a
    <bc                     @   s   d Z ddlmZmZ ddlmZmZmZm	Z	 ddl
mZ ddlmZ ddlmZmZ ddlmZ g dZd	d
dddddddddddddddddddddd d!ZG d"d# d#eZd)d%d&Zd'd( Zd$S )*ai  
Octave (and Matlab) code printer

The `OctaveCodePrinter` converts SymPy expressions into Octave expressions.
It uses a subset of the Octave language for Matlab compatibility.

A complete code generator, which uses `octave_code` extensively, can be found
in `sympy.utilities.codegen`.  The `codegen` module can be used to generate
complete source code files.

    )AnyDict)MulPowSRational)_keep_coeff)CodePrinter)
precedence
PRECEDENCEsearch)1sincostanZcotsecZcscasinacosZacotatanatan2ZasecZacscsinhcoshtanhZcothZcschZsechasinhacoshatanhZacothZasechZacscherfcZerfierfZerfinvZerfcinvZbesselibesseljZbesselkbesselyZ	bernoullibetaZeulerexp	factorialfloorZfresnelcZfresnelsgammaZharmoniclogZpolylogsignzetaZlegendreabsZangleZbincoeffceilZ
chebyshevUZ
chebyshevTZcoshintZcosintZconjZdiracZ	heavisideimagZ	laguerreLZlambertwZlogintZgammalnmaxminmodpsirealZ
pochhammerZsinhintZsinint)ZAbsargZbinomialZceilingZ
chebyshevuZ
chebyshevtChiZCi	conjugateZ
DiracDeltaZ	HeavisideZimZlaguerreZLambertWliZloggammaZMaxZMinModZ	polygammareZRisingFactorialZShiZSic                	       s  e Zd ZdZdZdZddddZdd	d
i dddddZi f fdd	Zdd Z	dd Z
dd Zdd Zdd Zdd Zdd Zdd Zd d! Zd"d# Zd$d% Zd&d' Zd(d) Zd*d+ Zd,d- Zd.d/ Zd0d1 Zd2d3 Zd4d5 Zd6d7 Zd8d9 ZeZeZeZ d:d; Z!d<d= Z"d>d? Z#d@dA Z$dBdC Z%dDdE Z&dFdG Z'dHdI Z(dJdK Z)dLdM Z*dNdO Z+dPdQ Z,dRdS Z-dTdU Z.dVdW Z/dXdY Z0dZd[ Z1d\d] Z2d^d_ Z3d`da Z4dbdc Z5ddde Z6dfdg Z7dhdi Z8djdk Z9dldm Z:e: Z;Z<dndo Z=e= Z>Z?dpdq Z@drds ZAdtdu ZB  ZCS )vOctaveCodePrinterzL
    A printer to convert expressions to strings of Octave/Matlab code.
    Z_octaveZOctave&|~)andornotNauto   TF)orderZ	full_precZ	precisionuser_functionsZhumanZallow_unknown_functionscontractinlinec                    sH   t  | tttt| _| jtt |di }| j| d S )Nr@   )	super__init__dictzipknown_fcns_src1known_functionsupdateknown_fcns_src2get)selfsettingsZ	userfuncs	__class__ e/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/printing/octave.pyrD   [   s
    zOctaveCodePrinter.__init__c                 C   s   |d S )N   rP   )rL   prP   rP   rQ   _rate_index_positionc   s    z&OctaveCodePrinter._rate_index_positionc                 C   s   d| S )Nz%s;rP   )rL   Z
codestringrP   rP   rQ   _get_statementg   s    z OctaveCodePrinter._get_statementc                 C   s
   d |S )Nz% {}format)rL   textrP   rP   rQ   _get_commentk   s    zOctaveCodePrinter._get_commentc                 C   s   d ||S )Nz{} = {};rV   )rL   namevaluerP   rP   rQ   _declare_number_consto   s    z'OctaveCodePrinter._declare_number_constc                 C   s
   |  |S N)indent_code)rL   linesrP   rP   rQ   _format_codes   s    zOctaveCodePrinter._format_codec                    s    |j \ } fddt|D S )Nc                 3   s$   | ]}t  D ]}||fV  qqd S r]   )range).0jirowsrP   rQ   	<genexpr>z       z=OctaveCodePrinter._traverse_matrix_indices.<locals>.<genexpr>)shapera   )rL   matcolsrP   re   rQ   _traverse_matrix_indicesw   s    
z*OctaveCodePrinter._traverse_matrix_indicesc                 C   s^   g }g }|D ]H}t | j|j|jd |jd g\}}}|d|||f  |d q||fS )N   zfor %s = %s:%send)map_printlabellowerupperappend)rL   indicesZ
open_linesZclose_linesrd   varstartstoprP   rP   rQ   _get_loop_opening_ending}   s    
z*OctaveCodePrinter._get_loop_opening_endingc                    s  |j r.|jr.tj| jr.dtj |  S t| | \}}|dk r\t| |}d}nd}g }g }g }j	dvr|
 }n
t|}|D ]}	|	jr"|	jr"|	jjr"|	jjr"|	jdkr|t|	j|	j dd nDt|	jd jd	kr
t|	jtr
||	 |t|	j|	j  q|	jrp|	tjurp|	jd	krR|t|	j |	jd	krz|t|	j q||	 q|ptjg} fd
d|D }
 fdd|D }|D ]2}	|	j|v rd|||	j  |||	j< qdd }|s||||
 S t|d	krB|d j r$dnd}||||
 | |d  S tdd |D rZdnd}||||
 | d|||  S d S )Nz%sir   - )oldnoneF)evaluaterm   c                    s   g | ]} | qS rP   parenthesizerb   xprecrL   rP   rQ   
<listcomp>   rh   z0OctaveCodePrinter._print_Mul.<locals>.<listcomp>c                    s   g | ]} | qS rP   r   r   r   rP   rQ   r      rh   z(%s)c                 S   sF   |d }t dt| D ]*}| |d  jr,dnd}|| ||  }q|S )Nr   rm   *.*)ra   len	is_number)aa_strrrd   ZmulsymrP   rP   rQ   multjoin   s
    z.OctaveCodePrinter._print_Mul.<locals>.multjoin/./c                 s   s   | ]}|j V  qd S r]   r   )rb   ZbirP   rP   rQ   rg      rh   z/OctaveCodePrinter._print_Mul.<locals>.<genexpr>)r   Zis_imaginaryr   ZImaginaryUnitZ
is_Integerrp   r
   Zas_coeff_Mulr   r?   Zas_ordered_factorsr   Z	make_argsis_commutativeZis_Powr!   Zis_RationalZis_negativert   r   baser   args
isinstanceInfinityrS   r   qOneindexall)rL   exprcer&   r   bZ	pow_parenr   itemr   Zb_strr   ZdivsymrP   r   rQ   
_print_Mul   sb    




