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Chapter 1

Introduction

In this lecture | want to cover the basics of density funaiaheory of classical sys-
tems and want to give a flavor of its possible applications.

Density functional theory started as a theory for electrowélter Kohn could
show that instead of solving th&-particle Schrodinger equation, it is possible to
obtainall the information of the ground staté' (= 0) of an electron system from its
one-particle density distribution. He went on to show tlhatré exists a functional of
the ground state energy that can be written as a functiorthleolensity distribution.
This functional possesses two important properties: (idffe ground state one-particle
density distribution this functional recovers the groutatesenergy of the system, and
(ii) for any other one-particle density distribution thenfilional takes a values that is
larger than the ground state energy. Density functionarthevas born. About the
same time, in the mid 1960s, Mermin showed that these ideasald for an electron
system at temperatuf > 0. His formulation of the proof of density function theory
was then re-casted for classical systems, i.e. statigtysaéms that obey the rules of
classical mechanics.

While not the first to apply density functional theory to pieris of classical statis-
tics, Bob Evans was one who spread the word by his review maptre gas-liquid in-
terface [4] in which he introduced the formalism of densitgdtional theory to a broad
audience. This paper was also my first contact to densitytifuma theory. Closely
following Evans’ review, we will introduce the formalism dénsity functional theory
in Chapter 2.

Beside the formalism there are the applications of densitgtional theory. For
several systems of great interest there are now reliabl@awdrful functionals avail-
able. Unfortunately, it is in general not possible to camdta density functional from
the knowledge of the interparticle interactions alone. ideo to construct a func-
tional one needs insight and intuition. One elegant and sacgessful approach in
density functional theory of classical systems is the funelatal measure theory for
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6 CHAPTER 1. INTRODUCTION

hard-sphere mixtures by Yasha Rosenfeld [6]. We will takidaeclook at this theory
in Chapter 3.

Finally, we discuss some typical applications of densityctional theory in Chap-
ter 4. These application should demonstrate one of the kieysoaf density functional
theory: once a functional for the excess free energy has toesrd, it is possible to
study a large variety of phenomena simply by changing thereat potential acting
on the system under consideration. We show this for a squalidtuid for which we
study the free interface, the fluid at a single planar hard, wdlere we observe the
drying transition (wetting by the gas phase), and the fluid st geometry, where we
observe the capillary evaporation transition.

My hope is it that you as participant of this lecture and readehis lecture notes
get a flavor of what density functional is, how one particiigre of functional (the
excess free energy functional of the fundamental measawgythlooks like and what
it can do. Clearly, it is impossible to cover the whole fielddehsity functional is just
a few lectures or on a few pages. The selection of the matefigicts my personal
experience and taste. After this lecture, however, it shbel possible for you to read
and understand the literature on density functional thaad/its applications.

| would like to thank Prof. Ryo Akiyama for inviting me to giwbese lectures
at the Kyushu University in Fukuoka, Japan, and fnent Researcher Development
Programof the Kyushu University for their support.

Fukuoka, November 2006 Roland Roth



Chapter 2

Basics of Density Functional Theory

2.1 Short history of DFT

Walter Kohn

e 1964: Hohenberg and Kohn (HK) variational principle for ihbkomogeneous
electron gas af’ = 0 (P. Hohenberg and W. Kohmnhomogeneous Electron
Gas Phys. Rev136, B 864 (1964))
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8 CHAPTER 2. BASICS OF DENSITY FUNCTIONAL THEORY

— electron density:(r) in the ground statgl) as basic variable
n(r) = (V["(r)®(r)|¥)

— electron density:(r) determinesiniquelythe external potentidl,,,(r)
— it exists an unique energy functional, [n| with the following properties
thatEv [no] = Ey andEv[n 7& no] > Fy.

e 1965: Mermin formulates HK fof” > 0 (N. D. Mermin, Thermal Properties of
the Inhomogeneous Electron G&hys. Revl37, A 1441 (1965))

e 1965: Kohn and Sham equations (Kohn and Sh8eif-Consistent Equations
Including Exchange and Correlation EffecBhys. Rev140, A 1133 (1965)).

e around 1976: application of DFT to classical systems

e 1998: Nobel Prize in Chemistry for W. Kohn fars development of the Density
Functional Theory

2.2 Statistical mechanics in the grand canonical ensem-
ble

We start by considering a classical systenoidentical particles. The generalization
to mixtures is straightforward. Each particle has masand is located at positior
and has momentum;, : = 1,... N. The N-particle Hamiltonian is given by

HN - Tk:zn +U + Vve:cta

with the kinetic energy
B ZN P;
Tkin -

)
= 2m

the potential energy of interparticle interaction

U= U(I‘l,...,I'N),
and potential energy due to external potential
N
‘/eq:t - Z ‘/ext(ri)-
i=1
Using this Hamiltonian one can calculate the grand canbpexdition sum

ch = Trcl eXp(_ﬁ(HN _:uN))? (21)
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with 3 = 1/kgT, wherekg is Boltzmann’s constant arifl the absolute temperature.
1 is the chemical potential. Note that in the grand canoninaémble the system of
interest has a volum¥, is coupled to a heat bath at temperatiiteand to a particle
reservoir with chemical potential. In Eq. (2.1) we have used the classical tréeg
as a shorthand notation for the integral over all particlemanota, all particle positions
and the sum over all possible particle numh&rs- 0, . . ., co. Explicitly, we have

<
Try :Nz_jo v /d3T1.../d37’N/d3p1.../d3pN,

whereh is Planck’s constant.

The grand canonical partition suf),. containsall the information of the system
in thermal equilibrium. FromZ,. we can (in principle) calculate everything. If it
would be possible to calculatg,. exactly we would not require the formalism of DFT.
However, in general it is not possible to calculatg easily, especially for arbitrary
external fieldsV,,;(r). It turns out that it is simpler to make useful approximasion
within the framework of density functional theory than i #wvaluation of the partition
sum.

With the help of the partition sum we can define the equililmrprobability density
fo for N particles at temperatur€ at particle positions; with momentap;, i =
1,...,N

1
fo= 5 exp(=p(Hy — uN)). (22)
gc
The definition of the probability density is such that thesslaal trace over the proba-

bility distribution gives unity, i.e.
TrclfO =1

Using the equilibrium probability densitfy we can calculate the (ensemble) averages
of operators) by
<O> = TT'clf()O.

One example of such an average, that we will need in the fatigus the average
equilibrium density distributiom,(r) which can be written as the ensemble average
over the density operator

po(r) = (p(r)), (2.3)

with the density operator
N
pr) =3 0(r — 7).
=1

Finally, we note that the grand potentfalof the system and the grand canonical
partition sum are related via
Q= —1InZ,,
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which is simply the definition of the grand potential.

2.3 Functional of the “grand potential”

Following Mermin [3] we consider the following functional a probability densityf.
As mentioned before, we require that the probability dgrisinormalizedl’r, f = 1.
The functional [3] is given by

Qf] = Traf(Hy — pN + 57" In f). (2.4)

It possesses the important feature that for the the equitibprobability density, given
by Eqg. (2.2) the functional reduces to the grand potentighefsystent), as can be
seen easily from

Qlfe] = Trafo(Hy —pN+ 57" 1n fo)
= Trafo (—5_1 In ch)
= —3'InZ,
= .

