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1. Classical density functional theory: background

The majority of Journal of Physics: Condensed Matter readers will be familiar with the 
basics of electronic density functional theory (DFT), developed by Hohenberg and Kohn 
(HK) [1] and Kohn and Sham [2] in 1964–5, and will be aware of the importance of its 
applications in solid state physics, quantum chemistry and in computational materials 
science; for recent overviews with historical perspective see [3, 4]. Fewer readers will be 
familiar with classical DFT, a formalism designed to tackle the statistical mechanics of 
inhomogeneous fluids. Whereas in electronic DFT the fundamental variable is the electron 
density in classical DFT this is the average one-body ‘particle’ density where the particles 
refer to atoms or ions, tackled at the Angstrom scale, or to colloidal particles, tackled at the 
micron length scale. Classical DFT has also been developed for polymeric systems and for 
liquid crystals. The equilibrium phenomena investigated using classical DFT range from 
the properties of fluid interfaces, including interfacial structure, surface tension, physics of 
adsorption and interfacial phase transitions such as wetting, to fluids subject to confining 
geometries as occur in porous materials and at structured substrates, and to the chemical 
physics of solvation. The theory of freezing, where the crystal is regarded as a particularly 
relevant case of a very inhomogeneous fluid, is also addressed within DFT. In recent years  
dynamical DFT (DDFT) has become increasingly important as a theory to treat the  
non-equilibrium physics in overdamped systems and this approach has found many  
applications in the study of properties away from equilibrium in colloidal science.

The development of classical DFT has similarities with that of electronic DFT. If one 
chooses to argue that Thomas–Fermi–Dirac theory is a precursor of HK theory, then one 
might also argue that van der Waals’ 1893 treatment of the liquid–gas interface [5], which 
used the particle density as a basic variable, and Onsager’s treatment of the isotropic to 
nematic transition in hard-rod model fluids, using particle position and orientation as  
fundamental variables [6], were early examples of classical DFT. However, without the  
fundamental variational principle of HK the basis of both electronic and classical DFT 
would be questionable. Thus the Guest Editors associate the origins of what is now termed 
classical DFT with papers from the late seventies where various authors built upon ideas 
from HK. More specifically these papers built upon the less-well recognized work of 
Mermin [7] whose beautiful three page paper in 1965 extended HK to non-zero temperature 
and developed a variational principle for the grand potential as a functional of the electron 
density. The Mermin treatment translates straightforwardly to classical (Boltzmann) 
statistics appropriate for most liquids; one has a rigorous variational principle for the grand 
potential as a functional of the average particle density. The first application, using an 
approximate functional based on a partial summation of the gradient expansion due to HK, 
was reported in 1976 by Ebner et al [8] (see also [9]) who studied the surface tension of the 
liquid–gas interface and the density profile of a repulsive wall-liquid interface for a simple 
Lennard–Jones fluid. It is interesting that in the same year Yang et al [10], not knowing 
about the HK-Mermin formalism for electrons, published a formal derivation of square 
gradient theory for a fluid interface. In Appendix A of their paper a Legendre transformation 
from external potential as variable to particle density as variable is introduced1—which 
we now recognize as a key ingredient of DFT. The article by Evans published in 1979 
[12] showed that earlier formal developments in the classical statistical mechanics of 
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inhomogeneous fluids, employing functional methods, could be derived in a straightforward 
way using the variational approach of DFT. Reference [12] also pointed to the possibility of 
developing new approximate treatments based on DFT ideas and to  
applications of these.