$
$zOctaveCodePrinter._print_Mulc                 C   s,   |  |j}|  |j}|j}d|||S )Nz{} {} {})rp   lhsrhsZrel_oprW   )rL   r   lhs_coderhs_codeoprP   rP   rQ   _print_Relational   s    z#OctaveCodePrinter._print_Relationalc                 C   s   t dd |jD rdnd}t|}|jtjkr@d| |j S |jr|jtj kr||jj	r`dnd}d| d| |j  S |jtj
 kr|jj	rdnd}d| d	| |j|  S d
| |j||| |j|f S )Nc                 s   s   | ]}|j V  qd S r]   r   r   rP   rP   rQ   rg      rh   z/OctaveCodePrinter._print_Pow.<locals>.<genexpr>^z.^zsqrt(%s)r   r   1%sz%s%s%s)r   r   r
   r!   r   Halfrp   r   r   r   r   r   )rL   r   Z	powsymbolPRECsymrP   rP   rQ   
_print_Pow   s    zOctaveCodePrinter._print_Powc                 C   s(   t |}d| |j|| |j|f S )Nz%s^%s)r
   r   r   r!   rL   r   r   rP   rP   rQ   _print_MatPow   s    zOctaveCodePrinter._print_MatPowc                 C   s(   t |}d| |j|| |j|f S )Nz%s \ %s)r
   r   ZmatrixZvectorr   rP   rP   rQ   _print_MatrixSolve   s    z$OctaveCodePrinter._print_MatrixSolvec                 C   s   dS )NpirP   rL   r   rP   rP   rQ   	_print_Pi   s    zOctaveCodePrinter._print_Pic                 C   s   dS )NZ1irP   r   rP   rP   rQ   _print_ImaginaryUnit   s    z&OctaveCodePrinter._print_ImaginaryUnitc                 C   s   dS )Nzexp(1)rP   r   rP   rP   rQ   _print_Exp1   s    zOctaveCodePrinter._print_Exp1c                 C   s   dS )Nz(1+sqrt(5))/2rP   r   rP   rP   rQ   _print_GoldenRatio  s    z$OctaveCodePrinter._print_GoldenRatioc                 C   s   ddl m} ddlm} ddlm} |j}|j}| jd st	|j|rg }g }|j
D ]"\}	}
||||	 ||
 qT|t|| }| |S | jd r||s||r| ||S | |}| |}| d||f S d S )Nr   )
Assignment)	Piecewise)IndexedBaserB   rA   z%s = %s)Zsympy.codegen.astr   Z$sympy.functions.elementary.piecewiser   Zsympy.tensor.indexedr   r   r   	_settingsr   r   rt   rF   rp   ZhasZ_doprint_loopsrU   )rL   r   r   r   r   r   r   ZexpressionsZ
conditionsr   r   tempr   r   rP   rP   rQ   _print_Assignment	  s(    