If we now consider a probability distribution different frothe equilibrium distribu-
tion, i.e. f # fo, Traf = 1, and we evaluate the functional, Eq. (2.4), we find the
inequality

QU] = Traf (HN—MN+5_11Hf)
= Traf (Qfol + 87 nf — 5" Info)
= Q[fo] + B "Traf (In f —In fo)
> Qfol,

which is animportantresult, as we shall see in the following. The variationahgiple
of density functional theory is based on this result. In otdeshow that the inequality
holds we used

Hy —uN = _6_1 In (foch)
—B'Info— B ' InZ,
= —67'Info + Q[fo],

which follows directly from the definition of; in Eq. (2.2), and the Gibbs inequality,
which we shall discuss in the next Section.
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2.4 Gibbs inequality

Here we show that for any two probability densitjgand f,, withTr, f; = 1,1 = 1,2
we have the inequality

TTcl(fl In f1 — f1 In f2) Z 0, (25)

and the equality holdsnly if f; = f>. In order to show the inequality we rewrite
Eq. (2.5) as

TTcl(fl Infi - fi lnfz) = TTclfl(lnﬁ - 1Hf2)

= T'rclflln%
= Trgfs (% In %) .

Next we observe that there iscamplicatedvay of writing a zero by noting that

Trafa <%> =Trafi =1,

2

T’f’clfg (1 — ﬁ) =0

so that we find

f
Using this observation we can conclude that
fi f1> (fl fi f1>
Tr. —In=—|=1Tr, —In=4+1-—=]>0. 2.6
Tlfz(fz B LA W A @9

In order to see that we obtain this inequality we introdueeviériabler = f;/ f, and
rewrite Eg. (2.6) in terms of as

(tlnx—(x—1)) >0

because
rlne >x—1,

as can be seen in Fig. 2.1. Hence we obtain
(xlnz) > (xr —1)

but we have seen before that
(x—1) =0.

It is possible to make the statement of the Gibbs inequaliynetronger by noting
thatxlnx =z — 1 only forx = f;/f, = 1. This, however, implies that equality holds
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Figure 2.1:xIn x (full line) is greater or equat — 1 (dotted line), as can be seen in
this plot. The equality In z = = — 1 holdsonly for x = 1, denoted by the circle.

onlyif f; = f5. Thus, if we consider twdifferentprobability distributionsf; # f, we
can conclude that

Tra(filn fi — filn f3) > 0.

As a consequence we can deduce that for any a probabilitybdison different
from the equilibrium distribution, i.ef # fo, Tryf = 1 we obtain the result of the
last section

Q[f] > Q[ fo] = Q. (2.7)

2.5 Hohenberg-Kohn-Mermin variational principle

Through the Hamiltoniar v, the equilibrium probability distributiorf,, Eq. (2.2),
becomes a functional of the external potentig)(r). It follows that the equilibrium
density distributiorp,(r) also becomes a functional &,;(r) though Eg. (2.3). The
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next step is to show that, is a functional ofpy(r). This can be concluded from the
fact that the external potenti&l,,(r) is uniquely determined byy(r).

To show this we assume for a moment that a second externalfigld:)’ #
Vert(r) gives rise to thesameequilibrium density profiley(r) (at the same and tem-
peraturel’) and construct a contradiction. The external potentialgr) andV,,,(r)’
give rise to the Hamiltonians

Hy = Ty +U + Vg, (2.8)
Hy = Thun+U+V!

ext”

We also can rewrité]}, as

Hy = Hy — Vi + V.

ext”

(2.9)

With the help of Hy we can define the equilibrium probability distributigih and
with the helpH), we definef’ # f,. If we evaluate the functional of the grand
potential, Eq. (2.4), for the probability distributigff we obtain with the help of the
Gibbs inequality

Qf] = Traf(Hy—pN+p7 Inf)
< TrclfO(H]/V — IUN + ﬁ_l In fo)

By using Eq. (2.9) the r.h.s. of the inequality can be wrifiest as
Trafo(Hy — pN + 87" In fo) = Trafo(Hy — pN + 37" In fo — Veur + Vi)

and finally as

Qo) + TrafoVieg = Vasr) = QU] + [ drpo(w) Vi) = Vewl¥)], (210)

where we have made use of the definition of the equilibriumsigrdistribution,
Eq. (2.3). Now we can also evaluate the functional for th&itistion fj:

Qlfo) = Trafo(Hy —pN + 57" 1n fo)
< Tryf'(Hy —pN + B '1n f')

Again, we follow the same steps as before and rewrite the. rdf.the inequality. In
addition we make use of our assumption that the distributiagives rise to the same
equilibrium density distributiopy(r) as f,. We conclude that the r.h.s. gives

QPN+ Traf (Veas = Vi) = P + [ drpnfo) Veaed) = Vip0)]. - @20)
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By adding Egs. (2.10) and (2.11) we see that

Q[fo] + QLT < QLfo] + QS

follows, which cannot be true. Therefore the assumptiohtha(r) and V.. (r) #
Ve.t(r) gives rise to the same equilibrium density profilgr) is wrong. As a conse-
guence we conclude that the equilibrium probability disttion f; is a functional of
the equilibrium density distributiopy(r)

Jo= fo[po(l")],

which further implies that the functional of the grand padiain Eq. (2.4), is also a
functional ofpy(r), i.e.

QLfo] = Qlpo]-
This implies that the functional of the grand potential carréwritten in the form

Qo] = Flpl + [ &rp(r) (Vea(r) — 1)
with the unique functional of the intrinsic Helmholtz freeezgy

Hence, we can express the functional of the grand potergia functional of the
density distributiorp(r). This feature is the reason why the theory is calliedisity
functional theory

Now we also can rewrite the minimum property of the functipkg.(2.7), in terms
of density profiles:

Qp(r) # po(r)] > Qpo(r)].
The main result of this chapter can be summarized by theti@r&l principle

Q2]
PO |or)=poe)

=0,

[=%)

which expresses the minimum property in mathematical tefrasthermore we have
for the equilibrium density profile,(r)

Qpo] = Q.

Thus, byminimizingthe functional of the grand potential we obtain the thernmaahyic
properties of the system via its grand potertti@nd the structure of the system in form

of po(r).
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2.6 Classical analog to Kohn-Sham equations
It is possible to split the intrinsic free energy functioimgb two parts
Flo] = Fialpl + Fealpl,

whereF;,[p| is the intrinsic free energy of an ideal (non interacting3.géhe second
contribution,F..[p], is the excess (over the ideal gas) free energy functiorthtan-
tains all the information about the interparticle interaict The ideal gas contribution
can be calculated exactly to be

Fialp) = 571 / drp(r) (In Xp(r) — 1)
with the thermal de Broglie wavelength
| h2[3
A= 2rm’

Formally, the functional can be minimized through the v@wizal principle. The result
is

Q2] 0 Fex

dp(r) op
We can split the chemical potential= ;4 + 11, into an ideal gas contribution;,; =
B~ A3 pyur, Wherepy,. is the constant bulk density, and an excess contribuytion
The variational principle leads to the self-consistentadiguns for the density profile

—0=6"InNp(r) +

-+ ‘/e;mg(r> — M.

p(r) = poutk €xP(—BVeae () + M (r) + Blies)- (2.13)
In this equation we have introduced the one-body directetation function

6 Ferlp]
ap(r)

Note that for a constant bulk density, the one-body direattation function becomes
—Bue.. If the external potential is of finite range the argumenthsd exponential
function in Eq. (2.13) vanishes in the limit— oo whencV(r — 00) — —fies. In
this limit we obtainp(r — 00) — ppuk-

This formal solution is not too helpful, because both the d&fd the right hand
side of Eq. (2.13) depend o1fr), becauseF, . [p] and henceV(r) are functionals of
the density profileso(r). For an ideal gas, for whiclt.,.[p] = 0, we can solve for the
equilibrium density profile and we find the well-known result

