. (80), take the
longest, while naïve convolutions, eq. (78), compute faster; both
scaling with O ðN2Þ. Compact convolutions, eq. (79), scale better
with respect to approximately O ðN1:5Þ, making this convolution
algorithm for large systems superior to the matrix product and
naïve approach. FFT convolutions, eq. (77), scale best for large
systems (here N ¼ 214) according to O ðNlogNÞ, performing at least
one order of magnitude better than the remaining algorithms. Even
for typical number of discretization points N ¼ 210 ¼ 1024 convo-
lution algorithms exploiting fast Fourier or similar transforms
perform best among the four considered numerical convolution
approaches.

To summarize, convolution algorithms exploiting fast Fourier or
similar transforms perform best for relevant systems among the
four considered numerical convolution approaches.

6. Conclusion

This work serves as a guide on efficient numerical imple-
mentations of classical DFT methods in Cartesian, cylindrical and
spherical coordinates using the convolution theorem of the Fourier
transform. Applied to Helmholtz energy functionals expressed in
terms of weighted densities, this allows for fast and easy DFT cal-
culations using off-the-shelf algorithms: fast Fourier, Hankel, sine
and cosine transforms. Especially for two- and three-dimensional
problems, using Fourier space convolution simplifies computation
of multi-dimensional convolution integrals compared to real space
methods. The main text describes scalar-valued and vector-valued
weighted densities that appear with FMT. The equations for a
Helmholtz energy functional based on the perturbed-chain statis-
tical associating fluid theory are explicitly written out in the Sup-
porting Information.
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Appendix A. Fourier Transform for Calculation of
Convolution Integrals

All convolution integrals occurring throughout this work are
convolutions of either a functional derivative of the Helmholtz
energy, or a density, with a suitable weight function u. These
convolution integrals can be calculated efficiently using fast Fourier
transform algorithms. In this appendix, the Fourier transform F
and its inverse F �1 in different coordinate systems are derived in
pedagogical detail.

In Cartesian coordinates the standard fast Fourier transform can
be used for all directions (for 1-D, 2-D and 3-D systems). For cy-
lindrical coordinates, rotational symmetry (2-D) can be exploited,
such that one can use the standard fast Fourier transform for the
axial direction and the fast Hankel transform (of order 0 and 1 for
scalar and vector weighted functions, respectively) for the radial
direction. In cylindrical coordinates (1-D), only fast Hankel trans-
forms are used. For spherically symmetric systems (1-D), fast sine/
cosine transforms are used for the calculation of the Fourier and the
inverse Fourier transform.

In the following, we lay out the details of how to compute the
Fourier and inverse Fourier transform for Cartesian (1-D, 2-D & 3-
D), cylindrical (2-D), cylindrical and spherical (1-D) coordinates.
Detailed derivations are presented to show consistency of the
approach and facilitate own implementations of DFT methods. The
Fourier and inverse Fourier transform are defined as

bfðkÞ¼ ðfðrÞe�2pi r$k dr (A.1)

fðrÞ¼
ð bfðkÞe2pi r$k dk (A.2)

with f as the function to be transformed, the imaginary unit i, and
the position vector in real and Fourier space r and k, respectively.
Here, r$k stands for the dot product of two vectors, and the
circumflex ^ indicates the function being considered in Fourier
space. By exploiting symmetry in the appropriate coordinate sys-
tem, the Fourier transform from eq. (A.1) can be used for the
derivation of the appropriate integral transform. In the following,
integral transforms for Cartesian, cylindrical and spherical co-
ordinates are calculated for scalar and vector-valued functions
f ¼ ff ; fg, respectively.

A.1. Cartesian Coordinates

The Fourier transform is formulated in Cartesian coordinates,
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therefore, the Cartesian vectors are used for the dot product of r and
k, leading to

r $k¼
0@ x

y
z

1A $

0@ kx
ky
kz

1A¼ xkx þ yky þ zkz (A.3)

and the volume integral in eq. (A.1) simplifies to a triple integral
with volume element dr ¼ dx dy dz, leading to

bf�kx; ky; kz� ¼
ð∞

z¼�∞

ð∞
y¼�∞

ð∞
x¼�∞

fðx; y; zÞe�2pi xkx dx

�e�2pi yky dy e�2pi zkz dz
¼ F xF yF z½fðx; y; zÞ�

(A.4)

The inverse Fourier transform is computed similarly, according
to

fðx; y; zÞ ¼
ð∞

kz¼�∞

ð∞
ky¼�∞

ð∞
kx¼�∞

bf�kx; ky; kz�e2pi xkx dkx
�e2pi yky dky e2pi zkz dkz

¼ F �1
x F �1

y F �1
z
�bf�kx; ky; kz��

(A.5)
A.1.1. Fourier Transform of Scalar Quantities
The x-, y- and z-direction of the Fourier transform can be

separated according to

bf �kx; ky; kz�¼F xF yF z½f ðx; y; zÞ� (A.6)

