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An improved kinetic theory approach for calculating the thermal conductivity
of polyatomic gases
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Institut für Chemie, Universität Rostock, 18059 Rostock, Germany
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A new kinetic theory approach for calculating the thermal conductivity of a dilute polyatomic gas from the intermolecular pair
potential is presented. The contributions due to internal degrees of freedom have been separated into a classical rotational and
a quantum-mechanical vibrational part. Assuming that the vibrational states of the molecules do not significantly influence
the collision trajectories, and that vibrationally inelastic and vibrationally resonant collisions are rare, we have obtained a
simple self-diffusion mechanism for the vibrational contribution to the thermal conductivity. For non-polar gases like methane
or nitrogen, the new approach yields thermal conductivity values that are very close to those obtained with the previously
used kinetic theory approach. However, for polar gases like hydrogen sulphide and water vapour, the values obtained with
the new scheme are much closer to the most accurate experimental data.
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1. Introduction

The relationship between the shear viscosity η and the ther-
mal conductivity λ of a dilute monatomic gas, λ/η = f cV ,
has already been found empirically by Maxwell. Here,
cV = cV,tr = 3R/2M is the specific heat capacity at con-
stant volume and f = 5/2. For such a gas, the heat transport
in a temperature gradient is determined by binary colli-
sions, in which translational energy is exchanged between
the particles. Using the kinetic theory of gases, Chapman
[1] showed that binary collisions equally influence viscosity
and thermal conductivity, and that f = 5/2.

For polyatomic gases, where cV = cV,tr + cint = cV,tr +
crot + cvib (contributions due to electronic excitations can
usually be neglected), experimental data for η and λ showed
that f < 5/2 [2]. The dynamics of collisions between
polyatomic molecules is far more complex than in the
monatomic case due to the anisotropic intermolecular po-
tential. Not only translational energy is exchanged during
collisions, but also internal energy. There is no simple ki-
netic theory relation for determining the value of f .

As an empirical improvement, Eucken [3] suggested
to decompose the thermal conductivity into two or three
independent parts,

λ = λtr + λint = λtr + λrot + λvib, (1)

where the individual contributions are given by λtr =
ηftrcV,tr with ftr = 5/2, λint = ηfintcint with fint = 1, λrot =
ηfrotcrot with frot = 1 and λvib = ηfvibcvib with fvib = 1.
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The Eucken formula led to an improved description of ex-
perimental data, but the agreement was not satisfactory
over an extended temperature range. It was assumed that
fint is temperature dependent [4], with experimental data
indicating 0.7 < fint < 1.3 [4].

Chapman and Cowling [5] as well as Schäfer [6]
proposed a modified Eucken formula. They assumed a
diffusion mechanism for internal energy transport with
fint = Dint/η, where Dint = ρDint is a density-independent
diffusion coefficient for internal energy. Thus,

λ = λtr + Dintcint = λtr + Drotcrot + Dvibcvib. (2)

To a first-order approximation, this expression could be jus-
tified theoretically [4,7,8], but did not result in a significant
improvement since the quantities Dint, Drot and Dvib were
unknown and were usually replaced by the self-diffusion
coefficient, Dself = ρDself .

In 1962, Mason and Monchick [4] showed, based on
the then available kinetic theories for polyatomic gases of
Wang Chang and Uhlenbeck [9,10] (semi-classical) and of
Taxman [11] (classical), that there is a coupling between λtr

and λint due to inelastic collisions, resulting in a decrease of
λtr and an increase of λint. At that time, the generalised cross
sections contributing to the thermal conductivity could not
yet be computed. Therefore, these cross sections were ap-
proximated [4,12] using collision integrals for spherical
particles, diffusion coefficients for internal energies (Drot,
Dvib) and collision numbers (Zrot, Zvib) or relaxation times
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(τrot, τvib) for energy exchange between translational and
internal degrees of freedom. Some of these quantities were
accessible from experiments. However, attempts to fit the
unknown quantities and their temperature dependence to
experimental data for the thermal conductivity were only
moderately successful [13–15].