(r) = -5

péd(r) = Poutk; €XP(—BVeu (1)).
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2.7 Generalization to Mixtures

For completeness we give the form of the functional of thendrpotential for av
component mixture without derivation:

o] = fex[{pimg 57 [ drafr) (nXipi(r) - 1)@”1 [ @rote) (Viae) = ).

| h2j3
Ai = 2mm;

The notation{ p; } indicates that there is a set of density profiles for all congusi =
1,...,v. The excess free energy functional, which is still unspedjfis a functional
of all density profiles of the mixture. The remaining terms simpiyntinto sums over
all species. In order to minimize the functional of the graatential one has to solve
the coupled equations

o82[{pi}]

LA L =0, +=1,...,v.
6p’i(r) pi(r)zpo,i(r)

with

2.8 EXxcess free energy-...

So far we have presented the general formalism of densittifumal theory. In order to
be able to perform any calculation we have to specify theesystnder consideration,
i.e. the interparticle interaction. Formally we then canpéy Eg. (2.12) to obtain
the functional of the free energy. Unfortunately, this ignactice not possible. This
would be equivalent to calculating the partition saractly

Since there is no direct way to derive the functional of theess free energy
F.. from the Hamiltonian, we used as starting point, one regusmme approximate
schemes to construct the functional. Different approaghege useful depending on
the system under consideration. One system of particulardst is the hard-sphere
mixture, which often is used as a reference system for mastof simple fluids or for
colloidal mixtures. In those cases the short-ranged strepglsion is mapped onto an
hard-sphere diameter and the longer ranged attractiokes tato account through a
perturbation theory treatment.

For hard-sphere mixture we have a rather accurate and sfakcagproach called
fundamental measure theory (FMT) introduced by Yasha RekkrVe shall discuss
this approach in detail in the following chapter.



Chapter 3

Fundamental measure theory

3.1 Introduction

Yasha Rosenfeld

In 1989 Rosenfeld [6] introduced novel ideas for derivingeagity functional the-
ory (DFT) for hard-sphere mixtures. His approach, whichigsiictly different from
earlier non-local, weighted density approximations [5],based on the fundamen-
tal geometrical properties of the spheres and is termedafmedtal measure theory
(FMT). The original version met with considerable succebgmvapplied to a variety
of inhomogeneous situations, including the hard-spherd #dsorbed at walls and
confined in model pores [5, 6]. Although the original versmould not describe a
stable crystalline phase the FMT was refined [7, 8] in ordentorporate the freez-
ing transition. These refinements and subsequent imprawsimeodifications of FMT
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18 CHAPTER 3. FUNDAMENTAL MEASURE THEORY

have all focused on the zero-dimensioraD] limit, i.e. the limit which pertains to
a narrow cavity that can contain at most one sphere. Reguini@ DFT to yield the
exact free energy in th@D limit provided new insight into the structure of FMT and
suggested new prescriptions for functionals that couldries situations of extreme
confinement [7,8]. More recently Tarazona and RosenfeltiIphave argued that the
hard-sphere free energy functional can be constructety$oden the requirement that
the functional reproduces the exad? limit for cavities of different shapes; the equa-
tion of state and the correlation functions of the homogeasdiuid are then given as
output from, rather than input to, the DFT. This particutaategy is reviewed briefly
in Refs. [10, 12].

One of the main limitations of the original FMT, and indeedtsfsuccessors, is
that the underlying bulk fluid equation of state is the Peréegick (PY) compress-
ibility equation, equivalent to scaled particle theory. i8swell-known, for the case
of the pure hard-sphere fluid this implies that the presguseoverestimated for fluid
densities approaching that at bulk freezing [13]. A seriooissequence of the inac-
curacy of the underlying PY fluid equation of state is thatfMT, suitably modified
to include a tensor measure, predicts coexisting fluid ahd densities that are rather
low w.r.t. computer simulation results [12].

In this chapter we present a derivation of Rosenfeld’s fumelatal measure theory
functional and then show how the derivation can be adjusteatder to enforce an
accurate equation of state, which is done in the White Besiore of FMT [39, 40]
and more recently in the White Bear version Mark 11 [42].

3.2 Exactresultind =1

The structure of Rosenfeld’s fundamental measure thedliguis the structure of the
exactexcess free energy functional for thecomponent hard-rod mixtures ih= 1
[18,19]. The radius of componenis R;, so that the length of a rod of componéns
2 R;. A sketch of the system is shown in Fig. 3.1. The derivatiothef functional is
technical quite involved and is specific to the one-dimemaicase. Therefore we shall
only quote the functional and its structure, so that we catetstand how Rosenfeld
got inspired.

The exact excess free energy functional ia- 1 can be written as

BFLp] = [ dz @({na)),

where® is the excess free energy density, which fsiaction(not a functional) of a



3.3. ROSENFELD’S FUNDAMENTAL MEASURE THEORYI) = 3) 19

set of weighted densities,. The weighted densities are defined as
ne(z) = Z/dz’ pi(2) wi(z — 2),
i=1

i.e. they are sums over all componeits 1, . . ., v of convolutions of weight functions
w’,, which are specific to the geometry of componenh d = 1 one has two different
weight functions for each component, namely

wi(z) = % (62— R)) + (2 + Ri)) |

which can be interpreted as a weight function that markstintaceof the rod, which
consist of the two points at— R; andz + R;, and

wi(2) = O(R; — |z)),

which can be interpreted as a weight function that marksdhemeof the rod. For the
definition of the weight functions we have used the Dirac ®&inctiond(z) and the
Heaviside step functio®(z), which is 1 forz > 0 and 0 otherwise. We can represent
the Mayer+ function between a rod of specieand one of species which is defined

by
—1 |Z| < R; + Rj
0  otherwise

i) = (v () - 1= {
for hard-rod interactions, in terms of weight functions
—fii(2) = wl @ Wi + wh ® Wi,
where the The symbab denotes the convolution of the weight functions
Wi ® w]ﬁ(z =2z —2j) = /dz' w2 — z) wf(z' — 2j).
The excess free energy density is given by
®({na}) = —noIn(1 — n1),

which fully specifies thel = 1 functional.
It is quite remarkable that the excess free energy possssskes simple structure.

3.3 Rosenfeld’s Fundamental Measure Theoryd = 3)

In order to construct a density functional for a mixture dstisg of v species of hard
spheres, withv > 1, Rosenfeld used the exact low density result for the exemas (
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2R, !

——— 1 — 31— [ | |
[ A e I

Figure 3.1: Sketch of a one-dimensional hard-rod mixtutdwadii ?;,, i = 1,...v.
The rods can move along a line.

ideal gas) Helmholtz free energy functional, valid in thaitiwhere all the one-body
densities{p;(r)} — 0,

BFl{p}] =——Z [ & [ doe)ps () flr = v') (3.1)

as a starting point. He noted that the Maydrnction between a sphere of component
1 and one of component which is defined, analog to the one-dimensional case, by

fij(r) = exp(=BV;;(r)) —
V;;(r) is the pair potential between two speciesdj. f;;(r) has a purely geometrical

interpretation because of the hard-sphere potential

oo r<Ri+R;
Vialr) = { 0 otherwise

which gives rise to the Mayef-function

o -1 r<R;+ Rj
fulr) = { 0 otherwise

The Mayers function f;;(r) of two hard spheres with radk; and ?; marks the vol-

ume which is not accessible to the center of one sphere, ssjyeaies, close to the

other of specieg. This volume is a sphere of radids + R,. In general, the volume
of two joined convex bodieg;, ; can be written as

Vi-‘,—j - VZ -+ SZR] + RZS] -+ V},

whereV;, S;, andR; are the volume, the surface area and the mean radius of atgvat
of the body, respectively. The validity of this relation da@ checked easily for two
spheres wher®;, ; = 47/3(R; + R;)* andV; = 47 /3R} andS; = 47 R?.

