a
    <b/                     @   s   d dl mZ d dlmZmZmZmZmZmZm	Z	 d dl
mZ d dlmZ d dlmZ d dlmZmZ d dlmZmZ d dlmZ d d	lmZmZ d d
lmZ d dlmZ d dlm Z  d dl!m"Z"m#Z# ddl$m$Z$ dddZ%dd Z&G dd deZ'dS )    )AccumBounds)SSymbolAddsympifyExpr	PoleErrorMul)factor_terms)Float)	factorial)Abssign)explog)gamma)PolynomialErrorfactor)Order)powsimp)ratsimp)	nsimplifytogether   )gruntz+c                 C   s   t | |||jddS )aQ  Computes the limit of ``e(z)`` at the point ``z0``.

    Parameters
    ==========

    e : expression, the limit of which is to be taken

    z : symbol representing the variable in the limit.
        Other symbols are treated as constants. Multivariate limits
        are not supported.

    z0 : the value toward which ``z`` tends. Can be any expression,
        including ``oo`` and ``-oo``.

    dir : string, optional (default: "+")
        The limit is bi-directional if ``dir="+-"``, from the right
        (z->z0+) if ``dir="+"``, and from the left (z->z0-) if
        ``dir="-"``. For infinite ``z0`` (``oo`` or ``-oo``), the ``dir``
        argument is determined from the direction of the infinity
        (i.e., ``dir="-"`` for ``oo``).

    Examples
    ========

    >>> from sympy import limit, sin, oo
    >>> from sympy.abc import x
    >>> limit(sin(x)/x, x, 0)
    1
    >>> limit(1/x, x, 0) # default dir='+'
    oo
    >>> limit(1/x, x, 0, dir="-")
    -oo
    >>> limit(1/x, x, 0, dir='+-')
    zoo
    >>> limit(1/x, x, oo)
    0

    Notes
    =====

    First we try some heuristics for easy and frequent cases like "x", "1/x",
    "x**2" and similar, so that it's fast. For all other cases, we use the
    Gruntz algorithm (see the gruntz() function).

    See Also
    ========

     limit_seq : returns the limit of a sequence.
    F)deep)Limitdoit)ezz0dir r#   c/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/series/limits.pylimit   s    3r%   c                 C   s<  d}t |tju rNt| |d| |tj|tju r6dnd}t|trJdS n| jsh| j	sh| j
sh| jr8g }| jD ]}t||||}|tjr|jdu rt| trt| }t|tst|}t|tst| }t|trt||||  S  dS  dS t|tr
 dS |tju r dS || qr|r8| j| }|tju r| jrtdd |D rg }	g }
tt|D ]6}t|| tr|	||  n|
| j|  qtt|
dkrt|
  }t||||}|t|	  }|tju r8zt| }W n ty   Y dS 0 |tju s&|| kr*dS t||||S |S )a+  Computes the limit of an expression term-wise.
    Parameters are the same as for the ``limit`` function.
    Works with the arguments of expression ``e`` one by one, computing
    the limit of each and then combining the results. This approach
    works only for simple limits, but it is fast.
    Nr   r   -c                 s   s   | ]}t |tV  qd S N)
isinstancer   ).0rrr#   r#   r$   	<genexpr>j       zheuristics.<locals>.<genexpr>r   )absr   Infinityr%   subsZeror(   r   is_MulZis_Addis_PowZis_Functionargshas	is_finiter   r
   r	   r   r   
heuristicsNaNappendfuncanyrangelenr   Zsimplifyr   r   )r   r    r!   r"   rvralmZr2e2iiZe3Zrat_er#   r#   r$   r6   F   s^    *






(r6   c                   @   s6   e Zd ZdZdddZedd Zdd Zd	d
 ZdS )r   zRepresents an unevaluated limit.

    Examples
    ========

    >>> from sympy import Limit, sin
    >>> from sympy.abc import x
    >>> Limit(sin(x)/x, x, 0)
    Limit(sin(x)/x, x, 0)
    >>> Limit(1/x, x, 0, dir="-")
    Limit(1/x, x, 0, dir='-')

    r   c                 C   s   t |}t |}t |}|tju r(d}n|tju r6d}||rPtd||f t|trdt|}nt|ts~t	dt
| t|dvrtd| t| }||||f|_|S )Nr&   r   z@Limits approaching a variable point are not supported (%s -> %s)z6direction must be of type basestring or Symbol, not %s)r   r&   +-z1direction must be one of '+', '-' or '+-', not %s)r   r   r.   NegativeInfinityr4   NotImplementedErrorr(   strr   	TypeErrortype
ValueErrorr   __new___args)clsr   r    r!   r"   objr#   r#   r$   rK      s0    