Today, highly accurate ab initio pair potentials and effi-
cient classical trajectory (CT) codes for calculating gener-
alised cross sections for rigid molecules of arbitrary struc-
ture are available [16,17]. For the calculation of the ther-
mal conductivity, Bich and co-workers [18,19] developed
a scheme based on the kinetic theory of Wang Chang and
Uhlenbeck [9,10] to correct the rigid-rotor cross sections
for the effects of vibrational energy transport. For carbon
dioxide [19], methane [20], hydrogen sulphide [21,22] and
nitrogen [23], this procedure resulted in satisfactory agree-
ment between theoretically calculated thermal conductivity
values and the most accurate experimental data. For water
vapour [24], the agreement with experimental data was only
satisfactory for temperatures up to about 500 K, where the
vibrational degrees of freedom are not significantly excited.
At higher temperatures, the calculated values systematically
deviate from the experimental data. At 1000 K, average de-
viations of about −5% were observed.

In this paper, we present an improved approach to cor-
rect thermal conductivity values obtained from CT calcula-
tions with rigid rotors for the effects of vibrational energy
transport. We have tested the new approach by calculating
the thermal conductivities of CH4, N2, CO2, H2S and H2O
in the dilute-gas limit.

2. Formal kinetic theory for the thermal
conductivity of molecular gases

The transport properties of a dilute molecular gas can be
obtained from the first-order approximation of the gener-
alised Boltzmann equation [25]. In this approximation, it
is assumed that the gas is not too far from thermodynamic
equilibrium, and that only binary collisions occur. The one-
particle distribution function can then be written as

f = f (0)(1 + φ), (3)

where f (0) is the one-particle distribution function for the
local equilibrium,

f (0)(r, t) = n(r, t)

Zint

(
m

2πkBT (r, t)

)3/2

× exp
[−(

W 2 + Eint
)]

,

W =
(

m

2kBT

)1/2

C, Eint = Eint

kBT
, (4)

and φ is a perturbation function, φ � 1. With this ansatz,
we obtain the linearised Boltzmann equation [25],

∂ ln f (0)

∂t
+ c · ∇ ln f (0) = −Rφ. (5)

In the above equations, n is the number density, m is the
molecular mass, Zint is the partition function for the internal
degrees of freedom, c is the particle velocity, C is the par-
ticle velocity relative to the centre-of-mass velocity of the
volume element, W is the reduced particle velocity, Eint is
the reduced internal energy and R is the linearised collision
operator. The time derivative in Equation (5) can be elim-
inated using conservation equations from the zeroth-order
solution of the Boltzmann equation and we obtain [25]

∂ ln f (0)

∂t
+ c · ∇ ln f (0) =

∑
α

�α � Xα = −Rφ, (6)

where �α is a microscopic flux and Xα is the respective
thermodynamic force. For the thermal conductivity, we only
need to consider the energy flux �E , which is caused by a
temperature gradient XE = ∇ ln T :

− Rφ = �E · XE. (7)

The perturbation function φ is expanded in terms of an
orthonormal set of basis tensors �

pqst
k [25,26] (if p = 0 or

q = 0, the tensor rank k is unique and can be omitted) with
expansion coefficients Xpqst ,

φ = −1

n

∑
qst

�
1qst
1 X1qst · XE, (8)

so that

1

n

∑
qst

R�
1qst
1 X1qst · XE = �E · XE. (9)

After multiplying with the basis vector �
1qst
1 , we can take

the equilibrium average and obtain a system of linear equa-
tions for the coefficients X1q ′s ′t ′ ,

1

n

∑
q ′s ′t ′

〈
�

1qst
1

∣∣R�
1q ′s ′t ′
1

〉
0
X1q ′s ′t ′ · XE =

〈
�

1qst
1

∣∣�E
〉
0
· XE.