Analog to the one-dimensional case, the Maydunctions of a hard-sphere mix-
ture can be decomposed into the form

—fii(M) =i QW+ Rt RuW tWwi QW -TL R -TF T (3.2
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with the weight functions given by

wy(r) = O(R;—7),
wy(r) = O(R;—r),
wy(r)
41 R;
wy(r)
47 R?
Sr) = “5(R — 1),

o Ji(r
() 472T<R>- ’

where©(r) is again the Heaviside function and-) is the Dirac-delta function. The
symbol® in Eq. (3.2) denotes the three-dimensional convolutiorhefweight func-
tions

wf‘@wf(r:ri—rj /dr (r' —r;) B(r'—rj).

It is important to note that the deconvolution, Eq. (3.2)wdoappear to be unnecessar-
ily complicated if only a pure hard-sphere fluid were to besidered. For a mixture,
however, this particular structure is suggested by thahekkactone-dimensional
functional of the mixture of hard rods [18, 19] — see Sec. &1 also interesting to
note that an alternative deconvolution of the Maydrunction, suggested by Kierlik
and Rosinberg [20], avoids vector-like weight functionsibtroduces instead weights
containing first and second derivatives of the Dirac-deltecfion. It was shown later
that both deconvolutions are equivalent [21].

The weight functions give rise to a set of weighted densifies(r)} for the v
component mixture. These are defined, again analog to thdiomensional case, as

Z/d?’r ps(r') W (r — 1), (3.3)

i.e. the sum of the convolutions of the density profiles othespmecies with its weight
function. « labels the four scalar and two vector weights. In the bulkerghthe
density profiles in the absence of any external field reduceotsstant bulk densi-
ties p; .., both vector weighted densities andi, vanish while the scalar weighted
densities reduce to the so-called scaled particle thed®l($24] variables:n; —
£ = AT pha R} /3, n2 — & = AT ph R i — & = X pha i @and
no — & = . Phuk- NOte thatts then corresponds to the total packing fraction.

As an appropriate ansatz for the excess free-energy furatfiRosenfeld followed
again the structure of the exact one-dimensional funclidt@ wrote the excess free-
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energy functional in the form

BFlp) = [ &7 e({na)}) (3.4)

where®, the reduced free energy density, ifuactionof the weighted densities. As
ansatz ford Rosenfeld employed dimensional analysis and used

® = fi(n3)no + fa(na)ning + f3(na)ny - e + fa(na)ni + fs(ng)nems - 13, (3.5)

Each term in (3.5) has the dimension of a number density[leegth]~3. In order to
ensure that the ansatz, Eqgs. (3.4) and (3.5), recovers toedgution of the Mayelf
function, Eqg. (3.2), it is necessary to demand that to lowed¢r inn; the unknown
functionsfi, f2, f3 have expansions of the forfia = n3 + O(n?), f, = 1+ O(n3) and
fs=—1+0md). fy=1/24n + O(n), andf; = —3/2471 + O(n3).

Although the ansatz in EqQ. (3.5) is constructed to reprod@xeetlythe low density
limit, it is clear that for intermediate and high densitibsstansatz introduces the ap-
proximation that the weight functions, and hence the weidlensities, required by
the low density limit are sufficient to approximate the sitankous interaction of three
or more spheres. This approximation turns into a seriousl@noin the case of asym-
metric mixtures where radii of different components aregigantly different [28].

The functionsfy, .. ., f5 can be determined by demanding that the resulting func-
tional satisfies a thermodynamic condition. In the origihalivation Rosenfeld used
the SPT equation [24]

with V; = 47 R?/3, the volume of a spherical particle with radidsand;.’ , the excess
chemical potential of speciés This relation relates the excess chemical potential for
insertion of a big spherical particle with a radiiisto the leading order termV;, the
reversible work necessary to create a cavity big enoughltbthis particle. The l.h.s.

of EqQ. (3.6) can be determined self-consistently in ternte®fveighted densities from

=4 (39 HP 9P 9
i _ 9% N 9% Ol
Otter = op; za: Ong Op; '

Due to the geometrical meaning of the weight functions wedimg)/ 9p; = 47 /3R? =
Vi, Ony/0p; = 4nR? = S;, Ony/Op; = R;, anddng/0p; = 1. In the limit under
consideration all but one term vanish and we obtain
1l 0%
A —Zﬂ/iem = oy’
The equation of state can be obtained from the thermodynlntkcrelation(,,;, =
—pV. Since the grand potential density in the bullig ;. /V = ® + fia — > phriti
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we obtain 50
Op=—+ Z 8771& + ng. (3.7)

The last termp,, results from the ideal gas contribution. We can combinsehesults
in order to obtain the SPT differential equation, Eqg. (3.6),
od 0P
=9 — Ny, :
8%3 + g anan + no
By collecting all terms proportional te, one sees that the differential equation for
f1(n3) takes the form

fi(ns) no(1 — ng) = ny,
which is solved by
fi(ns) = const; — In(1 — ng),

with an integration constanbnst; that vanishes. It is easy to find the differential
equations for the remaining functions. The integrationstants are chosen such that
the correct behavior at low densities is recovered. Theisolfiound by Rosenfeld [6]
and denoted RF, is

1RF(ng) = —In(1—n3)
1
5 (ng) = 1— ng
37 (ng) = —f3"(na) (3.8)
i (ns) = m
5 (ng) = =3f{"(ng), (3.9)

and it is straightforward to see that these solutions gatief aforementioned condi-
tions for the low density limit. It is worthwhile to note thtte conditionsf; = —f,
and f5; = —3f4, that fix the dependence of the functional on the vector weajden-
sitiesi7; andri,, follow from Eq. (3.6) only if it is assumed that the SPT di#atial
equation, which is by construction a bulk equation, remuaaiil for slightly inhomo-
geneous situations. Since the vector weighted densiti@stvan the bulk limit it is,
strictly speaking, impossible to determine the functignand f; from bulk thermo-
dynamics alone. Given the success of the Rosenfeld furattiowvarious applications
we choose to adopt the conditions (3.8) and (3.9) in the sjulesd modifications.

The resulting functional, that we refer to as the originat&adeld (RF) functional,
is usually written in the forn® = ¢, + ®, + o3 with

O = —nyIn(1 — ny), (3.10)
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ning — 1y - My

I = e (3.11)
(IDRF— n%—3n2ﬁ2'ﬁ2 (3 12)
5 2dm(1—ng)? '

Although this functional was found to be very successful aften very accurate
in accounting for various properties of highly inhomogemetiuid phases, it failed to
predict the fluid to solid phase transition of the pure haldese system. This failing
was first remedied empirically by Rosenfetlal.[7, 8] who modified the dependence
of ®3; on the weighted densities, and i,, taking into account certain features of
'dimensional crossover’. The modifications were found tofgren better than the
original Rosenfeld DFT for densely packed fluids in sphegeaities — a situation of
extreme confinement [25, 26]

Subsequently Tarazona and Rosenfeld derived a FMT eslyetgsigned to study
the properties of the one-component hard-sphere solidl[9Fhey began with the so-
called0 D-limit which considers a narrow cavity that can hold at mosirgle sphere.
Starting with the free energy function for this narrow poi@ctionals are derived
for higher embedding dimensions. A three dimensional fonel based on this idea
reproduces the original Rosenfeld functional. In Ref. [t1$ pointed out, however,
that there are shapes@b cavities which cannot be described by the particular set of
weight functions chosen in FMT. The problem becomes moréeawith increasing
embedding dimension. In three dimensions this preventRtteenfeld functional
or equivalently a functional based solely on the limit from describing the fluid-
solid phase transition of the pure hard-sphere system.derdo remedy this defect,
Tarazona [11] introduced a new second rank tensor-like htdighctionw,,, (r) and
adapted the contributio®; to the functional. In the notation introduced in Ref. [27],
we write the tensor weight function as

Wiy (T) = wy(r)(rr/r? — 1/3), (3.13)

with 1 denoting the unit matrix. This gives rise to a new tensor Wweid density, .
The newd? term of the Tarazona FMT is given by [11, 27]

1

P = ————
P 247(1 — ng)?