Significant developments of classical DFT occurred throughout the 1980s. In particular, 
the introduction of weighted DFT’s, designed to tackle the structure and thermodynamics 
of inhomogeneous hard-sphere (HS) liquids, was influential. The HS model constitutes a 
basic reference system for treating the strongly repulsive interactions between atoms and 
between colloidal particles. Incorporating the effects of HS packing occurring at high local 
density constitutes a major challenge for a DFT description. It was soon recognized that 
a non-local HS functional is required in which a weighted, or smoothed, density enters a 
‘local’ functional. The weighted density is an integral over the actual, highly oscillatory, 
particle density multiplied by a suitable weight function. Early attempts are reviewed in 
[13]. A key contrib ution was that of Tarazona [14] but the major breakthrough came in the 
ingenious work by Rosenfeld in 1989 [15] who introduced fundamental measure theory 
(FMT) to characterize geometrically what the set of weight functions should be. There have 
been several sophisticated improvements on and applications of Rosenfeld’s theory. Some 
of these are described in this Issue.

The roots of DDFT are equally diverse. There were many attempts to formulate  
microscopic descriptions of dynamics within a DFT framework. Reference [12] provides 
an early empirical one. The field was placed on a firm footing by the papers of Marconi and 
Tarazona [16, 17] showing that for Brownian dynamics, appropriate to colloidal particles, 
one can establish a proper theoretical framework. The essence is a drift-diffusion equation 
where the gradient of a local chemical potential drives the one-body particle density. A later 
paper by Archer and Evans [18] provided an alternative derivation of the basic equation of 
DDFT starting from the Smoluchowski equation. The recent treatments of Brader and 
Schmidt [19, 20] are important. They go much further in that the authors derive a variational 
treatment, based upon what they term a power functional, that provides (i) a rigorous frame-
work for formulating dynamical treatments within the DFT formalism and (ii) a systematic 
means of deriving new approximations.

There are several review and introductory articles on classical DFT that we recommend. 
Work on equilibrium DFT up to 1990 is reviewed by Evans [13]. More recent developments 
in HS and hard particle DFT are treated by Roth [21] and by Tarazona et al [22]. Some 
readers might find the two sets of lecture notes from a Summer School in 2009 [23, 24] 
useful introductions. Perhaps the most recent review is that of Lutsko [25]. One should note 
that classical DFT has made it into the text books; the most recent edition of Hansen and 
McDonald contains an admirable treatment [26]. The foundations of DDFT are less well 
documented. These are introduced briefly in [24, 25]; for up to date accounts see [19, 20].

The articles in this Special Issue cover the full gamut of the subject area.

2. Articles in the special issue

This preface is a humble attempt by the Guest Editors to provide a first impression and a 
reading map to the readers of this Special Issue. It should not be taken as an exhaustive and 
authoritative summary of all the outstanding contributions that follow. As a rough guide, 
we distinguish between contributions that develop a new approach or a new functional and 
contributions that apply existing theories to a certain problem. Both areas are very active. 
Moreover these complement each other and demonstrate that there are many productive new 
developments emerging in the classical DFT community. In several manuscripts we find 
both aspects, i.e. construction of new functionals often goes hand in hand with applications.

2.1. Fundamentals and new functionals

There is much activity in the development of new functionals and methods. These efforts 
allow the practitioners of DFT to employ steadily improving theories for a growing number 
of different classes of soft matter systems. As mentioned in section 1, one of the central 
model systems in liquid state physics is the hard-sphere (HS) fluid. While there are  
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several functionals for HS systems within the framework of FMT [15, 21, 22], which 
perform accurately when results are compared to computer simulations, there is scope for 
improvement. Since the range of the FMT weight functions is given by the HS radius it 
follows that the ranges of the direct correlation functions are similarly restricted; this is only 
valid approximately. A generalized FMT approach that extends the range of the HS weight 
functions is described by Hansen-Goos [27].

FMT for HS and mixtures of HS has often proved a good starting point for tackling 
other hard particle systems. However, it is well-known that phase transitions are particularly 
sensitive to details of the actual particle shape. González-Pinto et al [28] investigate the 
phase behavior and correlation functions of a 2D system of parallel hard squares in bulk 
and confined in narrow channels, comparing results from a FMT approach with those from 
transfer matrix methods and simulation. Wittmann et al [29] describe results for the liquid 
crystal phase diagram and the Frank elastic constants of hard spherocylinders, obtained 
using Fundamental Mixed Measure Theory and a new variant of this.