Yielding a Fourier transform in each direction.
A.1.2. Inverse Fourier Transform of Scalar Quantities
The inverse transform can be treated analogously, leading to

f ðx; y; zÞ¼F �1
x F �1

y F �1
z
�bf �kx; ky; kz�� (A.7)
A.1.3. Fourier Transform of Vector Quantities
The Fourier transform of vector quantities is performed by

splitting the vector into its different contributions depending on
the underlying coordinate system. For the case of Cartesian unit
vectors.

ex ¼
0@1

0
0

1A; ey ¼
0@0

1
0

1A; ez ¼
0@0

0
1

1A (A.8)

The vector-valued function f can be represented according to

fðx; y; zÞ¼
0@ fx

fy
fz

1A¼ fxex þ fyey þ fzez (A.9)

Although this detailed treatment may not be necessary here, we
include it nonetheless, as it will help to understand the forth-
coming treatment in cylindrical and spherical coordinates. The
Fourier transform of f is calculated via
bf�kx; ky; kz� ¼
ð∞

z¼�∞

ð∞
y¼�∞

ð∞
x¼�∞

0@ fxðx; y; zÞ
fyðx; y; zÞ
fzðx; y; zÞ

1A
�e�2pi xkx dx e�2pi yky dy e�2pi zkz dz

(A.10)

Or element-wise, as

bf�kx; ky; kz�¼
0B@
bf kx�kx; ky; kz�bf ky�kx; ky; kz�bf kz�kx; ky; kz�

1CA¼

0B@ F xF yF z½fxðx; y; zÞ�
F xF yF z

h
fyðx; y; zÞ

i
F xF yF z½fzðx; y; zÞ�

1CA
(A.11)

Each of the elements of the vector-valued function can be
transformed to Fourier space individually and, just as for scalar-
valued functions, can be transformed for every direction separately.
A.1.4. Inverse Fourier Transform of Vector Quantities
Treatment of the inverse transform of a vector quantity is

analogous to the treatment laid out in the previous section, i.e. with
the Cartesian unit vectors in Fourier space

ekx ¼
0@1

0
0

1A; eky ¼
0@0

1
0

1A; ekz ¼
0@0

0
1

1A (A.12)

the vector-valued function bf can be represented according to

bf�kx; ky; kz�¼
0B@
bf kxbf kybf kz
1CA¼bf kxekx þbf kyeky þ bf kzekz (A.13)

The inverse Fourier transform of bf is calculated as

fðx; y; zÞ ¼
ð∞

kz¼�∞

ð∞
ky¼�∞

ð∞
kx¼�∞

0BB@
bf kx�kx; ky; kz�bf ky�kx; ky; kz�bf kz�kx; ky; kz�

1CCA
�e2pi xkx dkx e2pi yky dky e2pi zkz dkz

¼

0B@ fxðx; y; zÞ
fyðx; y; zÞ
fzð; y; zÞ

1CA

¼

0BBBBB@
F �1

x F �1
y F �1

z
�bf kx�kx; ky; kz��

F �1
x F �1

y F �1
z

hbf ky�kx; ky; kz�i
F �1

x F �1
y F �1

z
�bf kz�kx; ky; kz��

1CCCCCA

(A.14)

Each of the elements of the vector-valued function can be
transformed to Fourier space individually and, just as for scalar-
valued functions, can be transformed for every direction
consecutively.
A.1.5. Treatment of 1-D & 2-D Cartesian Coordinates
Fourier transform of 1-D or 2-D Cartesian coordinates can be

understood as a subset of the 3-D Fourier transform. The dot
product in eq. (A.3) for one dimension in x-direction is r$k ¼ xkx.
This simplifies the Fourier, eq. (A.4), and inverse Fourier transform,
eq. (A.5), to bfðkxÞ ¼ F x½fðxÞ� and fðxÞ ¼ F �1

x ½bfðkxÞ�, respectively.
The Fourier and its inverse transform of a scalar quantity result in
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bf ðkxÞ¼F x½f ðxÞ� (A.15)

f ðxÞ¼F �1
x
�bf ðkxÞ� (A.16)

For a vector quantity, the Fourier and its inverse transform yield

bfðkxÞ¼F x½fxðxÞ� (A.17)

fðxÞ¼F �1
x
�bf kxðkxÞ� (A.18)

2-D Cartesian coordinates are the consequence of disregarding
one dimension from the general 3-D case.
A.2. Cylindrical Coordinates