(10)
The basis vectors �

1qst
1 can be written as

�
1qst
1 = Nqst

[
Wjq

]
1
L(3/2)

s (W 2)R(q)
t (Eint), (11)

where jq is a traceless q-fold tensor product of the re-
duced angular momentum vector j with itself, [. . .]k de-
notes a contraction (explained in Ref. [27]), L

(3/2)
s (W 2)
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is an associated Laguerre polynomial and R
(q)
t (Eint) is a

Wang Chang–Uhlenbeck polynomial [9,10,26]. The classi-
cal limit of R

(q)
t (Eint) for a rigid rotor is L

(q)
t (Erot) for a linear

rotor [28] and L
(q+1/2)
t (Erot) for a non-linear rotor [17]. The

normalisation constant Nqst is chosen so that

〈
�

1qst
1

∣∣�1q ′s ′t ′
1

〉
0

= δqq ′δss ′δtt ′�
(1), (12)

where �(1) is the isotropic projection tensor of rank two
[27]. The microscopic energy flux �E can be expressed in
terms of �1010 and �1001 as a sum of two contributions,

�E = �E
tr + �E

int = C1010�1010 + C1001�1001, (13)

where C1010 = (5kBT/2m)1/2 and C1001 = (cintT )1/2 =
(CintT/m)1/2. The expression

〈
�

1qst
1

∣∣R�
1q ′s ′t ′
1

〉
0

in Equa-
tion (10) can be written as [25]

〈
�

1qst
1

∣∣R�
1q ′s ′t ′
1

〉
0

= n〈v〉0

[
σ̄ ′

(
1q s t

1q ′s ′t ′

)(1)

+ σ̄ ′′
(

1q s t

1q ′s ′t ′

)(1)
]

�(1)

= n〈v〉0S̄

(
1q s t

1q ′s ′t ′

)(1)

�(1). (14)

Here, 〈v〉0 = 4(kBT/πm)1/2 is the average relative ther-

mal speed and σ̄ ′(1q s t
1q ′s ′t ′

)(1)
, σ̄ ′′(1q s t

1q ′s ′t ′
)(1)

and S̄
(1q s t

1q ′s ′t ′
)(1)

are
temperature-dependent generalised cross sections. In this
work, we use only barred cross sections [25,29], and the
overbar will be omitted when the barred and unbarred cross
sections are identical. Using Equations (12), (13) and (14),
the system of linear equations (10) can now be written as

∑
q ′s ′t ′

S̄

(
1q s t

1q ′s ′t ′

)(1)

X1q ′s ′t ′

= δq0

〈v〉0

(
δs1δt0C

1010 + δs0δt1C
1001

)
. (15)

The thermal conductivity is obtained from the non-
equilibrium average of the microscopic energy flux [25],

q = nkBT
〈
�E

〉
ne

= nkBT
〈
�E

∣∣φ〉
0

= −kBT
∑
qst

〈
�E

∣∣�1qst
1

〉
0
X1qst · XE = −λ∇T .

(16)

It follows that

λ = λtr + λint = kBC1010X1010 + kBC1001X1001. (17)

To obtain the first-order approximation for the thermal
conductivity, we need to consider only the basis vectors
�1010 and �1001 in the expansion of the perturbation func-
tion φ. The system of linear equation (15) then becomes

S(1010) X1010 + S

(
1010

1001

)
X1001 = C1010

〈v〉0
,

S

(
1001

1010

)
X1010 + S(1001) X1001 = C1001

〈v〉0
, (18)

where S(10st) ≡ S
(10st

10st

)
. The result for the first-order ap-

proximation is

[λ]1 = [λtr]1 + [λint]1

= 5k2
BT

2m〈v〉0

(
S

(1)
11 − rS

(1)
21

S(1)
+ r2S

(1)
22 − rS

(1)
12

S(1)

)
,

(19)

where S(1) is a determinant of cross sections,

S(1) =

∣∣∣∣∣∣∣∣
S(1010) S

(
1010

1001

)

S

(
1001

1010

)
S(1001)

∣∣∣∣∣∣∣∣
, (20)

and S
(1)
ij are its minors. The parameter r is given by

r = C1001

C1010
=

(
2Cint

5kB

)1/2

. (21)

Second-order approximations were derived by Kagan and
Afanas’ev [30] and by Maitland et al. [31].

3. Obtaining thermal conductivity values for
vibrationally excited molecules from rigid-rotor
cross sections

Today the CT approach is the method of choice for comput-
ing generalised cross sections [32]. The colliding molecules
are approximated as rigid rotors (Cint,rr = Crot) in the
CT calculations. General expressions for the rigid-rotor

cross sections S̄
(
p q s t
p′q ′s ′t ′

)(k)

rr
= σ̄ ′(p q s t

p′q ′s ′t ′
)(k)

rr
+ σ̄ ′′(p q s t

p′q ′s ′t ′
)(k)

rr
,

suitable for numerical evaluation, have been provided by
Curtiss [28] and Dickinson et al. [17] for linear and non-
linear rigid rotors, respectively. However, the resulting ther-
mal conductivity values λrr only account for translational
and rotational energy transport. Using Cint = Crot + Cvib

instead of Cint,rr = Crot in Equation (21) is not sufficient to
fully account for vibrational effects.