The close link between coarse-graining and DFT methods is described by Ciach and 
Gozdz [30]. Their objective is to construct a DFT for mesoscopic inhomogeneities, e.g. 
those generated in systems with competing interactions.

Molecular systems, most notably water, provide a long-standing challenge for the DFT 
community. The idea of formulating a molecular DFT in terms of density and polarization 
variables is pursued by Jeanmairet et al [31]. Their aim is to develop a DFT, using as input 
the structural properties of bulk water (the solvent), that is suitable for general investigations 
of solvation. The solute acts as an external potential for the ordering of the inhomogeneous 
solvent.

Electrostatic (Coulomb) interactions are important in both simple and complex fluids.  
However, such interactions are difficult to treat within DFT due to the long- ranged character of the 
pair interaction and the necessity of having an accurate treatment of screening in ionic  
systems. In this Special Issue there are two contributions focusing on functionals for 
charged fluids. Roth and Gillespie [32] provide a new interpretation of the thermodynamics 
of the Mean Spherical Approximation for charged HS in terms of the interaction of shells  
of charge. This leads to a new functional for this important model system. The second  
contrib ution, by Härtel et al [33], focuses on dense ionic solutions confined in planar  
capacitors. Here HS packing is treated within FMT while electrostatics are incorporated 
using a mean-field treatment. The framework of DFT allows the authors to investigate  
two-body correlations, measured parallel to the walls, as well as one-body density profiles 
in the electrical double layer.

2.2. Directional interactions, Wertheim perturbation theory and functionals for polymer systems

An important step on the path from a simple to a complex fluid can be made by utilizing 
the Wertheim theory for associating fluids [34] for patchy particles and for polymers. An 
appealing aspect of the Wertheim approach is that it can be extended to inhomogeneous 
systems; for a formulation within the framework of FMT see [35]. Several contributors to 
this issue present new extensions of the Wertheim approach.

The potential richness of the bulk phase behavior in such systems is demonstrated for 
models with temperature activated patches—see de las Heras and Telo da Gama [36]. 
An extension of Wertheim’s theory, which was designed originally for only one bond per 
patch, is presented by Haghmoradi et al [37]. Their DFT treatment of an inhomogeneous 
polymeric fluid accounts for multiple bonds per patch and therefore includes chain and ring 
configurations.

Wertheim’s approach [34, 35] is developed for 2D polymers by Słyk et al [38]. The 
resulting DFT is used to investigate the adsorption of polymeric monolayers, making 
connections with self-consistent field theoretical treatments. An alternative approach to 
polymer DFT originates with Woodward and co-workers in the 1990s. In this issue Wang 
et al [39] extend the theory to living random copolymers and employ this to investigate a 
model of amyloidal peptide adsorption on surfaces with varying attraction.

The contributions in this subsection illustrate the applicability and usefulness of DFT for 
complex soft matter systems.

J. Phys.: Condens. Matter 28 (2016) 240401
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2.3. Phase transitions and interfaces between phases

Some of the earliest applications of classical DFT [12] were centered on problems of phase 
transitions and how to describe the inhomogeneous density distributions that arise in the 
regions where different phases meet. Such problems continue to attract much attention as 
can be seen from several contributions in the present issue.

Nanobubbles, which are generically difficult to treat in the grand canonical ensemble  
and hence within DFT, are investigated by Okamoto and Onuki [40] using a binary mixture 
model for a solvent with traces of solute. The authors study the stability of a solute-rich gas 
bubble immersed in a liquid solvent, mimicking water, using equilibrium DFT and also present a 
treatment of the bubble dynamics that evolve on decompressing the liquid.

