a
    <b?Y                     @   s  d Z ddlmZmZ ddlmZ ddlmZ ddlm	Z	 ddl
mZ ddlmZ ddlmZmZ dd	lmZ dd
lmZmZmZ ddlmZ ddlmZ ddlmZ ddlmZmZmZm Z  ddl!m"Z" dd Z#dd Z$dd Z%dd Z&G dd deZ'G dd de'Z(d ddZ)dS )!zFourier Series    )oopi)Wild)Expr)Add)Tuple)S)DummySymbol)sympify)sincossinc)
SeriesBase)
SeqFormula)Interval)TR2TR1TR10sincos_to_sum)is_sequencec           	      C   s   ddl m} |d |d |d   }}td| t | | }d| || | | | }||tjd }|td| || | | | |dtffS )z,Returns the cos sequence in a Fourier seriesr   	integrate      )	sympy.integralsr   r   r   subsr   Zeror   r   )	funclimitsnr   xLZcos_termZformulaa0 r$   d/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/series/fourier.pyfourier_cos_seq   s    r&   c                 C   sd   ddl m} |d |d |d   }}td| t | | }td| || | | | |dtfS )z,Returns the sin sequence in a Fourier seriesr   r   r   r   )r   r   r   r   r   r   )r   r   r    r   r!   r"   Zsin_termr$   r$   r%   fourier_sin_seq   s    r'   c                 C   s   dd }d\}}}|du r0|| t  t   }}}t|trnt|dkrR|\}}}nt|dkrn|| }|\}}t|tr|du s|du rtdt| tj	tj
g}||v s||v rtdt|||fS )	a  
    Limits should be of the form (x, start, stop).
    x should be a symbol. Both start and stop should be bounded.

    Explanation
    ===========

    * If x is not given, x is determined from func.
    * If limits is None. Limit of the form (x, -pi, pi) is returned.

    Examples
    ========

    >>> from sympy.series.fourier import _process_limits as pari
    >>> from sympy.abc import x
    >>> pari(x**2, (x, -2, 2))
    (x, -2, 2)
    >>> pari(x**2, (-2, 2))
    (x, -2, 2)
    >>> pari(x**2, None)
    (x, -pi, pi)
    c                 S   s6   | j }t|dkr| S |s&tdS td|  d S )Nr   kz specify dummy variables for %s. If the function contains more than one free symbol, a dummy variable should be supplied explicitly e.g. FourierSeries(m*n**2, (n, -pi, pi)))free_symbolslenpopr	   
ValueError)r   freer$   r$   r%   _find_x>   s    z _process_limits.<locals>._find_x)NNNN   r   zInvalid limits given: %sz.Both the start and end value should be bounded)r   r   r   r*   
isinstancer
   r,   strr   NegativeInfinityInfinityr   )r   r   r.   r!   startstopZ	unboundedr$   r$   r%   _process_limits'   s     

r6   c           
         s   dd } fdd}t tt| }| }tddd dd gd	 td
fddgd	|d D ]@}| d }|D ]*}	||	sx||	|sxd| f    S qxqdd|fS )Nc                 S   s
   || j vS Nr)   )exprsr!   r$   r$   r%   check_fxa   s    zfinite_check.<locals>.check_fxc                    sB   t | ttfr>| jd }| t|  |  d ur:dS dS d S )Nr   TF)r0   r   r   argsmatchr   )_exprr!   r"   Zsincos_args)abr$   r%   check_sincosd   s
    
z"finite_check.<locals>.check_sincosr>   c                 S   s   | j S r7   Z
is_Integerr(   r$   r$   r%   <lambda>p       zfinite_check.<locals>.<lambda>c                 S   s
   | t jkS r7   r   r   rB   r$   r$   r%   rC   p   rD   Z
propertiesr?   c                    s
    | j vS r7   r8   rB   r!   r$   r%   rC   q   rD   r   FT)r   r   r   as_coeff_addr   Zas_coeff_mul)
fr!   r"   r:   r@   r=   Z	add_coeffsZ
mul_coeffstr$   )r>   r?   r!   r%   finite_check_   s    	rL   c                   @   s  e Zd ZdZdd Zedd Zedd Zedd	 Zed
d Z	edd Z
edd Zedd Zedd Zedd Zedd Zedd Zdd Zd5ddZd6dd Zd!d" Zd#d$ Zd%d& Zd'd( Zd7d+d,Zd-d. Zd/d0 Zd1d2 Zd3d4 Zd)S )8FourierSeriesa9  Represents Fourier sine/cosine series.