(n3 — Bnaity + iy + 9 (anm, iz — Tr(nf,)/2)),  (3.14)
and the application of the augmented functional to the lspttere solid provided an
excellent account of simulation results for the equatiostafe and for other proper-
ties of the solid. The extension of this approach to harc&espmixtures requires the
introduction of a new third rank tensor-like weight functif28].
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3.4 The White Bear Version of FMT

Building upon the ideas presented so far, we are now readgristzict a new func-
tional. We retain the same weight functions and the same {8r#) for the func-
tional but use a different thermodynamic condition in orttespecify the coefficients
fi,..., f3 of the ansatz (3.5). In contrast to existing FMT functionalfisch output the
equation of state [for fluid states this is the Percus-Ye@#¥) compressibility equa-
tion] we use the Mansoori-Carnahan-Starling-Leland (MC&juation of state [14],
which is a generalization to thecomponent hard-sphere fluid of the accurate, one-
component Carnahan-Starling equation of state [15], as@ut. We prescribe the
functionsfi, ..., fs, retaining the two conditions (3.8) and (3.9), such thattigation
of state which underlies the new functional is the MCSL puess For this approach
to be feasible it is important that the MCSL equation of stateased on the same SPT
variables which enter the PY compressibility equation afestinderlying the original
FMT. The MCSL pressure is given by

3 3

Un T N9 N9 n3ney
Bpucest = +

1—ns  (1—ng)?  127(1—ng)® 36m(1 —ng)?’
The final term in (3.15) is absent in the PY result.
Incorporating the deconvolution of the Maygrfunction and imposing the condi-

tions (3.8) and (3.9), we employ an ansatz$oof the form
b = fl(ng)no -+ fg(ng)(nlm — ﬁl . ’f_ig) -+ f4(n3)(ng — 3n2ﬁ2 : ﬁg) (316)

In order to determine the three unknown functiginsf,, and f; we employ Eqg. (3.7) in
a slightly different way than Rosenfeld did. Instead of R Slifferential equation we
demand that thermodynamic pressure, given by Eq. (3.7)l€tua MCSL equation
of state:

(3.15)

5L 0Py
—Bpmcest = Pour — Y 5 e

a=0
with the sum over the scalar weighted densities only. Sulbistg (3.15) and (3.16)
into (3.17) we obtain differential equations ffy, f, and f, by collecting all the terms
proportional ton,, niny, andn3, respectively. These differential equations can be
solved easily and we find (n3) = f{¥'(n3), f2(n3) = f£ and

— Ny, (317)

~ nz+ (1 —n3)%In(1 —ng)
Jalns) = 36mn3(1 — ns)?

The resulting excess free-energy density is given by

(3.18)

ns + (1 — n3)2 111(1 — ’flg)
36mnd(1 — ng)?

(3.19)

NNy — 1y - Ty N

+ (ng - 3712772 . ng)

O = —ngln(1 —
noIn(1l —nz) + T—
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which should be compared with the original Rosenfeld forios.E3.10)—(3.12). Note

that in the low density limit we obtaitim,,, .o f4(n3) = 1/(247), i.e. the same value

as from the original Rosenfeld functional [see Eg. (3.1Z}jus we are guaranteed to
recover the exact low density limit.

As the derivation of the new functional has followed thathe# briginal Rosenfeld
FMT very closely, it faces similar problems when it is apglie the freezing transition.
However, the same procedures that remedied the failinghéooriginal FMT can be
used for the new functional. Thus, it is possible to follove #ampirical procedure
of Refs. [7, 8] and modify the dependence ®f on the weighted densities, and
7o in the new functional. This approach would enable the fumeti to treat a hard-
sphere mixture. Equally well it is possible to follow Tarazo[11] who introduced
a tensor-like weighted density in order to study the proegrmf theone-component
hard-sphere solid. This is the route we employ here, i.eharpresent calculations for
the solid phase we replace the tefn3 — 3n.ii, - 7i») in Eq. (3.19) by the numerator
of Tarazona’s expression (3.14) so that the pre$gns given by

~ ng+ (1 —ng)%In(1 — ng)

P
° 36mn3(1 — ns)?

(ng — 3notiy - 1y + 9 (ﬁganﬁg — Tr(nfm)/2)) .
(3.20)

3.5 Test for self-consistency

As mentioned earlier, Rosenfeld [6] used the scaled parigliation (3.6) to determine
the functionsfi,..., f5. Here we re-examine this equation in the context of self-
consistency for the functional.

First we note that the excess chemical potential of insggisingle big hard sphere
of species and radiusR; into a fluid of hard spheres is the reversible work done to
create a cavity that is large enough to hold this inserted spnere. In SPT one starts
with a point-like cavity and increases its size until it iffeiently large. Clearly, when
increasing the cavity size one must work against the pressithe fluid resulting in a
termpV;, whereV; = 47 R?/3. Since the surface area of the sphere is also increased,
work must also be done against the surface tension. This\ddeanm is proportional
to the surface are§; = 47 R?. Moreover for finite values oR; the surface tension
will also depend on the radius of curvature so there will baddaitional term that is
proportional toR;. If, however, we divide the excess chemical potential bytilame
V; itis easy to see that Eq. (3.6) follows and that it is exachalimit R; — oc.

The connection to FMT can be made by noting that the excesaichkpotential
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takes the form

3 0Py Ong
Bus = ; (3.21)
042::0 e Py
0Pk OPpir 0Pk OPpir
= i i i , 3.22
8’”3 v + 8’”2 S * 8n1 R * 8”0 ( )

and we used the definition of the SPT variablgs . . , ny given earlier. Equation (3.22)
has precisely the same form as the SPT expansion so it istokgdor any FMT func-
tional the coefficient of the leading volume term should kentified with3p, i.e. the

relation
0Py

8’”3

= Op (3.23)

should be obeyed.

In the derivation of the original Rosenfeld functional E8.23) isimposedi.e. the
left hand side of Eq. (3.17) is identified withod,,;;. /Ong and the resulting (SPT) dif-
ferential equation is solved. The pressure which resuttsaSPT or, equivalently, the
Percus-Yevick compressibility equation of state. For tresent functional, however,
Eq. (3.23) isnotimposed and we find from Eq. (3.19) that

0Py~ o mny n3 (2+n3(ny —5))  ndln(l —ny)

= — 3.24
ong 1—ng (1—ns)? 36mn3(1 — ng)? 18mni 7 (3-24)

which evidently is different from the MCSL equation of sté815). The difference
arising from this inconsistency was examined within thetertof the one-component
fluid where the pressure inputted into the theory is the ateu€arnahan-Starling
equation of statep-s. We show both the Carnahan-Starling equation of stated(soli
line) and the pressure obtained from Eq. (3.24) (dashedlilirféig. 3.2. The deviation
between these two curves is at m@i&t. In contrast, the Percus-Yevick compressibility
equation of state%,, also shown in Fig. 3.2 (dotted line), overestimates thegune

of a hard-sphere fluid close to freezing by ugté.