Bich et al. [18] investigated the influence of vibrational
excitation on the individual cross sections that enter the
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first-order approximation of the thermal conductivity. As-
suming that the vibrational states of the molecules do not
change during a collision, and that the influence of the
vibrational motion on the trajectories is negligible, they
obtained

S(1010) = S(1010)rr, (22)

S

(
1010

1001

)
=

(
Crot

Cint

)1/2

S

(
1010

1001

)
rr

, (23)

S

(
1001

1010

)
=

(
Crot

Cint

)1/2

S

(
1001

1010

)
rr

, (24)

S(1001) = Crot

Cint
S(1001)rr + Cvib

Cint
σ ′(1000)rr. (25)

The cross section σ ′(1000)rr is related to the first-order
approximation of the self-diffusion coefficient,

[Dself ,rr]1 = kBT

〈v〉0σ ′(1000)rr
. (26)

This means that the vibrational energy is transported only
by the movement of the molecules. Bock et al. [19] sug-
gested to correct the additional cross sections needed to
calculate higher order approximations using the approxi-
mate relationship

S̄

(
1q s t

1q ′s ′t ′

)(1)

≈
(

Crot

Cint

)(t+t ′)/2

S̄

(
1q s t

1q ′s ′t ′

)(1)

rr

. (27)

Relations (22)–(25) and (27) were utilised in Refs [19–24]
to calculate the thermal conductivities of CO2, CH4, H2O,
H2S and N2 in the dilute-gas limit. The agreement with
the best experimental data is satisfactory in most cases.
A striking exception are the strong systematic deviations
found for H2O at high temperatures [24], indicating that
there might be deficiencies in the kinetic theory approach
used so far.

One of the shortcomings is the use of a single Wang
Chang–Uhlenbeck polynomial for the total reduced internal
energy Eint in the basis functions �

pqst
k . In order to increase

the flexibility of the basis functions, it has been suggested
[13,33–35] to use a product of Wang Chang–Uhlenbeck
polynomials for the different internal degrees of freedom.
First-order expressions for the thermal conductivity have
been derived using such an approach for both pure gases
[13,33] and gas mixtures [35].

We follow this approach and define basis functions
�

pqstu
k as products of rigid-rotor basis functions �

pqst
k,rr and

normalised Wang Chang–Uhlenbeck polynomials of order

u in the total reduced vibrational energy Evib,

�
pqstu
k = �

pqst
k,rr Ru(Evib). (28)

The normalised Wang Chang–Uhlenbeck polynomials sat-
isfy the orthogonality condition

〈Ru(Evib)|Ru′(Evib)〉0 = δuu′ . (29)

The first two polynomials are

R0(Evib) = 1, (30)

R1(Evib) =
(

kB

Cvib

)1/2

(Evib − 〈Evib〉0) . (31)

Using the basis functions �
pqstu
k , the heat flux �E is given

as a sum of three contributions,

�E = �E
tr + �E

rot + �E
vib

= C10100�10100 + C10010�10010 + C10001�10001,

(32)

where C10100 = (5kBT/2m)1/2, C10010 = (CrotT/m)1/2 and
C10001 = (CvibT/m)1/2. The generalisation of the system of
linear equation (15) is given by

∑
q ′s ′t ′u′

S̄

(
1q s t u

1q ′s ′t ′u′

)(1)

X1q ′s ′t ′u′

= δq0

〈v〉0

(
δs1δt0δu0C

10100 + δs0δt1δu0C
10010

+ δs0δt0δu1C
10001

)
. (33)

The thermal conductivity is then obtained as

λ = λtr + λrot + λvib

= kBC10100X10100 + kBC10010X10010

+ kBC10001X10001. (34)

For the first-order approximation, we need to consider
the basis vectors �10100, �10010 and �10001, and obtain