    Explanation
    ===========

    This class only represents a fourier series.
    No computation is performed.

    For how to compute Fourier series, see the :func:`fourier_series`
    docstring.

    See Also
    ========

    sympy.series.fourier.fourier_series
    c                 G   s   t t|}tj| g|R  S r7   )mapr   r   __new__)clsr;   r$   r$   r%   rO      s    
zFourierSeries.__new__c                 C   s
   | j d S Nr   r;   selfr$   r$   r%   function   s    zFourierSeries.functionc                 C   s   | j d d S Nr   r   rR   rS   r$   r$   r%   r!      s    zFourierSeries.xc                 C   s   | j d d | j d d fS )Nr   r   rR   rS   r$   r$   r%   period   s    zFourierSeries.periodc                 C   s   | j d d S )Nr   r   rR   rS   r$   r$   r%   r#      s    zFourierSeries.a0c                 C   s   | j d d S )Nr   r   rR   rS   r$   r$   r%   an   s    zFourierSeries.anc                 C   s   | j d d S )Nr   rR   rS   r$   r$   r%   bn   s    zFourierSeries.bnc                 C   s
   t dtS rQ   )r   r   rS   r$   r$   r%   interval   s    zFourierSeries.intervalc                 C   s   | j jS r7   )rZ   infrS   r$   r$   r%   r4      s    zFourierSeries.startc                 C   s   | j jS r7   )rZ   suprS   r$   r$   r%   r5      s    zFourierSeries.stopc                 C   s   t S r7   )r   rS   r$   r$   r%   length   s    zFourierSeries.lengthc                 C   s   t | jd | jd  d S )Nr   r   r   )absrW   rS   r$   r$   r%   r"      s    zFourierSeries.Lc                 C   s   | j }||r| S d S r7   )r!   Zhas)rT   oldnewr!   r$   r$   r%   
_eval_subs   s    
zFourierSeries._eval_subsr/   c                 C   sJ   |du rt | S g }| D ](}t||kr, qB|tjur|| qt| S )a  
        Return the first n nonzero terms of the series.

        If ``n`` is None return an iterator.

        Parameters
        ==========

        n : int or None
            Amount of non-zero terms in approximation or None.

        Returns
        =======

        Expr or iterator :
            Approximation of function expanded into Fourier series.

        Examples
        ========

        >>> from sympy import fourier_series, pi
        >>> from sympy.abc import x
        >>> s = fourier_series(x, (x, -pi, pi))
        >>> s.truncate(4)
        2*sin(x) - sin(2*x) + 2*sin(3*x)/3 - sin(4*x)/2

        See Also
        ========

        sympy.series.fourier.FourierSeries.sigma_approximation
        N)iterr*   r   r   appendr   )rT   r    termsrK   r$   r$   r%   truncate   s     
zFourierSeries.truncatec                    s&    fddt | d  D }t| S )a  
        Return :math:`\sigma`-approximation of Fourier series with respect
        to order n.

        Explanation
        ===========

        Sigma approximation adjusts a Fourier summation to eliminate the Gibbs
        phenomenon which would otherwise occur at discontinuities.
        A sigma-approximated summation for a Fourier series of a T-periodical
        function can be written as

        .. math::
            s(\theta) = \frac{1}{2} a_0 + \sum _{k=1}^{m-1}
            \operatorname{sinc} \Bigl( \frac{k}{m} \Bigr) \cdot
            \left[ a_k \cos \Bigl( \frac{2\pi k}{T} \theta \Bigr)
            + b_k \sin \Bigl( \frac{2\pi k}{T} \theta \Bigr) \right],

        where :math:`a_0, a_k, b_k, k=1,\ldots,{m-1}` are standard Fourier
        series coefficients and
        :math:`\operatorname{sinc} \Bigl( \frac{k}{m} \Bigr)` is a Lanczos
        :math:`\sigma` factor (expressed in terms of normalized
        :math:`\operatorname{sinc}` function).