z#OctaveCodePrinter._print_Assignmentc                 C   s   dS )NinfrP   r   rP   rP   rQ   _print_Infinity&  s    z!OctaveCodePrinter._print_Infinityc                 C   s   dS )Nz-infrP   r   rP   rP   rQ   _print_NegativeInfinity*  s    z)OctaveCodePrinter._print_NegativeInfinityc                 C   s   dS )NNaNrP   r   rP   rP   rQ   
_print_NaN.  s    zOctaveCodePrinter._print_NaNc                    s    dd  fdd|D  d S )N{, c                 3   s   | ]}  |V  qd S r]   rp   rb   r   rL   rP   rQ   rg   3  rh   z0OctaveCodePrinter._print_list.<locals>.<genexpr>}joinr   rP   r   rQ   _print_list2  s    zOctaveCodePrinter._print_listc                 C   s   dS )NtruerP   r   rP   rP   rQ   _print_BooleanTrue9  s    z$OctaveCodePrinter._print_BooleanTruec                 C   s   dS )NfalserP   r   rP   rP   rQ   _print_BooleanFalse=  s    z%OctaveCodePrinter._print_BooleanFalsec                 C   s   t | S r]   )strrr   r   rP   rP   rQ   _print_boolA  s    zOctaveCodePrinter._print_boolc                    sr    j  jfdkrdS tj jv r0d j  jf S  j  jfdkrN d S dd fddt j D  S )	N)r   r   z[]zzeros(%s, %s))rm   rm   z[%s]z; c                 3   s2   | ]*}d  fdd |ddf D V  qdS ) c                    s   g | ]}  |qS rP   r   r   r   rP   rQ   r   R  rh   zAOctaveCodePrinter._print_MatrixBase.<locals>.<genexpr>.<listcomp>Nr   )rb   r   ArL   rP   rQ   rg   R  s   z6OctaveCodePrinter._print_MatrixBase.<locals>.<genexpr>)rf   rk   r   ZZerori   rp   r   ra   )rL   r   rP   r   rQ   _print_MatrixBaseI  s    z#OctaveCodePrinter._print_MatrixBasec                 C   sx   ddl m} | }|dd |D g}|dd |D g}|dd |D g}d| || || ||j|jf S )Nr   )Matrixc                 S   s   g | ]}|d  d qS )r   rm   rP   rb   krP   rP   rQ   r   Z  rh   z<OctaveCodePrinter._print_SparseRepMatrix.<locals>.<listcomp>c                 S   s   g | ]}|d  d  qS )rm   rP   r   rP   rP   rQ   r   [  rh   c                 S   s   g | ]}|d  qS )   rP   r   rP   rP   rQ   r   \  rh   zsparse(%s, %s, %s, %s, %s))Zsympy.matricesr   Zcol_listrp   rf   rk   )rL   r   r   LIJZAIJrP   rP   rQ   _print_SparseRepMatrixV  s    z(OctaveCodePrinter._print_SparseRepMatrixc                 C   s.   | j |jtd ddd|jd |jd f  S )NZAtomT)strictz(%s, %s)rm   )r   parentr   rd   rc   r   rP   rP   rQ   _print_MatrixElementa  s    z&OctaveCodePrinter._print_MatrixElementc                    sL    fdd}  |jd ||j|jjd  d ||j|jjd  d S )Nc                    s   | d d }| d }| d }  |}||kr2dn  |}|dkrr|dkrX||krXdS ||krd|S |d | S nd|  ||fS d S )Nr   rm   r   rn   :)rp   r   )r   ZlimlhstepZlstrZhstrr   rP   rQ   strsliceg  s    
z6OctaveCodePrinter._print_MatrixSlice.<locals>.strslice(r   r   rm   ))rp   r   Zrowsliceri   Zcolslice)rL   r   r   rP   r   rQ   _print_MatrixSlicef  s    z$OctaveCodePrinter._print_MatrixSlicec                    s0    fdd|j D }d |jjd|f S )Nc                    s   g | ]}  |qS rP   r   )rb   rd   r   rP   rQ   r   |  rh   z4OctaveCodePrinter._print_Indexed.<locals>.<listcomp>z%s(%s)r   )ru   rp   r   rq   r   )rL   r   ZindsrP   r   rQ   _print_Indexed{  s    z OctaveCodePrinter._print_Indexedc                 C   s   |  |jS r]   )rp   rq   r   rP   rP   rQ   
_print_Idx  s    zOctaveCodePrinter._print_Idxc                    s&   t d  dt fdd|jD  S )Nr   zdouble(%s == %s)c                 3   s   | ]} | V  qd S r]   r   r   r   rP   rQ   rg     s   z:OctaveCodePrinter._print_KroneckerDelta.<locals>.<genexpr>)r   tupler   r   rP   r   rQ   _print_KroneckerDelta  s    z'OctaveCodePrinter._print_KroneckerDeltac                    s   d  fdd jD S )Nr   c                    s   g | ]} |t qS rP   )r   r
   )rb   r0   r   rL   rP   rQ   r     s   z<OctaveCodePrinter._print_HadamardProduct.<locals>.<listcomp>)r   r   r   rP   r   rQ   _print_HadamardProduct  s    z(OctaveCodePrinter._print_HadamardProductc                 C   s*   t |}d| |j|| |j|gS )Nz.**)r
   r   r   r   r!   r   rP   rP   rQ   _print_HadamardPower  s
    z&OctaveCodePrinter._print_HadamardPowerc                    sP   |j }t|dkr,|d |d kr,|d g}d fdd|D }d| d S )	Nr   r   rm   r   c                 3   s   | ]}  |V  qd S r]   r   )rb   nr   rP   rQ   rg     rh   z4OctaveCodePrinter._print_Identity.<locals>.<genexpr>zeye(r   )ri   r   r   )rL   r   ri   srP   r   rQ   _print_Identity  s
    