zLimit.__new__c                 C   s8   | j d }|j}|| j d j || j d j |S )Nr   r      )r3   free_symbolsdifference_updateupdate)selfr   Zisymsr#   r#   r$   rP      s
    
zLimit.free_symbolsc           
      C   s   | j \}}}}|j|j }}||sBt|t| ||}t|S t|||}t|||}	|	tju r|tjtj	fv rt||d  ||}t|S |	tj	u r|tju rtj
S d S )Nr   )r3   baser   r4   r%   r   r   Oner.   rE   ComplexInfinity)
rS   r   _r    r!   b1e1resZex_limZbase_limr#   r#   r$   pow_heuristics   s    

zLimit.pow_heuristicsc           	   
      sD  | j \} tju r td|ddr\|jf i |}jf i |jf i ||krhS |sv|S tju rtjS |tjtj	tjtjr| S |j
rtt|jg|j dd R  S d}t dkrd}nt dkrd	} fd
d|trt|}|}|rttju rV|d }| }n| }z|j|d\}}W n ty   Y nd0 |dkrtjS |dkr|S |dkst|d@ stjt| S |d	krtj	t| S tjS ttju r,|jrt|}|d }| }n| }z|j|d\}}W nF tttfy   t|}|jr| |}|dur| Y S Y n0 |tjtj	tjr| S |sl|jrtjS |dkr|S |j rl|j!r,|dks|j"rtjt| S |d	kr$tj	t| S tjS n@|dkrDtjt| S |d	krftjt| tj#|  S tjS j$r|%t&t'}d}zvt dkrt(|d}t(|d}||krtd||f nt(| }|tju s|tju rt W nD ttfy>   |dur t)| }|du r:|  Y S Y n0 |S )aP  Evaluates the limit.

        Parameters
        ==========

        deep : bool, optional (default: True)
            Invoke the ``doit`` method of the expressions involved before
            taking the limit.

        hints : optional keyword arguments
            To be passed to ``doit`` methods; only used if deep is True.
        z.Limits at complex infinity are not implementedr   Tr   Nr   r   r&   c                    s   | j s
| S tfdd| j D }|| j kr6| j| } t| t}t| t}|sR|rt| j d  }|jrtd| j d   }|jr|dk dkr|r| j d  S t	j
S |dkdkr|r| j d S t	jS | S )Nc                 3   s   | ]} |V  qd S r'   r#   )r)   arg)	set_signsr#   r$   r+      r,   z0Limit.doit.<locals>.set_signs.<locals>.<genexpr>r   r   T)r3   tupler9   r(   r   r   r%   is_zeroZis_extended_realr   NegativeOnerU   )exprZnewargsZabs_flagZ	sign_flagsigr"   r^   r    r!   r#   r$   r^      s"    



zLimit.doit.<locals>.set_signs)cdirrD   zMThe limit does not exist since left hand limit = %s and right hand limit = %s)*r3   r   rV   rF   getr   r4   r7   r.   rE   Zis_Orderr   r%   rb   rG   r   r   Zis_meromorphicr-   r/   ZleadtermrJ   r0   intr   r1   r
   r   r   r2   r[   Zis_positiveZis_negative
is_integerZis_evenra   Zis_extended_positiveZrewriter   r   r   r6   )	rS   hintsr   re   ZneweZcoeffexr>   r@   r#   rd   r$   r      s    


$












z
Limit.doitN)r   )	__name__
__module____qualname____doc__rK   propertyrP   r[   r   r#   r#   r#   r$   r      s   

r   N)r   )(Z!sympy.calculus.accumulationboundsr   Z
sympy.corer   r   r   r   r   r   r	   Zsympy.core.exprtoolsr
   Zsympy.core.numbersr   Z(sympy.functions.combinatorial.factorialsr   Z$sympy.functions.elementary.complexesr   r   Z&sympy.functions.elementary.exponentialr   r   Z'sympy.functions.special.gamma_functionsr   Zsympy.polysr   r   Zsympy.series.orderr   Zsympy.simplify.powsimpr   Zsympy.simplify.ratsimpr   Zsympy.simplify.simplifyr   r   r   r%   r6   r   r#   r#   r#   r$   <module>   s    $
6=