        Parameters
        ==========

        n : int
            Highest order of the terms taken into account in approximation.

        Returns
        =======

        Expr :
            Sigma approximation of function expanded into Fourier series.

        Examples
        ========

        >>> from sympy import fourier_series, pi
        >>> from sympy.abc import x
        >>> s = fourier_series(x, (x, -pi, pi))
        >>> s.sigma_approximation(4)
        2*sin(x)*sinc(pi/4) - 2*sin(2*x)/pi + 2*sin(3*x)*sinc(3*pi/4)/3

        See Also
        ========

        sympy.series.fourier.FourierSeries.truncate

        Notes
        =====

        The behaviour of
        :meth:`~sympy.series.fourier.FourierSeries.sigma_approximation`
        is different from :meth:`~sympy.series.fourier.FourierSeries.truncate`
        - it takes all nonzero terms of degree smaller than n, rather than
        first n nonzero ones.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Gibbs_phenomenon
        .. [2] https://en.wikipedia.org/wiki/Sigma_approximation
        c                    s.   g | ]&\}}|t jurtt|   | qS r$   )r   r   r   r   ).0irK   r    r$   r%   
<listcomp>0  s   
z5FourierSeries.sigma_approximation.<locals>.<listcomp>N)	enumerater   )rT   r    rd   r$   rh   r%   sigma_approximation   s    Bz!FourierSeries.sigma_approximationc                 C   s\   t || j }}||jv r*td||f | j| }| j| }| || jd || j| j	fS )a  
        Shift the function by a term independent of x.

        Explanation
        ===========

        f(x) -> f(x) + s

        This is fast, if Fourier series of f(x) is already
        computed.

        Examples
        ========

        >>> from sympy import fourier_series, pi
        >>> from sympy.abc import x
        >>> s = fourier_series(x**2, (x, -pi, pi))
        >>> s.shift(1).truncate()
        -4*cos(x) + cos(2*x) + 1 + pi**2/3
         '%s' should be independent of %sr   )
r   r!   r)   r,   r#   rU   r   r;   rX   rY   )rT   rJ   r!   r#   sfuncr$   r$   r%   shift4  s    


zFourierSeries.shiftc                 C   s|   t || j }}||jv r*td||f | j||| }| j||| }| j||| }| || j	d | j
||fS )a  
        Shift x by a term independent of x.

        Explanation
        ===========

        f(x) -> f(x + s)

        This is fast, if Fourier series of f(x) is already
        computed.

        Examples
        ========

        >>> from sympy import fourier_series, pi
        >>> from sympy.abc import x
        >>> s = fourier_series(x**2, (x, -pi, pi))
        >>> s.shiftx(1).truncate()
        -4*cos(x + 1) + cos(2*x + 2) + pi**2/3
        rl   r   r   r!   r)   r,   rX   r   rY   rU   r   r;   r#   rT   rJ   r!   rX   rY   rm   r$   r$   r%   shiftxS  s    
zFourierSeries.shiftxc                 C   st   t || j }}||jv r*td||f | j|}| j|}| j| }| jd | }| 	|| jd |||fS )a  
        Scale the function by a term independent of x.

        Explanation
        ===========

        f(x) -> s * f(x)

        This is fast, if Fourier series of f(x) is already
        computed.

        Examples
        ========

        >>> from sympy import fourier_series, pi
        >>> from sympy.abc import x
        >>> s = fourier_series(x**2, (x, -pi, pi))
        >>> s.scale(2).truncate()
        -8*cos(x) + 2*cos(2*x) + 2*pi**2/3
        rl   r   r   )
r   r!   r)   r,   rX   Z	coeff_mulrY   r#   r;   r   )rT   rJ   r!   rX   rY   r#   rm   r$   r$   r%   scales  s    

zFourierSeries.scalec                 C   s|   t || j }}||jv r*td||f | j||| }| j||| }| j||| }| || j	d | j
||fS )a  
        Scale x by a term independent of x.

        Explanation
        ===========

        f(x) -> f(s*x)

        This is fast, if Fourier series of f(x) is already
        computed.