z!OctaveCodePrinter._print_Identityc                 C   s$   d | |jd | |jd S )Nz (gammainc({1}, {0}).*gamma({0}))r   rm   rW   rp   r   r   rP   rP   rQ   _print_lowergamma  s    z#OctaveCodePrinter._print_lowergammac                 C   s$   d | |jd | |jd S )Nz)(gammainc({1}, {0}, 'upper').*gamma({0}))r   rm   r   r   rP   rP   rQ   _print_uppergamma  s    z#OctaveCodePrinter._print_uppergammac                 C   s   d|  |jd tj  S )Nzsinc(%s)r   )rp   r   r   Pir   rP   rP   rQ   _print_sinc  s    zOctaveCodePrinter._print_sincc                 C   s   d|  |j|  |jf S )Nzbesselh(%s, 1, %s)rp   r?   argumentr   rP   rP   rQ   _print_hankel1  s    
z OctaveCodePrinter._print_hankel1c                 C   s   d|  |j|  |jf S )Nzbesselh(%s, 2, %s)r   r   rP   rP   rQ   _print_hankel2  s    
z OctaveCodePrinter._print_hankel2c                 C   sD   ddl m}m} |j}|tjd|  ||jtj | }| |S )Nr   )sqrtr   r   )	sympy.functionsr   r   r   r   r   r?   r   rp   )rL   r   r   r   r   expr2rP   rP   rQ   	_print_jn  s    $zOctaveCodePrinter._print_jnc                 C   sD   ddl m}m} |j}|tjd|  ||jtj | }| |S )Nr   )r   r   r   )	r   r   r   r   r   r   r?   r   rp   )rL   r   r   r   r   r   rP   rP   rQ   	_print_yn  s    $zOctaveCodePrinter._print_ync                 C   s   d|  |jd  S )Nzairy(0, %s)r   rp   r   r   rP   rP   rQ   _print_airyai  s    zOctaveCodePrinter._print_airyaic                 C   s   d|  |jd  S )Nzairy(1, %s)r   r   r   rP   rP   rQ   _print_airyaiprime  s    z$OctaveCodePrinter._print_airyaiprimec                 C   s   d|  |jd  S )Nzairy(2, %s)r   r   r   rP   rP   rQ   _print_airybi  s    zOctaveCodePrinter._print_airybic                 C   s   d|  |jd  S )Nzairy(3, %s)r   r   r   rP   rP   rQ   _print_airybiprime  s    z$OctaveCodePrinter._print_airybiprimec                 C   s*   |j \}}|dkr| |S d| | S )Nrm   z
expint(%s))r   _print_not_supportedrp   )rL   r   mur   rP   rP   rQ   _print_expint  s    