3.6 The White Bear Version of FMT Mark Il

Based on the observation that the MCSL equation of state keealexcess free energy
density that is slightly inconsistent, recently a new geheation of the Carnahan-
Starling equation of state to mixtures was proposed [41]

no nqNa (1 + %n%) n; (1 —2n3 + %n%)

L=ns i (1 —ns)? 127(1 — ng)?

Bpcsin =
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....... Percus-Yevick pg,
— Carnahan-Starling ps
--- Eq.(2.24)

0.1 0.2 0.3

n

0.4 0.5

Figure 3.2: The equation of state of the pure hard-spher ¥krisus packing fraction
n = peurdT/3R3. For the present DFT the Carnahan-Starling pressure issatpy
the theory. The pressure given 89, /0ns in Eq. (3.24) deviates very slightly from
Carnahan-Starling, attesting to the high degree of sei&istency of the approach.



3.6. THE WHITE BEAR VERSION OF FMT MARK Il 29

This equation of state reduces to the Carnahan-Starlingtiequof state in the one-
component case and represents data for binary and ternaiyres obtained by com-
puter simulations more accurate than the MCSL result. Basdtis new equation of
state we can, following the derivation of Sec. 3.4, deriveearess free energy func-
tional, which improves the level of self consistency. We fi4#]

NniNg — 1y - 10
(PWBH = Ny ln(l — ng) + (1 + %n%qb(ng))%nlz
3 — —
4 ny — 3%2”2 * Mo
+ (1 - §n3¢3(n3)) 247 (1 — ng3)? (3.25)
with
Pa(ng) = (6n3 —3n3 +6(1 —n3)In(1 — ng)) /3,
and

¢s(ns) = (6n3 — 9n3 + 6n3 + 6(1 — ng)*In(1 — ng)) /(4n3).

This functional is similar in complexity as the White Bearsien, Eq. 3.19, or the
Rosenfeld functional, but is constructed such that for acmaponent fluid we find

8(I)bulk
8713

= Bpcs,

with Carnahan-Starling equation of states.
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Chapter 4

Application

4.1 Introduction

\

TR I
Bob Evans

Bob Evans wrote the first review on density functional thdonclassical systems
in 1979 [4], just a few years after the theory vieenslatedfrom quantum mechanical
systems to classical ones. He was among the first to reale@diver of density
functional theory and pioneered several of its applicathfith his review article [4]
Bob Evans inspired and influenced many people and made gémsdtional theory
for classical system available to a broad audience. My finstact to density functional
theory was by reading his papers on the subject.

4.2 Hard-Sphere Fluid at a Hard Wall

The first example application we discuss here is one of thelsshinhomogeneous
system one can consider: a hard-sphere fluid at a planar laditcdN@te that in the case
of a fluid the equilibrium density profilg,(r) has the same symmetry as the external

31
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potential. For the planar hard wall this means thdt) = po(z). All interactions are
hard-core like which makes temperature a simple scalingrpeter. The only param-
eter in the system is the bulk densjiy,;, or equivalently the bulk packing fraction
n= pbulk%ng, whereR is the radius of the spheres.

The general outline of the problem of finding the equilibridemsity profilep,(z)
is as follows:

e choose liquid densityy,,;;. or packing fraction; = pbulk%’rRS

e initialize density profile

p(2) = pouir €xp(—[Veat(2))

with
PVea(2) :{ 03 o;]e<rv{/zise
e minimize the density functional
Qe _
dp(r)

There are several points to be addressed in order to makevdied we mean by
minimizing the density functionahd how we perform this task in practice. Functional
minimization is a standard problem in numerical mathernsaticd there are several
more or less clever algorithms available. Each algorithmitssadvantages as well as
drawbacks. In the present context we wish to keep thingsnaglsias possible and
restrict our consideration to a simple Picard iterationjolhs in general robust but
converges slower than a clever minimization.

4.2.1 Minimizing €2[p] through a Picard Iteration

First 1 give the four simple steps of the Picard iteration #vah | discuss their meaning.
1. initialize density profilep© (z) = ppur exp(—BVewi(2))
2. calculate [see Eq. (2.13)] usipg) (z)
P(2) = pout exp(—BVeur(2) + M (2) + Blies)
3. mix solutions with mixing parameter

PU() = (1= a)pV(2) + ap(2)
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4. goto step 2 until solution is converged

The initialization given here is only one possible choiceheTcloser this initial
guess is to the equilibrium density distribution the fasker minimization will con-
verge. Often, however, it is very difficult to have a good gudtEthe external field is
strongly attractive, then the choice given here can turnobe a bad one. Once an
initial profile is chosen we can start with the iteration. tap2 we use Eqg. (2.13) to
calculate a different guess, which we cal) (z). Clearly, if we input the equilibrium
density profile into the r.h.s. of Eq. (2.13), we again recdlie equilibrium density
profile from the l.h.s. of Eq. (2.13). If we input any other diy profile we obtain a
different guess for the density profile. In order to keep theation from making too
rapid changes, which might result in unphysical densityrithistions such as negative
densities or local packing fraction larger than 1, it is us&d mix the old and the new
guess, as specified in step 3. The choice of the mixing paeameés$ very important.
If we choose it too small, the convergence of the iteratiovery slow. If we choose
it too large, we end up with the same problem mentioned abtheschanges in the
density profile might be too rapid and one might end up withrgohysical result. Step
4 is to check if the iteration converged already. If the cleaimgthe density profile is
smaller than a threshold then we can stop the iteration.

In the course of the minimization either through the desatilteration or through
any other algorithm one has to calculate the weighted deassit,(z) from a given
density distribution very often.

4.2.2 Weighted Densities

Here, to keep our considerations simple, we restrict obisel planar geometry. For
any (not just hard-wall) external potential that possessetanar geometry so that
Veur(r) = Vopi(2), wherez is the distance normal to the wall flaid density profile
also possesses the planar geomeity) = p(z). It is easy to show that the weighted
densities, Eq. (3.3), also take on the planar geometryyi,ér) = n,(z). By using
the symmetry of the problem, one can perform two of the thnésgrals in Eq. (3.3)
analytically and thereby reduce the calculation of the Wisd densities to a single
integral. In the planar geometry one finds that this integraf the convolution type,
just as the original three-dimensional integral in Eq. \.3/8ote it is not always the
case that a three-dimensional convolution integral remaiconvolution after some
integrals are performed analytically. For example, in tindrical geometry, one
looses the convolution property by performing two integjiahalytically, in the spher-
ical geometry, however, one finds results similar to the g@eometry.
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One finds that
Na(r) = na(2) = / 42 p(2) walz — ')

with the one-dimensionalveight functionsus(z) = 7(R? — 22), wy(2) = 27 R, and
Wo(z) = 2mzé,, with the unity vector in the direction normal to the wall. The
remaining weight functions are relateduo(z) andds(z) viaw; (z) = wa(2)/(47R),
wo(2) = we(2)/ (47 R?), andd; (z) = dy(2) /(47 R).