        Examples
        ========

        >>> from sympy import fourier_series, pi
        >>> from sympy.abc import x
        >>> s = fourier_series(x**2, (x, -pi, pi))
        >>> s.scalex(2).truncate()
        -4*cos(2*x) + cos(4*x) + pi**2/3
        rl   r   ro   rp   r$   r$   r%   scalex  s    
zFourierSeries.scalexNr   c                 C   s    | D ]}|t jur|  S qd S r7   rE   )rT   r!   ZlogxcdirrK   r$   r$   r%   _eval_as_leading_term  s    
z#FourierSeries._eval_as_leading_termc                 C   s&   |dkr| j S | j|| j| S rQ   )r#   rX   ZcoeffrY   )rT   ptr$   r$   r%   
_eval_term  s    zFourierSeries._eval_termc                 C   s
   |  dS )N)rr   rS   r$   r$   r%   __neg__  s    zFourierSeries.__neg__c                 C   s   t |tr| j|jkrtd| j|j }}| j|j|| }| j|jvrP|S | j|j }| j	|j	 }| j
|j
 }| || jd |||fS t| |S )N(Both the series should have same periodsr   )r0   rM   rW   r,   r!   rU   r   r)   rX   rY   r#   r   r;   r   )rT   otherr!   yrU   rX   rY   r#   r$   r$   r%   __add__  s    
zFourierSeries.__add__c                 C   s   |  | S r7   )r}   )rT   r{   r$   r$   r%   __sub__  s    zFourierSeries.__sub__)r/   )r/   )Nr   )__name__
__module____qualname____doc__rO   propertyrU   r!   rW   r#   rX   rY   rZ   r4   r5   r]   r"   ra   re   rk   rn   rq   rr   rs   ru   rw   ry   r}   r~   r$   r$   r$   r%   rM   |   sH   











,
F ! 
rM   c                   @   sX   e Zd ZdZdd Zedd Zedd Zdd	 Zd
d Z	dd Z
dd Zdd ZdS )FiniteFourierSeriesa  Represents Finite Fourier sine/cosine series.

    For how to compute Fourier series, see the :func:`fourier_series`
    docstring.

    Parameters
    ==========

    f : Expr
        Expression for finding fourier_series

    limits : ( x, start, stop)
        x is the independent variable for the expression f
        (start, stop) is the period of the fourier series

    exprs: (a0, an, bn) or Expr
        a0 is the constant term a0 of the fourier series
        an is a dictionary of coefficients of cos terms
         an[k] = coefficient of cos(pi*(k/L)*x)
        bn is a dictionary of coefficients of sin terms
         bn[k] = coefficient of sin(pi*(k/L)*x)

        or exprs can be an expression to be converted to fourier form

    Methods
    =======

    This class is an extension of FourierSeries class.
    Please refer to sympy.series.fourier.FourierSeries for
    further information.

    See Also
    ========

    sympy.series.fourier.FourierSeries
    sympy.series.fourier.fourier_series
    c                    s  t |}t |}t |}t|tr0t|dkst| \}}|tdd |D   }|jddddd \}}|d  t|d |d  d }	td	d
d dd gd}
td fddgd}t	 }t	 }|D ]}|
|t|
t|	     }|
|t|
t|	     }|r4|| |||
 tj |||
 < q|r^|| |||
 tj |||
 < q||7 }qt|||}t| |||S )Nr/   c                 S   s   g | ]}t |qS r$   )r   )rf   rg   r$   r$   r%   ri     rD   z/FiniteFourierSeries.__new__.<locals>.<listcomp>F)ZtrigZ
power_baseZ	power_explogr   r   r   r>   c                 S   s   | j S r7   rA   rB   r$   r$   r%   rC     rD   z-FiniteFourierSeries.__new__.<locals>.<lambda>c                 S   s
   | t juS r7   rE   rB   r$   r$   r%   rC     rD   rF   r?   c                    s
    | j vS r7   r8   rB   rG   r$   r%   rC     rD   )r   r0   r   r*   rH   r   expandr^   r   dictr<   r   r   r   getr   r   r   rO   )rP   rI   r   r9   ceZrexprr#   Zexp_lsr"   r>   r?   rX   rY   prK   qr$   rG   r%   rO     s.    $$
zFiniteFourierSeries.__new__c                 C   sB   | j r
dnd}|tt| j t| j d 7 }td|S rV   )r#   maxsetrX   keysunionrY   r   )rT   _lengthr$   r$   r%   rZ   "  s    *zFiniteFourierSeries.intervalc                 C   s   | j | j S r7   )r5   r4   rS   r$   r$   r%   r]   (  s    zFiniteFourierSeries.lengthc                 C   sd   t || j }}||jv r*td||f |  ||| }| j||| }| || jd |S Nrl   r   	r   r!   r)   r,   re   r   rU   r   r;   rT   rJ   r!   r=   rm   r$   r$   r%   rq   ,  s    
zFiniteFourierSeries.shiftxc                 C   sT   t || j }}||jv r*td||f |  | }| j| }| || jd |S r   )r   r!   r)   r,   re   rU   r   r;   r   r$   r$   r%   rr   7  s    