Although the liquid–vapor interface is well-investigated, there remain fundamental  
questions about the nature of interfacial fluctuations and two-body correlations even for a 
simple (Lennard–Jones type) fluid. A controversial topic concerns the validity and usefulness  
of the concept of a wavelength-dependent surface tension. Using different approaches, 
Parry et al [41] and Chacón and Tarazona [42] address this topic, targeting the connection 
between DFT and capillary wave models.

Ibagon et al [43] investigate the three-phase contact line formed by the liquid–gas 
interface of an electrolyte at a charged substrate. Using DFT for a lattice model, the authors 
determine the structure of the contact line and describe how the line tension depends on 
surface charge density and temperature.

Koga and Widom [44] use square-gradient DFT to determine interfacial properties for 
two simple models of a three-component fluid mixture that exhibit critical endpoints and 
a tricritical point. At the latter, where three previously distinct phases lose their separate 
identities and become a single phase, there are profound implications for the interfacial 
tensions.

As stated earlier, a crystal can be considered as an extremely inhomogeneous fluid 
and is therefore accessible to treatment by DFT. Archer and Malijevský [45] investigate 
surface freezing and melting at a planar wall and in a wedge for a 2D system of soft, purely 
repulsive particles. Using a mean-field DFT, equivalent to the random phase approximation, 
they find a rich phenomenology emerging. A new DFT treatment of the crystalline 
phase of the Asakura–Oosawa (AO) model of a colloid–polymer mixture is described by 
Mortazavifar and Oettel [46]. Results for the full phase diagram (gas, liquid and solid) of 
the AO mixture, obtained within the context of a single FMT based theory, are in good 
agreement with available simulation data.

2.4. Dynamics

In section 1 we mentioned that overdamped Brownian dynamics in classical systems can 
be treated within the original DDFT approach [16–18] or the generalized framework of the 
power functional [19, 20]. DDFT in its original form builds directly on the equilibrium free 
energy functional and, as such, is well-suited for immediate applications to colloidal flow in 
solvents and to other dynamical phenomena in colloid physics.

Zimmermann et al [47] employ DDFT to investigate the flow of 2D colloidal crystals and 
fluids driven through a linear channel with a constriction. The functional that is employed 
accounts for the bulk freezing transition in the model, i.e. particles with dipole–dipole  
interactions. DDFT captures the flow scenarios found in particle resolved Brownian dynamics 
simulations.

An extension of DDFT to cluster formation arising from chemical reactions is described 
by Lutsko [48]. The impetus for the study is an attempt to understand the occurrence of 
dense, disordered clusters which appear to play a role in a nucleation pathway for protein 
crystallization.

The derivation of generalized diffusion equations, that incorporate long-ranged  
hydrodynamic interactions, is discussed by Bleibel et al [49]. The authors use DDFT to 
develop a theory for the diffusion behavior of a colloidal monolayer at a fluid interface 
focusing on long wavelength anomalies.

Binary mixtures of rod-like colloids undergoing shear are investigated by Lugo-Frías and 
Klapp [50]. Starting with a microscopic DFT, the authors develop a mesoscopic free energy 
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functional in terms of orientational order parameter tensors. Doi–Hess order parameter 
dynamics is then employed to reveal a rich variety of dynamical states.

DDFT is an approximate theory. Inspired by results for exactly solvable limits, Scacchi 
et al [51] describe how to make systematic corrections to DDFT for the important case of 
driven systems and show that results for Poiseuille flow are in good agreement with those 
from Brownian dynamics simulations.

An important conceptual question about DDFT is addressed by de las Heras et al [52]. 
Given its foundations, equilibrium DFT lives naturally in the grand canonical ensemble. 
However, the dynamics treated by DDFT conserves the (average) number of particles in the 
system. The contributors argue that the particle conserving dynamical theory presented is 
‘applicable to any system for which a grand canonical DFT is available’.
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