In cylindrical coordinates, the dot product r$k is calculated as

r$k ¼
0@ r cos f

r sin f

z

1A$

0@ kr coskf
kr sinkf

kz

1A (A.19)

with the radial coordinate r and kr in the polar plane, the
azimuthal angle f and kf, and the axial direction z and kz, in
real and Fourier space, respectively. The identity
cos f coskf þ sin f sinkf ¼ cosðf� kfÞ ¼ cosðkf � fÞ simplifies eq.
(A.19) to

r$k ¼ rkrcosfþ zkz (A.20)

where we chose a k-vector parallel to the kx-axis in Fourier space
which implies kf ¼ 0. With the volume element dr ¼ r df dr dz,
and the result of eq. (A.20), the Fourier transform from eq. (A.1) can
be written as

bfðkr; kzÞ ¼ ð∞
z¼�∞

ð∞
r¼0

fðr; zÞ
ð2p

f¼0

e�2pi rkrcosf df r dr e�2pi zkz dz

(A.21)

The inverse Fourier transform can be computed analogously,
leading to

fðr; zÞ ¼
ð∞

kz¼�∞

ð∞
kr¼0

fðkr; kzÞ
ð2p

kf¼0

e2pi rkrcoskf dkf kr dkr e2pi zkz dkz

(A.22)
A.2.1. Cylindrical Fourier Transform of Scalar Quantities
We consider cases of rotational symmetry, where the integral in

eq. (A.21) simplifies through integration. With the definition of the
Bessel function of first kind and zeroth order

J0ðxÞ ¼
1
2p

ð2p
f¼0

ei xcosf df (A.23)

with dummy variable x and the identity J0ð� xÞ ¼ J0ðxÞ, the Fourier
transform from eq. (A.1) simplifies to
bf ðkr ; kzÞ¼ ð∞
z¼�∞

2p
ð∞

r¼0

f ðr; zÞrJ0ð2prkrÞ dr e�2pi zkz dz (A.24)

The integration over the r-coordinate can be performed using
the Hankel transform H , which for order n is defined as

H n½f ðrÞ� ¼2p
ð∞
0

f ðrÞrJnð2prkrÞ dr (A.25)

With the Bessel function of first kind and n-th order Jn. Per-
forming the integration over z using the Fourier transform F z, the
Fourier transform of f ðr; zÞ follows as

bf ðkr ; kzÞ¼F zH 0½f ðr; zÞ� (A.26)

A.2.2. Cylindrical Inverse Fourier Transform of Scalar Quantities
Because the Bessel function of first kind and zeroth order is even

J0ðxÞ ¼ J0ð� xÞ, the inverse Fourier transform bf ðkr ; kzÞ can be
computed analogous to the previous section as

f ðr; zÞ¼F �1
z H �1

0
�bf ðkr; kzÞ� (A.27)

with the inverse Hankel transform H �1
n of order n of the

kr-coordinate as

H �1
n

�bf ðkrÞ�¼2p
ð∞
0

bf ðkrÞkrJnð2prkrÞ dkr (A.28)

and the inverse Fourier transform F �1
z of the kz-coordinate.

A.2.3. Cylindrical Fourier Transform of Vector Quantities
Analogous to Appendix A.1.3, the Fourier transform of vector

quantities in cylindrical coordinates is performed by splitting the
vector into its different contributions: radial fr , azimuthal ff and
axial fz, with their respective unit vectors, according to

er ¼
0@ cos f

sin f

0

1A; ef ¼
0@�sin f

cos f
0

1A; ez ¼
0@0

0
1

1A (A.29)

These unit vectors are defined in a Cartesian frame of reference,
which allows the Fourier transforms to be treated analogously to
the above regarded case in Cartesian coordinates. The vector
quantity can then be decomposed into three parts, as

fðr;f; zÞ ¼ frer þ ffef þ fzez (A.30)

However, due to rotational symmetry f is only a function of the
radius r and the axial coordinate z, whereas the azimuthal contri-
bution equals zero, ff ¼ 0, leading to

fðr;f; zÞ ¼ fr

0@ cos f
sin f

0

1Aþ fz

0@0
0
1

1A (A.31)

The Fourier transform of f is then calculated as

bfðkr; kzÞ ¼
ð∞

z¼�∞

ð∞
r¼0

ð2p
4¼0

0@ frðr; zÞcos 4
frðr; zÞsin 4

fzðr; zÞ

1A
�e�2pi rkr cos 4 d4 r dr e�2pi zkz dz

(A.32)

With the definition of Bessel's first integral of order n for Bessel
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functions of first kind

JnðxÞ ¼
1

2pi n

ð2p
f¼0

ei x cos f cosðnfÞ df (A.33)

eq. (A.32) simplifies to

bfðkr; kzÞ ¼
ð∞

z¼�∞

2p
ð∞

r¼0

0@�i frðr; zÞJ1ð2prkrÞ
0

fzðr; zÞJ0ð2prkrÞ

1A
�r dr e�2pi zkz dz

(A.34)

after utilization of J0ð�xÞ ¼ J0ðxÞ and J1ð� xÞ ¼ � J1ðxÞ. Finally,
the Hankel transform, eq. (A.25), and the Fourier transform can be
exploited, leading to

bfðkr; kzÞ ¼
ð∞

z¼�∞

0@H 1½ � i frðr; zÞ�
0

H 0½ fzðr; zÞ�

1Ae�2pi zkz dz

¼
0@F zH 1½ � i frðr; zÞ�

0
F zH 0½ fzðr; zÞ�

1A (A.35)