zOctaveCodePrinter._print_expintc                    sD   t |jdksJ dj j|jj d fddt|jD dS )Nr   z{name}({args})r   c                    s   g | ]}  |qS rP   r   r   r   rP   rQ   r     rh   z?OctaveCodePrinter._one_or_two_reversed_args.<locals>.<listcomp>)rZ   r   )r   r   rW   rH   rO   __name__r   reversedr   rP   r   rQ   _one_or_two_reversed_args  s
    z+OctaveCodePrinter._one_or_two_reversed_argsc              	   C   s<   dj | j|jj | |jd | |j|jdd   dS )Nz{name}({arg1}, {arg2})r   rm   )rZ   Zarg1Zarg2)rW   rH   rO   r  rp   r   funcr   rP   rP   rQ   _nested_binary_math_func  s
    z*OctaveCodePrinter._nested_binary_math_funcc           
         s,  |j d jdkrtdg } jd r~ fdd|j d d D }d |j d j }d|| d	t|  }d
| d	 S t|j D ]\}\}}|dkr|	d |  n:|t|j d kr|dkr|	d n|	d |   |}	|	|	 |t|j d kr|	d qd|S d S )Nr~   TzAll Piecewise expressions must contain an (expr, True) statement to be used as a default condition. Without one, the generated expression may not evaluate to anything under some condition.rB   c                    s(   g | ] \}}d   | |qS )z({0}).*({1}) + (~({0})).*()rW   rp   )rb   r   r   r   rP   rQ   r     s   z6OctaveCodePrinter._print_Piecewise.<locals>.<listcomp>r   z ...
r   r   r   zif (%s)rm   elsezelseif (%s)rn   
)
r   Zcond
ValueErrorr   rp   r   r   r   	enumeratert   )
rL   r   r_   ZecpairsZelastpwrd   r   r   Zcode0rP   r   rQ   _print_Piecewise  s*    



z"OctaveCodePrinter._print_Piecewisec                 C   s0   t |jdkr"d| |jd  S | |S d S )Nrm   zzeta(%s)r   )r   r   rp   r  r   rP   rP   rQ   _print_zeta  s    zOctaveCodePrinter._print_zetac           
         s   t |tr$| |d}d|S d}dd dd |D }fdd|D } fd	d|D }g }d
}t|D ]J\}}	|	dv r||	 qr||| 8 }|d|| |	f  ||| 7 }qr|S )z0Accepts a string of code or a list of code linesTr{   z  )z
^function z^if ^elseif ^else$z^for )z^end$r  r  c                 S   s   g | ]}| d qS )z 	)lstrip)rb   linerP   rP   rQ   r   *  rh   z1OctaveCodePrinter.indent_code.<locals>.<listcomp>c                    s&   g | ] t t fd dD qS )c                 3   s   | ]}t | V  qd S r]   r   rb   r5   r  rP   rQ   rg   ,  rh   ;OctaveCodePrinter.indent_code.<locals>.<listcomp>.<genexpr>intanyrb   )	inc_regexr  rQ   r   ,  s   c                    s&   g | ] t t fd dD qS )c                 3   s   | ]}t | V  qd S r]   r   r  r  rP   rQ   rg   .  rh   r  r  r  )	dec_regexr  rQ   r   .  s   r   )r{   r  z%s%s)r   r   r^   
splitlinesr   r  rt   )
rL   codeZ
code_linestabZincreaseZdecreaseprettylevelr   r  rP   )r   r  rQ   r^     s.    




zOctaveCodePrinter.indent_code)Dr  
__module____qualname____doc__Zprintmethodlanguage
_operatorsZ_default_settingsrD   rT   rU   rY   r\   r`   rl   ry   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Z_print_tupleZ_print_TupleZ_print_Listr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r  r  r  r
  Z_print_DiracDeltaZ_print_LambertWr  Z
_print_MaxZ
_print_Minr  r  r^   __classcell__rP   rP   rN   rQ   r6   ?   s   J%r6   Nc                 K   s   t || |S )a  Converts `expr` to a string of Octave (or Matlab) code.

    The string uses a subset of the Octave language for Matlab compatibility.