zFiniteFourierSeries.scalec                 C   sd   t || j }}||jv r*td||f |  ||| }| j||| }| || jd |S r   r   r   r$   r$   r%   rs   B  s    
zFiniteFourierSeries.scalexc                 C   sb   |dkr| j S | j|tjt|t| j  | j  | j	|tjt
|t| j  | j   }|S rQ   )r#   rX   r   r   r   r   r   r"   r!   rY   r   )rT   rv   Z_termr$   r$   r%   rw   M  s    &&zFiniteFourierSeries._eval_termc                 C   s   t |tr&|t| j| jd ddS t |tr| j|jkrDtd| j	|j	 }}| j|j
|| }| j	|jvrv|S t|| jd dS d S )Nr   F)finiterz   )r   )r0   rM   r}   fourier_seriesrU   r;   r   rW   r,   r!   r   r)   )rT   r{   r!   r|   rU   r$   r$   r%   r}   U  s    

zFiniteFourierSeries.__add__N)r   r   r   r   rO   r   rZ   r]   rq   rr   rs   rw   r}   r$   r$   r$   r%   r     s   &#

r   NTc                 C   s:  t | } t| |}|d }|| jvr(| S |rdt|d |d  d }t| ||\}}|rdt| ||S td}|d |d  d }|jr| || }	| |	krt	| ||\}
}t
ddtf}t| ||
||fS | |	 krtj}
t
ddtf}t| ||}t| ||
||fS t	| ||\}
}t| ||}t| ||
||fS )a_  Computes the Fourier trigonometric series expansion.

    Explanation
    ===========

    Fourier trigonometric series of $f(x)$ over the interval $(a, b)$
    is defined as:

    .. math::
        \frac{a_0}{2} + \sum_{n=1}^{\infty}
        (a_n \cos(\frac{2n \pi x}{L}) + b_n \sin(\frac{2n \pi x}{L}))

    where the coefficients are:

    .. math::
        L = b - a

    .. math::
        a_0 = \frac{2}{L} \int_{a}^{b}{f(x) dx}

    .. math::
        a_n = \frac{2}{L} \int_{a}^{b}{f(x) \cos(\frac{2n \pi x}{L}) dx}

    .. math::
        b_n = \frac{2}{L} \int_{a}^{b}{f(x) \sin(\frac{2n \pi x}{L}) dx}

    The condition whether the function $f(x)$ given should be periodic
    or not is more than necessary, because it is sufficient to consider
    the series to be converging to $f(x)$ only in the given interval,
    not throughout the whole real line.

    This also brings a lot of ease for the computation because
    you don't have to make $f(x)$ artificially periodic by
    wrapping it with piecewise, modulo operations,
    but you can shape the function to look like the desired periodic
    function only in the interval $(a, b)$, and the computed series will
    automatically become the series of the periodic version of $f(x)$.

    This property is illustrated in the examples section below.

    Parameters
    ==========

    limits : (sym, start, end), optional
        *sym* denotes the symbol the series is computed with respect to.

        *start* and *end* denotes the start and the end of the interval
        where the fourier series converges to the given function.

        Default range is specified as $-\pi$ and $\pi$.

    Returns
    =======

    FourierSeries
        A symbolic object representing the Fourier trigonometric series.