S(10100) X10100 + S

(
10100

10010

)
X10010

+S

(
10100

10001

)
X10001 = C10100

〈v〉0
,

S

(
10010

10100

)
X10100 + S(10010) X10010
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+S

(
10010

10001

)
X10001 = C10010

〈v〉0
,

S

(
10001

10100

)
X10100 + S

(
10001

10010

)
X10010

+S(10001) X10001 = C10001

〈v〉0
. (35)

If the vibrational states of the molecules do not change dur-
ing collisions, and if the influence of the vibrational motion
on the trajectories is negligible (the same assumptions as
in the approach of Bich and co-workers [18,19]), it can be
shown that

σ̄ ′
(

p q s t u

p′q ′s ′t ′u′

)(k)

= σ̄ ′
(

p q s t

p′q ′s ′t ′

)(k)

rr

〈Ru(Evib)|Ru′(Evib)〉0

= σ̄ ′
(

p q s t

p′q ′s ′t ′

)(k)

rr

δuu′, (36)

σ̄ ′′
(

p q s t u

p′q ′s ′t ′u′

)(k)

= σ̄ ′′
(

p q s t

p′q ′s ′t ′

)(k)

rr

× 〈Ru(Evib)〉0 〈Ru′(Evib)〉0

= σ̄ ′′
(

p q s t

p′q ′s ′t ′

)(k)

rr

δu0δu′0. (37)

Thus, the cross sections S̄
(
p q s t u
p′q ′s ′t ′u′

)(k)
can be expressed

in terms of the rigid-rotor cross sections S̄
(
p q s t
p′q ′s ′t ′

)(k)

rr
and

σ̄ ′(p q s t
p′q ′s ′t ′

)(k)

rr
,

S̄

(
p q s t 0

p′q ′s ′t ′0

)(k)

= S̄

(
p q s t

p′q ′s ′t ′

)(k)

rr

, (38)

S̄

(
p q s t u

p′q ′s ′t ′u′

)(k)

= σ̄ ′
(

p q s t

p′q ′s ′t ′

)(k)

rr

δuu′ ,

u + u′ � 1. (39)

The system of linear equation (35) then becomes

S(1010)rr X
10100 + S

(
1010

1001

)
rr

X10010 = C10100

〈v〉0
,

S

(
1001

1010

)
rr

X10100 + S(1001)rr X
10010 = C10010

〈v〉0
,

σ ′(1000)rr X
10001 = C10001

〈v〉0
.

(40)

Solving the first two equations for X10100 and X10010, and
substituting into Equation (34) yields the rigid-rotor ther-
mal conductivity [λrr]1. From the third equation, we obtain
the vibrational contribution,

[λvib]1 = kBC10001X10001 = CvibkBT

m〈v〉0σ ′(1000)rr

= [Dself ,rr]1 cvib. (41)

Thus, the total thermal conductivity is now given as

[λ]1 = [λrr]1 + [Dself ,rr]1 cvib. (42)

To obtain a second-order approximation, [λ]2, we con-
sider the basis vectors �10100, �10010, �10001, �10200,
�10020, �10110, �10101, �10011, �12000

1 and �11000
1 . Using

Equations (38) and (39), we obtain two independent sys-
tems of linear equations, one for the rigid-rotor contribu-
tion, [λrr]2, and one for the vibrational contribution, [λvib]2.
The rigid-rotor part is given by

[λrr]2 = 5k2
BT

2m〈v〉0

(
S

(2)
11 − rS

(2)
21

S(2)
+ r2S

(2)
22 − rS

(2)
12

S(2)

)
,

(43)

with r = (2Crot/5kB)1/2 and

S(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S(1010)rr S
(1010

1001

)
rr

S
(1010

1020

)
rr

S
(1010

1011

)
rr

S
(1010

1002

)
rr

S̄
(1010

1200

)
rr

S̄
(1010

1100

)
rr

S
(1001

1010

)
rr

S(1001)rr S
(1001

1020

)
rr

S
(1001

1011

)
rr

S
(1001

1002

)
rr

S̄
(1001

1200

)
rr

S̄
(1001

1100

)
rr

S
(1020

1010

)
rr

S
(1020

1001

)
rr

S(1020)rr S
(1020

1011

)
rr

S
(1020

1002

)
rr

S̄
(1020

1200

)
rr

S̄
(1020

1100

)
rr

S
(1011

1010

)
rr

S
(1011

1001

)
rr

S
(1011

1020

)
rr

S(1011)rr S
(1011

1002

)
rr

S̄
(1011

1200

)
rr

S̄
(1011

1100

)
rr

S
(1002

1010

)
rr

S
(1002

1001

)
rr

S
(1002

1020
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For the vibrational part, we have