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned.  Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type.  This can be helpful for
        expressions that generate multi-line statements.
    precision : integer, optional
        The precision for numbers such as pi  [default=16].
    user_functions : dict, optional
        A dictionary where keys are ``FunctionClass`` instances and values are
        their string representations.  Alternatively, the dictionary value can
        be a list of tuples i.e. [(argument_test, cfunction_string)].  See
        below for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols.  If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text).  [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].
    inline: bool, optional
        If True, we try to create single-statement code instead of multiple
        statements.  [default=True].

    Examples
    ========

    >>> from sympy import octave_code, symbols, sin, pi
    >>> x = symbols('x')
    >>> octave_code(sin(x).series(x).removeO())
    'x.^5/120 - x.^3/6 + x'

    >>> from sympy import Rational, ceiling
    >>> x, y, tau = symbols("x, y, tau")
    >>> octave_code((2*tau)**Rational(7, 2))
    '8*sqrt(2)*tau.^(7/2)'

    Note that element-wise (Hadamard) operations are used by default between
    symbols.  This is because its very common in Octave to write "vectorized"
    code.  It is harmless if the values are scalars.

    >>> octave_code(sin(pi*x*y), assign_to="s")
    's = sin(pi*x.*y);'

    If you need a matrix product "*" or matrix power "^", you can specify the
    symbol as a ``MatrixSymbol``.

    >>> from sympy import Symbol, MatrixSymbol
    >>> n = Symbol('n', integer=True, positive=True)
    >>> A = MatrixSymbol('A', n, n)
    >>> octave_code(3*pi*A**3)
    '(3*pi)*A^3'

    This class uses several rules to decide which symbol to use a product.
    Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
    A HadamardProduct can be used to specify componentwise multiplication ".*"
    of two MatrixSymbols.  There is currently there is no easy way to specify
    scalar symbols, so sometimes the code might have some minor cosmetic
    issues.  For example, suppose x and y are scalars and A is a Matrix, then
    while a human programmer might write "(x^2*y)*A^3", we generate:

    >>> octave_code(x**2*y*A**3)
    '(x.^2.*y)*A^3'

    Matrices are supported using Octave inline notation.  When using
    ``assign_to`` with matrices, the name can be specified either as a string
    or as a ``MatrixSymbol``.  The dimensions must align in the latter case.

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
    >>> octave_code(mat, assign_to='A')
    'A = [x.^2 sin(x) ceil(x)];'

    ``Piecewise`` expressions are implemented with logical masking by default.
    Alternatively, you can pass "inline=False" to use if-else conditionals.
    Note that if the ``Piecewise`` lacks a default term, represented by
    ``(expr, True)`` then an error will be thrown.  This is to prevent
    generating an expression that may not evaluate to anything.

    >>> from sympy import Piecewise
    >>> pw = Piecewise((x + 1, x > 0), (x, True))
    >>> octave_code(pw, assign_to=tau)
    'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));'

    Note that any expression that can be generated normally can also exist
    inside a Matrix:

    >>> mat = Matrix([[x**2, pw, sin(x)]])
    >>> octave_code(mat, assign_to='A')
    'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];'

    Custom printing can be defined for certain types by passing a dictionary of
    "type" : "function" to the ``user_functions`` kwarg.  Alternatively, the
    dictionary value can be a list of tuples i.e., [(argument_test,
    cfunction_string)].  This can be used to call a custom Octave function.

    >>> from sympy import Function
    >>> f = Function('f')
    >>> g = Function('g')
    >>> custom_functions = {
    ...   "f": "existing_octave_fcn",
    ...   "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
    ...         (lambda x: not x.is_Matrix, "my_fcn")]
    ... }
    >>> mat = Matrix([[1, x]])
    >>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
    'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> octave_code(e.rhs, assign_to=e.lhs, contract=False)
    'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));'
    )r6   Zdoprint)r   Z	assign_torM   rP   rP   rQ   octave_code=  s     	r,  c                 K   s   t t| fi | dS )zPrints the Octave (or Matlab) representation of the given expression.

    See `octave_code` for the meaning of the optional arguments.
    N)printr,  )r   rM   rP   rP   rQ   print_octave_code  s    r.  )N)r(  typingr   r   ZtDictZ
sympy.corer   r   r   r   Zsympy.core.mulr   Zsympy.printing.codeprinterr	   Zsympy.printing.precedencer
   r   r5   r   rG   rJ   r6   r,  r.  rP   rP   rP   rQ   <module>   sP       
 