A.2.4. Cylindrical Inverse Fourier Transform of Vector Quantities
Treatment of the inverse transform of a vector quantity is

analogous to the treatment laid out in the previous section, i.e. with
the unit vectors in cylindrical coordinates in Fourier space

ekr ¼
0@ coskf

sinkf
0

1A; ekf ¼
0@�sinkf

coskf
0

1A; ekz ¼
0@0

0
1

1A (A.36)

The vector-valued function bf can be represented according to

bfðkr; kf; kzÞ ¼ bf krekr þ bf kfekf þ bf kzekz (A.37)

Due to rotational symmetry bf is only a function of the radius kr
and the axial coordinate kz (the azimuthal contribution equals zero,bf kf ¼ 0), this leads to

bfðkr; kf; kzÞ ¼ bf kr
0@ coskf

sinkf
0

1Aþ bf kz
0@0

0
1

1A (A.38)

Applying the inverse Fourier transform yields

fðr; zÞ ¼
ð∞

kz¼�∞

ð∞
kr¼0

ð2p
k4¼0

0B@bf kr ðkr; kzÞcosk4bf kr ðkr; kzÞsink4bf kzðkr; kzÞ
1CA

�e2pi rkrcosk4 dk4 kr dkre2pi zkz dkz

(A.39)

With the definition of Bessel's first integral of order n for Bessel
functions of first kind and zeroth J0 and first order J1.

JnðxÞ ¼
1

2pi n

ð2p
kf¼0

ei xcosðkfÞ cosðnkfÞ dkf (A.40)

eq. (A.39) simplifies to

fðr; zÞ ¼
ð∞

kz¼�∞

2p
ð∞

kr¼0

0@ i bf kr ðkr; kzÞJ1ð2prkrÞ
0bf kzðkr; kzÞJ0ð2prkrÞ

1A
�kr dkr e2pi zkz dkz

(A.41)
Finally, the Hankel transform, eq. (A.25), and the inverse Fourier
transform can be exploited, leading to

fðr; zÞ ¼
ð∞

kz¼�∞

0BBBB@
H �1

1
�
i bf kr ðkr; kzÞ�

0

H �1
0
�bf kzðkr; kzÞ�

1CCCCAe2pi zkz dkz

¼

0BBBB@
F �1

z H �1
1
�
i bf kr ðkr; kzÞ�
0

F �1
z H �1

0
�bf kzðkr; kzÞ�

1CCCCA
(A.42)

Note the different sign in the radial component compared to eq.
(A.35), this is due to J1 being an odd function.
A.2.5. Treatment of 1-D Cylindrical Coordinates
Fourier transform of one dimension in cylindrical coordinates

can be understood as a subset of the two dimensional Fourier
transform in cylindrical coordinates. The dot product in eq. (A.20)
simplifies for one dimension to r$k ¼ rkrcosf. This simplifies the
Fourier, eq. (A.21), and inverse Fourier transform, eq. (A.22). The
Fourier and its inverse transform of a scalar quantity result in

bf ðkrÞ¼H 0½f ðrÞ� (A.43)

f ðrÞ¼H �1
0
�bf ðkrÞ� (A.44)

For a vector quantity, the Fourier and its inverse transform yield

bfðkrÞ¼H 1½ � i frðrÞ� (A.45)

fðrÞ¼H �1
1
�
i bf kr ðkrÞ� (A.46)
A.3. Spherical Coordinates

For spherical coordinates, r$k can be written as

r$k ¼
0@ r cos f sin w

r sin f sin w

r cos w

1A$

0@ kr coskf sinkw
kr sinkf sinkw

kr coskw

1A (A.47)

with radial coordinate r and kr , azimuthal angle f and kf, and
polar angle w and kw, in real and Fourier space, respectively. We
limit consideration to cases of rotational symmetry. Spherical
symmetry can be exploited utilizing the identity
coswcoskw þ sinwsinkw ¼ cosðw�kwÞ ¼ cosðkw �wÞ and choosing a
k-vector parallel to the kz-axis in Fourier space with k ¼ ð0;0; kÞu
which implies kw ¼ 0. This simplifies the dot product r$k in eq.
(A.47) to

r $k ¼ rkr cos w (A.48)

With the volume element dr ¼ r2sinw df dw dr, and the result
of eq. (A.48), the Fourier transform, eq. (A.1), is calculated according
to

bfðkrÞ ¼ ð∞
r¼0

ðp
w¼0

ð2p
f¼0

fðrÞe�2pi rkrcoswr2sinw df dw dr (A.49)