[λvib]2 = CvibkBT

m〈v〉0

S
′(2)
11

S ′(2)
= [Dself ,rr]2 cvib, (45)
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The total thermal conductivity is again the sum of both
contributions,

[λ]2 = [λrr]2 + [Dself ,rr]2 cvib. (47)

To the best of our knowledge, only the first-order ap-
proximation (26) was previously known for the self-
diffusion coefficient of a molecular gas. Note the simi-
larity of Equations (42) and (47) with the modified Eucken
formula (2).

4. Results and discussion

We have re-evaluated the thermal conductivities of carbon
dioxide [19], methane [20], water vapour [24], hydrogen
sulphide [21,22] and nitrogen [23] in the dilute-gas limit
using the new approach. For hydrogen sulphide and water
vapour, we have also improved the precision of the gener-
alised cross sections by increasing the number of classical
trajectories by about a factor of 4 for H2S, and about a fac-
tor of 5 for H2O. The trajectories and the generalised cross
sections have been computed using an extended version of
the TRAJECT software code [16,17]. In the present CT cal-
culations for H2O, we have used the CC-pol ab initio pair
potential of Bukowski and co-workers [36,37]. Of the four
pair potentials tested in Ref. [24], it gave the best agreement
with accurate experimental data for the shear viscosity of
dilute water vapour.

For CH4, N2 and CO2, the new thermal conductivity
values agree to better than ±0.15% with the values result-
ing from the procedure of Bich and co-workers [18,19].
However, for H2S and H2O, the new values differ by up to
+1.0% and +5.6%, respectively. The values resulting from
the different approaches are given for H2S in Table 1, and
for H2O in Table 2. The CV values listed in the tables have
been calculated using the recommended equations of state
[38,39].

There are only very few experimental data-sets for the
thermal conductivity of H2S vapour. The data of Correia
et al. [40] for temperatures between 277 K and 594 K were
found to be of high quality [21], with deviations of +1.2%

to +1.8% from the theoretically calculated values of Ref.
[21]. Using the more precise values of the generalised cross
sections from the present CT calculations, we obtain devi-
ations of +1.0% to +1.6% for the procedure of Bich and
co-workers. If we apply the new approach, the deviations
are reduced to only +0.3% to +0.8%.

The thermal conductivity of water vapour has been ex-
tensively studied experimentally. In Figure 1, calculated val-
ues are compared with selected experimental data [41–49]
as well as with the two most recent correlations of the
International Association for the Properties of Water and
Steam (IAPWS) [50,51]. The values obtained with the pro-
cedure of Bich and co-workers progressively underestimate
the experimental data with increasing temperature, whereas
the values resulting from the approach of this paper show
excellent agreement with the experimental data for all tem-
peratures. Note that the thermal conductivity values of Ref.

Table 1. Thermal conductivity (in mW m−1 K−1) of dilute hydro-
gen sulphide gas calculated using the rigid-rotor approach ([λrr]1,
[λrr]2), the approach of Bich and co-workers [18,19] ([λB]1, [λB]2)
and the approach of this paper ([λ]1, [λ]2).