Since the integrals are still convolutions one can explatdonvolution theorem
and perform the calculation in Fourier space, where theaation is a simple multi-
plication. Using the FFT (fast Fourier transform) we get

/ d2' p(z') walz — 2) = FTH(FT(p) % FT (wa)),

whereF7 denotes the fast Fourier transform of a function &~ the fast inverse
Fourier transform. The advantage of using FFT is the speedvdutions performed
in Fourier space are in general much faster than those pgetbin real space. If one
wants to implement an integration scheme of higher ordeigiwils straightforward in
the real space, one has to be careful in Fourier space.

Once the weighted densities are evaluated, one is readycudai® the one-body
direct correlation function™ (2)

4.2.3 One-Body Direct Correlationc!!(z)

From the definition of the one-body direct correlation fumictand the structure of the
excess free energy functional within fundamental mea$weery one finds

1 B 5.7:ez 8<I> ({na}) ona(z)
D(z) = /d o Ong ap(z)

The main problem is to calculate the variation of the weidtdensities,, (z) w.r.t.
the density profileo(z). The result (in planar geometry) is quite simple

5na(z’) - 0 o w2 =) =w (Y — 2
o0 " S | el = ) =l =),

However, one has to be careful because of the argument ofalghtffunction. Com-
pared to the argument entering the weight function of thgtited densities, the argu-
ment entering the calculation of')(2) is negative, i.ez — 2’ becomes’ — z. For the
scalar weight functions this is unimportant, since theaoakight functions are even

Wa(2' —2) =wa(z — 2),
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but the vector-like weight functions are odd
Go(Z —2) = —Da(z — 7).

Taking this sign into account, it is possible to perform tbevolutions in Fourier space
using FFT methods:

() =~ 2T (FT ) T ).

4.2.4 Hard-Sphere Fluid at a Hard Wall: the density profile

After discussing the practical issues of minimizing a fuméatal measure theory den-
sity functional, we can have a look at a typical density peofif a hard-sphere fluid
at a planar hard wall. The packing fraction is choose tg bepbulk%R3 = 0.4257,
which is quite high. Note that foy > 0.494 hard spheres freeze and form a fcc crystal.

In Fig. 4.1 we show the result. The full line denotes the dgnsiofile of the
White Bear version of FMT, the dashed line that of the origRasenfeld functional
and the symbols denote results obtained from simulatiop [88e results from the
two version of DFT lie almost on top of each other except fduga ofz very close to
contact (see inset). The reason for the small deviatioredioshe wall is the contact
theorem, which states that at a planar hard wall the conawityp(R™) is equal to
the bulk pressure

p(R*) = Bp,

where R™ indicates that the contact value of the density profile isvilae atz = R
plus an infinite displacement.

The equation of state underlying the Rosenfeld functiosghe Percus-Yevick
compressibility pressure, which is known to overestimhge dctual pressure of the
hard-sphere fluid. By construction, the equation of stath@iVhite Bear version of
FMT is the Carnahan-Starling pressure, which is closer ¢opfessure of the hard-
sphere fluid and agrees well with computer simulations.

There are several other properties of the one-componetidpdrere system in the
fluid and the crystal phase studied in detail [39]. In gengralagreement found with
simulations is excellent. Hard-sphere mixtures can alsstbdied within FMT [34].
If the size ratio is not too asymmetric the agreement withusations is very good. As
the sizes of the species in the mixture get more asymmetne gwoblems of FMT
functionals become apparent [28].
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Figure 4.1: Density profile of a one-component hard-sphare &t a planar hard wall
for n = 0.4257.

4.3 Square-Well Fluid

The hard-sphere fluid is often employed as a useful refergystem for a fluid with a
hard-core repulsion at short separation and an additiatnatdon. As an example for
such a fluid we consider a fluid with a square-well interpégtisteraction given by

00 r < 2R
BVau(r) =4 —& 2R <r < 2Ry,
0 otherwise

R, denotes the square-well radius. Even for such a simplepatgcle interaction
potential it is in general not possible to construct a dgrfsihctional of the intrinsic
excess free energy., analog to the fundamental measure theory for hard-sphee mi
tures. Very often the additional attraction is taken intoamt in an perturbative way
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by splitting the excess free energy into a hard-sphere iboriton plus a perturbation

Foolp] = FES[] /d37~p /d3 " G|t — 1))

The perturbation term underestimates the correlation ensgfstem. To compensate
this effect, one usually introduces a modified square-wakptial

—s r<2Rg,
0 otherwise

ﬁ¢sw(r) = {

where the square-well is extended into the core, i.e.te 0. While this seems phys-
ical meaningless at first, it helps éonpiricallycorrect for the error in the correlations.

4.3.1 Bulk Fluid Phase Diagram

In the following we will restrict the considerations to thaifl phase and neglect the
possibility of crystallization. In the fluid phase, if themperature is sufficiently small,
the square-well fluid can phase separate into a low densgyagd a high density
liquid. In order to locate at which temperatures this phagegation can take place
we require the chemical potential and the equation of stabtéch can be obtained
from the density functional, by inputting a constant denpibfile p(r) = ppux. The
resulting chemical potential is

a SW 3
1 pouir) = a—f = 1 s(Pouik) — €N ( I > + 10 N2 pyug,

P=Pbulk

with a hard-sphere contributiong s (ppur), @ square-well contribution, and an ideal
gas termin(\3py.. ). At first it seems as if the value ofand hence of the mass of the
particles plays an role in determining the phase diagramveyer, this is not the case
and one can see easily that the value\ @hift the value ofu but does not affect the
phase diagram at all. Therefore, itis possible to replagédkal gas contribution to the
chemical potentialln A\®p,.;; by a simpler term of the forr , which is equivalent
to a particular choice of.

The equation of state follows from the grand potential of bk system to be

€ st>3

- §pbulkzn <?

with the hard-sphere equation of state of the referencesyand a square-well term.
In order to describe a phase equilibrium between two fluidsphaand I with cor-
responding densities andp;;, we demand chemical and mechanical equilibrium

P(Pouire) = 1 Poutre) Poutke — f(Pouik) = Prrs(Pouik)

1(pr) = plprr) and p(pr) = p(prr).
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Figure 4.2: The bulk fluid phase diagram of a square-well fluith R,,, = 3R. The
full circle denotes the critical point. Below the criticainhperature the fluid can phase
separate into a low density gas and a high density liquid.

Note that these conditions can be fulfilled only at suffidettw temperatures, where
the equation of state and the chemical potential displaydeanWaals loops. The
temperature at which these loops appear is called theatiémperaturd’,.. To locate
the critical temperature one demands that the first and tbenslederivative of the
pressure w.r.t. the density vanishes, i.e.

0’p

dp

. 0 and 07 - 0.
ForT < T,, the system can separate into a low density gas and a hightydkamsid
phase.

The bulk fluid phase diagram for a square-well radiuggf = 3R is shown in
Fig. 4.2 inthen-T representation. The critical point is denoted by the fultlel. Below
the critical temperature a low density gas and a high dehgitid can coexist, if their
respective densities are on the binodal (full line). Thexesience is indicated for the
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temperatured’/(B¢) = 1.2, 1.0 and0.83 by the dotted lines. Outside the binodal
line there are single phase regions. At densities belowadkgisting gas density, the
gas phase is the single stable bulk phase and at densities #imcoexisting liquid
density, the liquid phase is the single stable bulk phasedéthe binodal line there is
a region of metastable and unstable states, which shallendisioussed here.

4.3.2 Free Interface

In the case of bulk coexistence between a low density gas dmghadensity liquid
one finds an inhomogeneous density distribution of the fiesrfiace. The interface is
called free, because it can form without the presence of &rred field, i.e. in the
bulk.