The inverse Fourier transform can be computed analogously, as



R. Stierle et al. / Fluid Phase Equilibria 504 (2020) 112306 15
fðrÞ ¼
ð∞

kr¼0

ðp
kw¼0

ð2p
kf¼0

bfðkrÞe2pi rkrcoskwk2r sinkw dkf dkw dkr

(A.50)
A.3.1. Spherical Fourier Transform of Scalar Quantities
Due to spherical symmetry, the integral in eq. (A.49) simplifies

through integration. Integration over f yields
R 2p
0 df ¼ 2p. Via

substitution we can integrate over w with u ¼ cosw and du ¼ �
sinw dw, leading to

bf ðkrÞ ¼ �2p
ð∞

r¼0

ð�1

u¼1

f ðrÞe�2pi rkrur2 du dr

¼
ð∞

r¼0

f ðrÞ e
2pi rkr � e�2pi rkr

i rkr
r2 dr

(A.51)

Using Euler's formula yields

bf ðkrÞ¼ 2
kr

ð∞
r¼0

f ðrÞrsinð2prkrÞ dr≡2
kr

S I N ½ f ðrÞr� (A.52)

with the definition of the sine transform S I N . The Fourier
transform for spherically symmetric systems simplifies to the sine
transform.
A.3.2. Spherical Inverse Fourier Transform of Scalar Quantities
Treatment of the inverse transform, eq. (A.50), is analogous to

the treatment laid out in the previous section, i.e.

f ðrÞ¼2
r

ð∞
kr¼0

bf ðkrÞkrsinð2prkrÞ dkr≡2r S I N
�bf ðkrÞkr� (A.53)

with the self-inverse sine transform S I N .
A.3.3. Spherical Fourier Transform of Vector Quantities
Analogous to Appendices A.1.3 and A.2.3, the Fourier transform

of vector quantities in spherical coordinates is performed by
separating the vector into different contributions: radial fr , polar fw,
and azimuthal ff, with their respective unit vectors, according to

er ¼
0@ cos f sin w

sin f sin w

cos w

1A; ew ¼
0@ cos f cos w

sin f cos w
�sin w

1A; ef ¼
0@�sin f

cos f
0

1A
(A.54)

fðr;w;fÞ ¼ frer þ fwew þ ffef (A.55)

However, due to spherical symmetry f is only a function of the
radius r ¼ jrj. Therefore, both other contributions equal zero,
fw ¼ 0 ¼ ff, leading to

fðr;w;fÞ ¼ fr

0@ cos f sin w

sin f sin w

cos w

1A (A.56)

The Fourier transform of f then yields
bfðkrÞ ¼ ð∞
r¼0

ðp
w¼0

ð2p
f¼0

0@ frðrÞcos f sin w

frðrÞsin f sin w

frðrÞcos w

1A
�e�2pi rkrcoswr2 sin w df dw dr

(A.57)

Performing the integration over f leads to vanishing contribu-
tions for the first and second vector entry due to

R 2p
f¼0 cosðfÞ df ¼ 0

and
R 2p
f¼0sinðfÞ df ¼ 0. As a result, we only regard the z-direction,

leading to

bfðkrÞ¼ ð∞
r¼0

ðp
w¼0

frðrÞ
0@ 0

0
2p cos w

1Ae�2pi rkr cos wr2sinw dw dr

(A.58)

With ð0;0;2pcosðwÞÞu ¼ 2pcosðwÞez, eq. (A.58) yields

bfðkrÞ¼ ez
ð∞

r¼0

ðp
w¼0

frðrÞ2p cos w e�2pi rkrcoswr2 sin w dw dr

(A.59)

Integration over w is carried out using the substitution u ¼ cosw
and du ¼ �sinw dw followed by partial integration, leading to

bfðkrÞ ¼ �ez
ð∞

r¼0

ð�1

u¼1

frðrÞ2pue�2pi rkrur2 du dr

¼ �ez
ð∞

r¼0

frðrÞ
 
e2pi rkr þ e�2pi rkr

i rkr
þ e�2pi rkr � e2pi rkr

2pði rkrÞ2

!
r2 dr

(A.60)

Using Euler's formula gives

bfðkrÞ ¼ ez
2i
kr

ð∞
r¼0

frðrÞrcosð2prkrÞ dr

�ez
i

pk2r

ð∞
r¼0

frðrÞsinð2prkrÞ dr

(A.61)

Due to alignment of vector k in Fourier space with ez, implying
ez ¼ ekr we obtain a combination of sine (S I N ) and cosine
transform (C O S ), according to

bfðkrÞ¼ ekr
2i
kr

C O S ½ frðrÞr� � ekr
i

pk2r
S I N ½ frðrÞ� (A.62)