T/K CV /R [λrr]1 [λB]1 [λ]1 [λrr]2 [λB]2 [λ]2

180 3.01 8.05 8.07 8.07 8.07 8.09 8.09
200 3.01 8.97 9.00 9.00 8.99 9.03 9.03
225 3.03 10.14 10.21 10.22 10.17 10.24 10.25
250 3.05 11.34 11.48 11.50 11.37 11.51 11.53
275 3.07 12.56 12.80 12.83 12.60 12.84 12.87
300 3.10 13.79 14.18 14.22 13.84 14.22 14.27
325 3.14 15.03 15.60 15.67 15.09 15.66 15.72
350 3.18 16.28 17.07 17.16 16.35 17.14 17.22
375 3.23 17.53 18.59 18.70 17.60 18.67 18.78
400 3.27 18.78 20.14 20.29 18.86 20.23 20.37
450 3.37 21.26 23.36 23.56 21.36 23.48 23.67
500 3.48 23.70 26.70 26.96 23.83 26.84 27.09
550 3.58 26.10 30.14 30.46 26.25 30.32 30.61
600 3.69 28.46 33.69 34.05 28.63 33.90 34.23
650 3.80 30.77 37.31 37.72 30.97 37.56 37.92
700 3.91 33.03 41.02 41.45 33.26 41.29 41.69
750 4.02 35.24 44.77 45.23 35.50 45.09 45.50
800 4.13 37.41 48.58 49.05 37.69 48.92 49.35
900 4.33 41.61 56.26 56.75 41.95 56.67 57.11
1000 4.52 45.66 63.97 64.45 46.05 64.43 64.87
1100 4.70 49.56 71.62 72.08 50.00 72.12 72.56
1200 4.85 53.33 79.16 79.59 53.81 79.71 80.14
1400 5.12 60.53 93.77 94.15 61.09 94.40 94.81
1600 5.32 67.29 107.7 108.0 67.93 108.4 108.8
1800 5.49 73.64 120.8 121.1 74.36 121.6 122.0
2000 5.62 79.60 133.3 133.6 80.41 134.1 134.6
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Table 2. Thermal conductivity (in mW m−1 K−1) of dilute water
vapour calculated using the rigid-rotor approach ([λrr]1, [λrr]2),
the approach of Bich and co-workers [18,19] ([λB]1, [λB]2) and
the approach of this paper ([λ]1, [λ]2).

T/K CV /R [λrr]1 [λB]1 [λ]1 [λrr]2 [λB]2 [λ]2

250 3.02 14.89 14.96 14.98 15.03 15.10 15.12
275 3.03 16.53 16.64 16.67 16.68 16.79 16.83
300 3.04 18.20 18.38 18.43 18.36 18.54 18.59
325 3.06 19.91 20.17 20.25 20.07 20.34 20.42
350 3.07 21.65 22.03 22.15 21.82 22.21 22.33
375 3.10 23.43 23.97 24.13 23.61 24.16 24.32
400 3.12 25.25 25.98 26.21 25.44 26.18 26.40
450 3.18 28.99 30.22 30.62 29.20 30.45 30.83
500 3.24 32.87 34.75 35.36 33.09 35.01 35.60
550 3.30 36.85 39.54 40.44 37.09 39.83 40.69
600 3.37 40.90 44.57 45.80 41.17 44.91 46.09
650 3.44 45.01 49.82 51.44 45.31 50.21 51.75
700 3.51 49.15 55.28 57.33 49.47 55.71 57.67
750 3.58 53.30 60.92 63.44 53.65 61.42 63.81
800 3.66 57.44 66.74 69.75 57.83 67.30 70.17
900 3.81 65.65 78.85 82.92 66.12 79.58 83.43
1000 3.96 73.71 91.53 96.67 74.29 92.45 97.29
1100 4.12 81.60 104.7 110.8 82.30 105.8 111.6
1200 4.26 89.30 118.1 125.3 90.13 119.5 126.2
1300 4.41 96.81 131.9 139.9 97.79 133.5 140.9
1400 4.54 104.1 145.7 154.5 105.3 147.6 155.7
1600 4.78 118.3 173.7 183.5 119.8 176.0 185.1
1800 4.98 132.0 201.4 211.9 133.7 204.2 213.9
2000 5.16 145.2 228.7 239.6 147.2 231.9 241.9
2250 5.33 161.2 262.0 273.0 163.5 265.7 275.8
2500 5.48 176.7 294.4 305.2 179.3 298.4 308.3

Figure 1. Deviations, � = (λ − [λ]2)/[λ]2, of experimental
data, of experimentally based correlations and of values calcu-
lated using the procedure of Bich and co-workers [18,19] from
values calculated using the approach of this paper for the thermal
conductivity of dilute water vapour as a function of temperature:
•, Vargaftik and Tarzimanov [41]; ◦, Vargaftik and Zimina [42]; �,
Le Neindre et al. [43]; �, Vargaftik et al. [44]; �, Popov and Dul-
nev [45]; �, Curtiss et al. [46]; �, Miroshnichenko and Makhrov
[47]; �, Tufeu and Le Neindre [48]; �, Tarzimanov and Gabitov
[49]; – – –, IAPWS 2008 [50]; – · –, IAPWS 2011 [51]; ––––,
[λ]2 values from the procedure of Bich and co-workers [18,19].