    Examples
    ========

    Computing the Fourier series of $f(x) = x^2$:

    >>> from sympy import fourier_series, pi
    >>> from sympy.abc import x
    >>> f = x**2
    >>> s = fourier_series(f, (x, -pi, pi))
    >>> s1 = s.truncate(n=3)
    >>> s1
    -4*cos(x) + cos(2*x) + pi**2/3

    Shifting of the Fourier series:

    >>> s.shift(1).truncate()
    -4*cos(x) + cos(2*x) + 1 + pi**2/3
    >>> s.shiftx(1).truncate()
    -4*cos(x + 1) + cos(2*x + 2) + pi**2/3

    Scaling of the Fourier series:

    >>> s.scale(2).truncate()
    -8*cos(x) + 2*cos(2*x) + 2*pi**2/3
    >>> s.scalex(2).truncate()
    -4*cos(2*x) + cos(4*x) + pi**2/3

    Computing the Fourier series of $f(x) = x$:

    This illustrates how truncating to the higher order gives better
    convergence.

    .. plot::
        :context: reset
        :format: doctest
        :include-source: True

        >>> from sympy import fourier_series, pi, plot
        >>> from sympy.abc import x
        >>> f = x
        >>> s = fourier_series(f, (x, -pi, pi))
        >>> s1 = s.truncate(n = 3)
        >>> s2 = s.truncate(n = 5)
        >>> s3 = s.truncate(n = 7)
        >>> p = plot(f, s1, s2, s3, (x, -pi, pi), show=False, legend=True)

        >>> p[0].line_color = (0, 0, 0)
        >>> p[0].label = 'x'
        >>> p[1].line_color = (0.7, 0.7, 0.7)
        >>> p[1].label = 'n=3'
        >>> p[2].line_color = (0.5, 0.5, 0.5)
        >>> p[2].label = 'n=5'
        >>> p[3].line_color = (0.3, 0.3, 0.3)
        >>> p[3].label = 'n=7'

        >>> p.show()

    This illustrates how the series converges to different sawtooth
    waves if the different ranges are specified.

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> s1 = fourier_series(x, (x, -1, 1)).truncate(10)
        >>> s2 = fourier_series(x, (x, -pi, pi)).truncate(10)
        >>> s3 = fourier_series(x, (x, 0, 1)).truncate(10)
        >>> p = plot(x, s1, s2, s3, (x, -5, 5), show=False, legend=True)

        >>> p[0].line_color = (0, 0, 0)
        >>> p[0].label = 'x'
        >>> p[1].line_color = (0.7, 0.7, 0.7)
        >>> p[1].label = '[-1, 1]'
        >>> p[2].line_color = (0.5, 0.5, 0.5)
        >>> p[2].label = '[-pi, pi]'
        >>> p[3].line_color = (0.3, 0.3, 0.3)
        >>> p[3].label = '[0, 1]'

        >>> p.show()

    Notes
    =====

    Computing Fourier series can be slow
    due to the integration required in computing
    an, bn.

    It is faster to compute Fourier series of a function
    by using shifting and scaling on an already
    computed Fourier series rather than computing
    again.

    e.g. If the Fourier series of ``x**2`` is known
    the Fourier series of ``x**2 - 1`` can be found by shifting by ``-1``.

    See Also
    ========

    sympy.series.fourier.FourierSeries

    References
    ==========

    .. [1] https://mathworld.wolfram.com/FourierSeries.html
    r   r   r   r    )r   r6   r)   r^   rL   r   r	   is_zeror   r&   r   r   rM   r   r   r'   )rI   r   r   r!   r"   	is_finiteZres_fr    centerZneg_fr#   rX   rY   r$   r$   r%   r   f  s6     %

r   )NT)*r   Zsympy.core.numbersr   r   Zsympy.core.symbolr   Zsympy.core.exprr   Zsympy.core.addr   Zsympy.core.containersr   Zsympy.core.singletonr   r	   r
   Zsympy.core.sympifyr   Z(sympy.functions.elementary.trigonometricr   r   r   Zsympy.series.series_classr   Zsympy.series.sequencesr   Zsympy.sets.setsr   Zsympy.simplify.fur   r   r   r   Zsympy.utilities.iterablesr   r&   r'   r6   rL   rM   r   r   r$   r$   r$   r%   <module>   s0   	8  ^ 