A.3.4. Spherical Inverse Fourier Transform of Vector Quantities
Treatment of the inverse transform of a vector quantity is similar

to the treatment in the previous section, i.e. with the unit vectors in
spherical coordinates in Fourier space

ekr ¼
0@ coskf sinkw

sinkf sinkw
coskw

1A; ekw ¼
0@ coskf coskw

sinkf coskw
�sinkw

1A; ekf ¼
0@�sinkf

coskf
0

1A
(A.63)

the vector-valued function bf can be represented according to

bfðkr; kw; kfÞ ¼ fkrekr þ fkwekw þ fkfekf (A.64)
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Due to spherical symmetry bf is only a function of the radius kr ¼
jkj. Therefore, all other contributions besides the radial one equal
zero, leading to

bfðkr; kw; kfÞ ¼ fkr

0@ coskf sinkw
sinkf sinkw

coskw

1A (A.65)

Applying the inverse Fourier transform yields

fðrÞ ¼
ð∞

kr¼0

ðp
kw¼0

ð2p
k4¼0

0BB@
bf kr ðkrÞcosk4 sinkwbf kr ðkrÞsink4 sinkwbf kr ðkrÞcoskw

1CCA
�e2pi rkrcoskwk2r sinkw dk4 dkw dkr

(A.66)

Performing the integration over kf leads to vanishing contri-
butions for the first and second vector entry due toR 2p
kf¼0 coskf dkf ¼ 0 and

R 2p
kf¼0 sinkf dkf ¼ 0. As a result, we only

regard the z-direction, leading to

fðrÞ¼
ð∞

kr¼0

ðp
kw¼0

bf kr ðkrÞ
0@ 0

0
2p coskw

1Ae2pi rkr coskwk2r sinkw dkw dkr

(A.67)

With ð0;0;2pcoskwÞu ¼ 2pcoskwekz , eq. (A.67) yields

fðrÞ¼ ekz

ð∞
kr¼0

ðp
kw¼0

bf kr ðkrÞ2p coskwe2pi rkrcoskwk
2
r sinkw dkw dkr

(A.68)

Integration over kw is carried out using the substitution u ¼
coskw and du ¼ �sinkw dw followed by partial integration, leading
to

fðrÞ ¼ �ekz

ð∞
kr¼0

ð�1

u¼1

bf kr ðkrÞ2pue2pi rkruk2r du dkr

¼ ekz

ð∞
kr¼0

bf kr ðkrÞ
 
e�2pi rkr þ e2pi rkr

i rkr
þ e�2pi rkr � e2pi rkr

2pði rkrÞ2
!
k2r dkr

(A.69)

Using Euler's formula yields

fðrÞ ¼ ekz
i

pr2

ð∞
kr¼0

bf kr ðkrÞsinð2prkrÞ dkr
�ekz

2i
r

ð∞
kr¼0

bf kr ðkrÞkr cosð2prkrÞ dkr
(A.70)

Due to alignment of the vector r in Fourier space with ekz ,
implying er ¼ ekz we obtain a combination of sine and cosine
transform, according to

fðrÞ¼ er
i
pr2

S I N
�bf kr ðkrÞ�� er

2i
r
C O S

�bf kr ðkrÞkr� (A.71)

Note that the forward Fourier transform, eq. (A.62), differs
slightly from the inverse transform, eq. (A.71).
Appendix B. Computation of First Order Hankel Transform
with Algorithm for Zeroth Order

In the following, we derive a way to compute the Hankel
transform of first order with algorithms solving the Hankel trans-
form of zeroth order. The Hankel transform of first order is defined
as

H 1½f ðrÞ�¼2p
ð∞

r¼0

f ðrÞJ1ð2prkrÞr dr (B.1)

with the Bessel function of first kind and first order J1. Exploiting
J1ðrÞ ¼ � J00ðrÞ, with the derivative with respect to r of the Bessel
function of first kind and zeroth order J00, and the coordinate
transform r ¼ x

2pkr
/ dr ¼ dx

2pkr
, leads to

H 1½f ðrÞ�¼ � 1

2pk2r

ð∞
x¼0

f
�

x
2pkr

�
J0

0ðxÞx dx (B.2)

Integration by parts with vanishing integration bounds�
f
�

x
2pkr

�
J0ðxÞx

�∞
0

¼ 0 leaves us with

H 1½f ðrÞ� ¼ 1

2pk2r

ð∞
x¼0

�
x

2pkr
f 0
�

x
2pkr

�
þ f
�

x
2pkr

��
J0ðxÞ dx

¼ 1
kr

ð∞
r¼0

�
f ðrÞ
r

þ f 0ðrÞ
�
J0ð2prkrÞr dr

¼ 1
2pkr

H 0

�
f ðrÞ
r

þ f 0ðrÞ
�

(B.3)

where the prime ð0Þ denotes the derivativewith respect to r. Instead
of computing the discrete Hankel transform on a logarithmic grid
as was done by Boţan et al. [18] or Hamilton [60], we follow the
approach of Hansen [52e54] and compute the Hankel transform on
an equidistant grid by a combination of the fast Abel and fast
Fourier transform. The algorithm used for the fast Abel transform is
described below.
Appsendix C. Computation of the Abel and inverse Abel
Transform

The algorithm for the Abel transform is taken from Hansen [53]
and Hansen and Law [54]. The recursive scheme computes the Abel
and inverse Abel transform on an equidistant grid with N grid
points, using the parameters given in Table C.1. We define the grid
in radial direction as depicted in Fig. 2.