[24] (obtained with the approach of Bich and co-workers)
were used in the development of the IAPWS 2011 [51] cor-
relation to supplement the experimental data-sets at very
low and very high temperatures [52].

Apparently, the approach of Bich and co-workers works
well only for non-polar gases. In such gases, mostly transla-
tional energy is exchanged during collisions. By contrast, in
polar gases significant exchange of rotational energy occurs
due to the long-range electrostatic interactions, whereas
changes in the vibrational energy levels are still rare (and
neglected in the approaches of Bich and co-workers and of
this paper). It is therefore reasonable to assume that the non-
equilibrium distribution function behaves differently with
respect to the rotational and vibrational energies. If we use
the basis functions �

pqst
k , the non-equilibrium distribution

function depends only on the total internal energies of the
molecules. On the other hand, the basis functions of this
paper, �

pqstu
k , allow to distinguish between rotational and

vibrational degrees of freedom, so that the non-equilibrium
distribution function can be approximated more accurately.

One weakness of our new approach is that it does not ac-
count for vibrationally inelastic and vibrationally resonant
collisions. In fact, for water vapour vibrationally inelas-
tic collisions occur more often than for most other gases
[53,54]. However, since the agreement of the calculated
thermal conductivity values for water vapour with the ex-
perimental data is already excellent, we expect that the
effect on the thermal conductivity is rather small.

We estimate the uncertainty of the [λ]2 values for dilute
water vapour (last column of Table 2) to be of the order of
±2% for temperatures between 500 and 1000 K, increasing
to ±4% at 250 K and 2500 K. For dilute hydrogen sulphide,
we estimate the uncertainties to be of the order of ±1%
between 300 and 500 K, increasing to ±2% at 180 K and
2000 K. Note that these uncertainty estimates do not take
into account an increase of the thermal conductivity due to
partial dissociation [55] at high temperatures.

5. Conclusions

We have presented a new kinetic theory approach for cal-
culating the thermal conductivity of a dilute polyatomic
gas. In contrast to the previously used approach of Bich
and co-workers [18,19], the new method utilises more flex-
ible basis functions that contain separate polynomials for
the rotational and vibrational energies instead of a single
polynomial for the total internal energy of a molecule. The
resulting first- and second-order expressions for the ther-
mal conductivity involve only the vibrational heat capacity,
as well as generalised cross sections that can be computed
using the CT method for rigid rotors. We have also obtained
a second-order expression for the self-diffusion coefficient.

The new approach has been tested by calculating the
thermal conductivity of methane, nitrogen, carbon diox-
ide, hydrogen sulphide and water vapour in the dilute-gas
limit. While for methane, nitrogen and carbon dioxide, the
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resulting values agree within ±0.15% with those obtained
using the method of Bich and co-workers, the values for
hydrogen sulphide and water vapour differ by up to +1.0%
and +5.6%, respectively. For both gases, the agreement
with experimental data is substantially improved.

Although we have only considered pure gases in this
work, the extension of the new approach to gas mixtures is
straightforward and will be published separately.

Funding
R. Hellmann gratefully acknowledges the financial support
by the Deutsche Forschungsgemeinschaft [grant number HE
6155/1-1].

References
[1] S. Chapman, Philos. Trans. R. Soc. London, Ser. A 211,

433 (1912).
[2] A.R. Ubbelohde, J. Chem. Phys. 3(4), 219 (1935).
[3] A. Eucken, Z. Phys. 14, 324 (1913).
[4] E.A. Mason and L. Monchick, J. Chem. Phys. 36(6), 1622

(1962).
[5] S. Chapman and G. Cowling, The Mathematical Theory of

Non-uniform Gases, 1st ed. (Cambridge University Press,
Cambridge, 1939).
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