The calculation of the free interface density profile can beedby the following
steps:

o for a fixed temperaturé < 7, choose coexisting densitipg andp;; so that
u(pr) = plprr) and p(pr) = p(prr)

e initialize density profile

e minimize density functional

Note that the minimization has to be performed while enfagg¢he boundary con-
ditions: forz < 0 the density profile approaches and forz > 0 it approaches
PII-

For the temperatur€s/(5s) = 1.2, 1.0 and0.83, marked by the dotted lines in
Fig. 4.2, we show the density profiles of the free interfackign 4.3.

For the lowest temperature considerg&d (<) = 0.83, the difference in the co-
existing densities is considerably large, as can be sedwiptase diagram shown in
Fig. 4.2. The width of the corresponding interface, theaagvhere the density goes
from the a gas-like density to a liquid-like density, is oétbrder of4R. Note that on
the liquid side of the interface one can see the onset of altadscy structure.

As we increase the temperature@(5s) = 1.0 and 1.2, the difference in the
coexisting densities becomes smaller and the interfacaerowhich is to be expected
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Figure 4.3: The free interface of a square-well fluid at trdigerent temperatures —
see Fig. 4.20 = 2R is the hard-sphere diameter.

as we approach the critical point. At the critical point, thiéerence between the gas
and the liquid density vanishes and so does the interface.

The free interface density profiles predicted by densitgfiomal theory are smooth
functions which do not display the fluctuations caused byctpllary waves.

4.3.3 Surface Tension of the Free Interface

From the density profileg,(z) of the free interface we can calculate the energy cost
of the formation of the interface. The grand potential ofslistem is given by

= Qlpo(2)].

The energy cost is measured by the liqujdahd vapor ¢) interface tensiory,,, which

is defined by
1 1
Yw = 1 (Q = Qpuir) = A (Q[Po(z)] +pV),
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Figure 4.4: The interfacial tensiop, of a square-well fluid as a function of tempera-
ture.oc = 2R is the hard-sphere diameter.

with the area of the interfacé and2,,,, = —pV'. As the critical point is approached
(from below, i.e.T" < T.), the energy cost of the interface formation becomes smalle
and at the critical point, at which the interface vanishhs, ltquid-vapor interfacial
tensiony,, vanishes.

The result for the interfacial tensioy, is shown in Fig. 4.4. Close to the critical
point, indicated by the full circle, the interfacial tensig, vanishes with a power law,
according to the theory of critical phenomena. However,ekigonent of the power
law is predicted by density functional theory is the (ineat) mean-field exponent.
To determine the correct power law is quite involved andlstalbe discussed here.

4.3.4 Square-Well Fluid at a Hard Wall

The next problem we consider is the inhomogeneous densitghiition of a square-
well fluid close to a planar hard-wall. For a particular ie&ting behavior, we restrict
our considerations here to temperatureiselow the critical temperature, i.&. < T,
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Figure 4.5: The path through the phase diagram is indicayethé full line. The
dashed line is a guide to the eye.

and to liquid densitieg,,;., away from the binodal line. The path we take in the phase
diagram is shown in Fig. 4.5. We fix the temperatur&'atss) = 1.0 and consider
the liquid packing fractiong=0.31000, 0.30610, and 0.30571. The coexisting liquid
density at this temperature isiat = 0.305700789. The actual path is indicated by the
full line in Fig. 4.5 at the temperatufg/(3<) = 1.0. Since all values ofy considered
here are rather close to the coexisting density, we also aéod guide to the eye, the
dashed line.

The density profile of the square-well fluid close to a plarendhwall can be cal-
culated by the following steps:

e choose liquid densityy,,;;. or packing fractiom, 7' < T,

e initialize density profile

p(2) = poutk exp(—FVert(2))
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Figure 4.6: The density profiles of a square-well fluid at anptehard wall along the
path through the phase diagram shown in Fig. 4.5 2R is the hard-sphere diameter.

with
o© z<R
BVeun(2) _{ 0 otherwise
e minimize density functional
0] _
dp(r)

These steps are the same as for the calculation of the densiiigs of the hard-sphere
fluid close to the hard wall. The resulting density profileswhver, are very different.
They are shown in Fig. 4.6.

Through the presence of a van der Waals loop, the pressiwse tdahe binodal
is smaller than the bulk density of the liquidp < pp.. This implies through the
contact theorem mentioned above that the contact dep&ity) of the square-well
fluid has to be smaller than the liquid bulk density. What onddiis the phenomenon
calledcomplete dryingThe hard wall is hydrophobic and prefers the low density gas
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over the high density liquid. If a liquid state point suffictly close to bulk coexistence
is considered, the square-well fluid develops a gas film dlmlee wall. In the drying
case, the density profile of the fluid shows gas-like behaslimse to the wall and a
liquid behavior far away from the wall. In between one findsapar-liquid interface.

The thickness of the gas-like film can be measured by the sxa@sorption’,
defined by

D= [ dz (p(2) = o).

In the complete drying regime, sufficiently close to coestiste one finds
I'x Indpu,

with 60 = pu — peo, the distance in chemical potential from its value at caexisey.....
The scenario of complete drying is completely confirmed bysitg functional theory.

4.3.5 Square-Well Fluid in a Slit

As a final application of density functional theory we comsithe behavior of a square-
well fluid in a slit geometry. The slit is made of two parallertd walls, which are
separated by a distande Again, to keep the application interesting we restrict the
temperature t@" < T, and choose the density to be in the liquid regime.

The steps to calculate the density profile in this geometygaren by

e choose liquid densityy,,;;. or packing fractiom, 7' < T,
e initialize density profile
p(2) = poutk exp(—FVert(2))

with

| oo |¢|>L/)2-R
BVear(2) = { 0  otherwise
e minimize density functional
o«2p]
dp(r)

The state point choose for the present calculation is showg. 4.7. We choose
T/(Be) = 1 andn = 0.32. Now we keep the density of the square-well fluid fixed and
vary the width of the slit.. The resulting density profiles are shown in Fig. 4.8.

We find that for large values df a liquid in the slit. If the slit width is sufficiently
small, the liquid, which is the stable bulk phase, becometastable compared to
a gas phase. This phenomenon is catlagillary evaporation The reason for this
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Figure 4.7: The state point of a square-well fluid in a slitmetry is indicated by the
full circle.

phase transition is a competition between the volume tewmitlas surface term in the
slit geometry. To highlight this competition we recall thhé grand potential) has
the following forms:

e bulk system (unconfined):
Q=—-pV

o fluid at a single wall:
Qp=-—pV +~A

e fluid in a slit of width L:
Q, ~ —pAL + 2vA

If the wall is hydrophobic, as in the case of a hard wall, tHenwall-vapor interface
tensiony, is lower than the wall-liquid interface tension This can compete with the
volume term that prefers the stable bulk phase becausep,.
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Figure 4.8: Density profiles of a square-well fluid in a slibgeetry for three different
values of the slit width..

Note that in the case of a hydrophilic wall one fings> -, and capillary evap-
oration cannot take place. However, a phenomenon callalacgondensation can
be observed if a stable bulk vapor phase is confined in a naslibwf hydrophilic
(sufficiently attractive) walls. In that case a high densgwid, which is metastable in
the bulk, is stabilized by the walls.

The main purpose of this chapter was to show that the samg&duaatof the intrin-
sic excess free enerdy., can be employed to study quite different physical scenarios
simply by changing the external potentidl,,(r). This is part of the power and the
beauty of density functional theory.
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