The algorithm described in eq. (C.1) computes the forward and
inverse Abel transform using a low order state-space model
(dimension K ¼ 9). The input of the linear system is the first-order
hold approximation of the discrete function fn to be transformed,
leading to

xn�1 ¼Fnxn þ B0;nfn þ B1;nfn�1 (C.1a)

Fn ¼Cxn (C.1b)

xN ¼0 (C.1c)
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Fn ¼diag
��

rn
rn�1

�l1

;/;

�
rn

rn�1

�lK�
(C.1d)

C¼ ½1;/;1� (C.1e)

B0;n ¼ �h1b0;nðl1Þ;/; hKb0;nðlKÞ
�u (C.1f)

B1;n ¼ �h1b1;nðl1Þ;/; hKb1;nðlKÞ
�u (C.1g)

with the grid point index n, the grid dependent states of the
state-space model xn, the grid dependent state transition matrix
Fn, the grid dependent input vectors B0;n and B1;n, the discrete
(inverse) Abel transform Fn, the output vector of the state-space
representation of the linear system C, the radial grid points rn, as
well as the model parameters from Hansen [52,54], lk and hk (see
Table C.1). The recursion is started at the outermost grid point rN
with xN ¼ 0 and is continued inwards toward the center of the
radial grid. This method cannot be used if rn�1 ¼ 0. For the forward
transform one uses bf0;n and bf1;n, obtained from

bf0;nðlkÞ¼
2rn�1

rn � rn�1

rn�1 þ ½rnðlk þ 1Þ � rn�1ðlk þ 2Þ�
�

rn
rn�1

�lkþ1

ðlk þ 1Þðlk þ 2Þ
(C.2a)

bf1;nðlkÞ¼
2rn�1

rn � rn�1

½rn�1ðlk þ 1Þ � rnðlk þ 2Þ� þ rn

�
rn
rn�1

�lkþ1

ðlk þ 1Þðlk þ 2Þ
(C.2b)

For the inverse transform one uses bb0;n and bb1;n, according to

bb0;nðlkÞ¼

8>>><>>>:
� 1
pðrn � rn�1Þ

ln
�

rn
rn�1

�
lk ¼ 0

1
plkðrn � rn�1Þ

�
1�

�
rn

rn�1

�lk�
lks0

(C.3a)

bb1;nðlkÞ¼ � bb0;nðlkÞ (C.3b)
Table C.1
Parameters for Abel transform [52].

k hk=p lk

1 0.318 0
2 0.19 �2.1
3 0.35 �6.2
4 0.82 �22.4
5 1.8 �92.5
6 3.9 �414.5
7 8.3 �1889.4
8 19.6 �8990.9
9 48.3 �47391.1
Appendix D. Discrete Sine- & Cosine Transforms

In this work in sections 4.2.2 and 4.3.2 we used the discrete
versions of the sine and cosine transforms. Both transforms trans-
form between a finite series of equally-spaced samples j ¼
0;/; ðN�1Þ of a function fj in real space, and a series of equal
length and equally-spaced samples k ¼ 0;/; ðN�1Þ in Fourier
space bf k. The index j denotes the discrete grid points in real space,
while k denotes the grid points in Fourier space.

The discrete sine transforms DS T II and D S T III of the
function f are defined by

bf DS T II

k� ¼
X
j¼0

N�1
fj sin

�
p

N

�
jþ 1

2

��
k� þ 1

��

with k� ¼ 0;/; ðN � 1Þ

(D.1a)

fDS T III
j ¼ ð�1Þj

2
bf N�1 þ

X
k�¼0

N�2bf k�sin�pN �k� þ 1
��

jþ 1
2

��

with j ¼ 0;/; ðN � 1Þ

(D.1b)

with the number of discrete grid points N, where the iteration
variable k� does not represent the true Fourier variable k, which for
the discrete sine transforms is obtained from k ¼ k� þ 1.

TheDS T II assumes the function fj to be odd around j ¼
�
�1

2

�
and j ¼

�
N�1

2

�
(equivalent to r ¼ 0 and r ¼ Ltot in Fig. 3). However,

the D S T III implies the function bf k� to be odd around k� ¼ ð�1Þ
and even around k� ¼ ðN�1Þ (equivalent to k ¼ 0 and k ¼ N,
respectively). Both discrete sine transforms are scaled with the
factor h ¼ 1ffiffiffiffiffi

2N
p , allowing usage of the two transforms as direct in-

verses of each other: D S T �1
II ¼ DS T III.

The discrete cosine transforms DC T II and DC T III are
defined by

bf DC T II

k ¼
X
j¼0

N�1
fj cos

�
p

N

�
jþ 1

2

�
k
�

with k ¼ 0;/; ðN � 1Þ

(D.2a)

fDC T III
j ¼ 1

2
bf 0 þX

k¼1

N�1bf k cos�pN k
�
jþ 1

2

��

with j ¼ 0;/; ðN � 1Þ

(D.2b)

TheDC T II assumes the function fj to be even around j ¼
�
�1

2

�
and j ¼

�
N�1

2

�
(equivalent to r ¼ 0 and r ¼ Ltot in Fig. 3). However,

the DC T III implies the function bf k to be even around k ¼ 0 and
odd around k ¼ N. Both discrete cosine transforms are scaled with
the factor h ¼ 1ffiffiffiffiffi

2N
p , allowing usage of the two transforms as direct

inverses of each other: DC T �1
II ¼ DC T III.
Appendix E. Reducing Gibbs Phenomenon via the Lanczos s-
factor

Fourier transform algorithms applied to very sharp density
profiles or non-periodic boundary conditions, as used for Cartesian
coordinates in section 4.1.1, can cause ringing artifacts at profile
discontinuities (Gibbs phenomenon). These artifacts can be
reduced bymultiplication of the Fourier space representation of the
function with the Lanczos s-factor [61].



R. Stierle et al. / Fluid Phase Equilibria 504 (2020) 11230618
sðkÞ¼ sinc
k
M

¼ sinp k
M

p k
M

(E.1)

with the Fourier variable k, and whereM denotes the number of k-
values in the dimension of interest (k ¼ 0;/;M� 1). For the FFT
with an even number of grid points we getM ¼ N

2 þ 1, with N as the
number of grid points (see eqs. (54) and (55)). For fast sine& cosine
transforms M ¼ ðNþ1Þ and M ¼ N hold, respectively (see eqs. (75)
and (76)).

The procedure can easily be implemented by multiplying the
weight functions with the s-factor. For multidimensional Fourier
transforms, the s-factor has to be multiplied for every dimension
separately. For example, for 3-D Cartesian, 2-D cylindrical and 1-D
spherical coordinates the Lanczos s-factor is computed as

bus
i ðkÞ¼ bui

�
kx; ky; kz

�
sxðkxÞsy

�
ky
�
szðkzÞ (E.2a)

bus
i ðkÞ¼ buiðkz; krÞszðkzÞsrðkrÞ (E.2b)

bus
i ðkÞ¼ buiðkrÞsrðkrÞ (E.2c)

For increased smoothing, the weight function can be multiplied
with the s-factor multiple times.

For Cartesian coordinates, robustness of the FFT can further be
increased by enforcing periodic boundary conditions via an addi-
tional domain, with respect to the ones displayed in Fig. 1, using a
smooth transition function (for example the hyperbolic tangent).
The sine and cosine transform inherently possess this property.
Enforcing periodic boundary conditions is only relevant if no
Lanczos s-factor is used.
Appendix F. Comparison of Convolution Results in different
Coordinate Systems

Computation of the convolution integrals discussed in section 3
depends on the underlying coordinate system. Fig. F.7 presents
results of three convolutions of density profile r with different
weight functions from FMT [57], obtaining weighted densities n0,
n3 and nV1, for Cartesian, cylindrical and spherical coordinates. The
remaining weighted densities (n1, n2 and nV1) differ from the
considered ones only by a constant, and are thus not shown here.

For r/∞ the convolution results are not dependent on the
underlying coordinate system. Only for small systems, such as the
system depicted here, deviations occur. The weighted densities in
the region from 0Å to 1 Å and 2 Å to 3 Å are equivalent for the three
coordinate systems, while differences are revealed between 1 Å to
2 Å in the influence length R ¼ 0:5�A of the weight function around
the density jump at r ¼ 1:5�A. Between 1 Å and 2 Å, the scalar-
valued weighted densities are smaller for cylindrical, and smallest
for spherical coordinates, compared to Cartesian coordinates. The
maximum of the vector-valued weighted densities lies directly on
the density step for Cartesian coordinates, while for cylindrical and
spherical coordinate systems the maximum is shifted towards
smaller radii.
Fig. F.7. Comparison of one-dimensional convolutions in Cartesian, cylindrical and
spherical coordinates presenting weighted densities n0, n3 and nV2 for a hard-sphere
fluid with radius R ¼ 0:5�A modeled with FMT [57]. The density profile is given as a
Heaviside step function rðrÞ ¼ 3

pQð1:5�A � rÞ�A�3.

Appendix G. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.fluid.2019.112306.
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