a
    <bjX                     @   s   d Z ddlmZmZ ddlmZmZmZm	Z	 ddl
mZ ddlmZ ddlmZmZ ddlmZ g dZd	d
ddddddZG dd deZdddZdd ZdS )a  
Julia code printer

The `JuliaCodePrinter` converts SymPy expressions into Julia expressions.

A complete code generator, which uses `julia_code` extensively, can be found
in `sympy.utilities.codegen`.  The `codegen` module can be used to generate
complete source code files.

    )AnyDict)MulPowSRational)_keep_coeff)CodePrinter)
precedence
PRECEDENCEsearch)3sincostanZcotsecZcscasinacosatanZacotZasecZacscsinhcoshtanhZcothZsechZcschasinhacoshatanhZacothZasechZacschZsincatan2signfloorlogexpZcbrtsqrterferfcZerfi	factorialgammaZdigammaZtrigammaZ	polygammabetaZairyaiZairyaiprimeZairybiZairybiprimebesseljbesselyZbesseliZbesselkZerfinvZerfcinvabsceilZconjZhankelh1Zhankelh2imagreal)ZAbsZceiling	conjugateZhankel1Zhankel2imrec                	       s  e Zd ZdZdZdZddddZdd	d
i dddddZi f fdd	Zdd Z	dd Z
dd Zdd Zdd Zdd Zdd Zdd Zd d! Zd"d# Zd$d% Z fd&d'Zd(d) Z fd*d+Z fd,d-Z fd.d/Z fd0d1Zd2d3 Zd4d5 Zd6d7 Zd8d9 Zd:d; Zd<d= ZeZ d>d? Z!d@dA Z"dBdC Z#dDdE Z$dFdG Z%dHdI Z&dJdK Z'dLdM Z(dNdO Z)dPdQ Z*dRdS Z+dTdU Z,dVdW Z-dXdY Z.dZd[ Z/d\d] Z0  Z1S )^JuliaCodePrinterzD
    A printer to convert expressions to strings of Julia code.
    Z_juliaZJuliaz&&z||!)andornotNauto   TF)orderZ	full_precZ	precisionuser_functionsZhumanZallow_unknown_functionscontractinlinec                    sH   t  | tttt| _| jtt |di }| j| d S )Nr7   )	super__init__dictzipknown_fcns_src1Zknown_functionsupdateknown_fcns_src2get)selfsettingsZ	userfuncs	__class__ d/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/printing/julia.pyr;   I   s
    zJuliaCodePrinter.__init__c                 C   s   |d S )N   rF   )rB   prF   rF   rG   _rate_index_positionQ   s    z%JuliaCodePrinter._rate_index_positionc                 C   s   d| S )N%srF   )rB   Z
codestringrF   rF   rG   _get_statementU   s    zJuliaCodePrinter._get_statementc                 C   s
   d |S )Nz# {}format)rB   textrF   rF   rG   _get_commentY   s    zJuliaCodePrinter._get_commentc                 C   s   d ||S )Nzconst {} = {}rM   )rB   namevaluerF   rF   rG   _declare_number_const]   s    z&JuliaCodePrinter._declare_number_constc                 C   s
   |  |S N)indent_code)rB   linesrF   rF   rG   _format_codea   s    zJuliaCodePrinter._format_codec                    s    |j \ } fddt|D S )Nc                 3   s$   | ]}t  D ]}||fV  qqd S rT   )range).0jirowsrF   rG   	<genexpr>h       z<JuliaCodePrinter._traverse_matrix_indices.<locals>.<genexpr>)shaperX   )rB   matcolsrF   r\   rG   _traverse_matrix_indicese   s    
z)JuliaCodePrinter._traverse_matrix_indicesc                 C   s^   g }g }|D ]H}t | j|j|jd |jd g\}}}|d|||f  |d q||fS )N   zfor %s = %s:%send)map_printlabellowerupperappend)rB   indicesZ
open_linesZclose_linesr[   varstartstoprF   rF   rG   _get_loop_opening_endingk   s    
z)JuliaCodePrinter._get_loop_opening_endingc                    s  |j r0|jr0| d jr0dtj |  S t| | \}}|dk r^t| |}d}nd}g }g }g }j	dvr|
 }n
t|}|D ]}	|	jr$|	jr$|	jjr$|	jjr$|	jdkr|t|	j|	j dd nDt|	jd jd	krt|	jtr||	 |t|	j|	j  q|	jrr|	tjurr|	jd	krT|t|	j |	jd	kr||t|	j q||	 q|ptjg} fd
d|D }
 fdd|D }|D ]2}	|	j|v rd|||	j  |||	j< qdd }|s||||
 S t|d	krD|d j r&dnd}||||
 | |d  S tdd |D r\dnd}||||
 | d|||  S d S )Nr   z%sim- )oldnoneF)evaluaterd   c                    s   g | ]} | qS rF   parenthesizerY   xprecrB   rF   rG   
<listcomp>   r_   z/JuliaCodePrinter._print_Mul.<locals>.<listcomp>c                    s   g | ]} | qS rF   rw   ry   r{   rF   rG   r}      r_   (%s)c                 S   sF   |d }t dt| D ]*}| |d  jr,dnd}|| ||  }q|S )Nr   rd   *.*)rX   len	is_number)aa_strrr[   ZmulsymrF   rF   rG   multjoin   s
    z-JuliaCodePrinter._print_Mul.<locals>.multjoin/./c                 s   s   | ]}|j V  qd S rT   r   )rY   ZbirF   rF   rG   r^      r_   z.JuliaCodePrinter._print_Mul.<locals>.<genexpr>)r   Zis_imaginaryZas_coeff_Mul
is_integerrg   r   ZImaginaryUnitr
   r   r6   Zas_ordered_factorsr   Z	make_argsis_commutativeZis_Powr   Zis_RationalZis_negativerk   r   baser   args
isinstanceInfinityrI   r   qOneindexall)rB   exprcer   r   bZ	pow_parenr   itemr   Zb_strr   ZdivsymrF   r{   rG   
_print_Mulw   sb    



$
$zJuliaCodePrinter._print_Mulc                 C   s,   |  |j}|  |j}|j}d|||S )Nz{} {} {})rg   lhsrhsZrel_oprN   )rB   r   lhs_coderhs_codeoprF   rF   rG   _print_Relational   s    z"JuliaCodePrinter._print_Relationalc                 C   s   t dd |jD rdnd}t|}|jtjkr@d| |j S |jr|jtj kr||jj	r`dnd}d| d| |j  S |jtj
 kr|jj	rdnd}d| d	| |j|  S d
| |j||| |j|f S )Nc                 s   s   | ]}|j V  qd S rT   r   ry   rF   rF   rG   r^      r_   z.JuliaCodePrinter._print_Pow.<locals>.<genexpr>^z.^zsqrt(%s)r   r   1rK   z%s%s%s)r   r   r
   r   r   Halfrg   r   r   r   r   rx   )rB   r   Z	powsymbolPRECsymrF   rF   rG   
_print_Pow   s    zJuliaCodePrinter._print_Powc                 C   s(   t |}d| |j|| |j|f S )Nz%s^%s)r
   rx   r   r   rB   r   r   rF   rF   rG   _print_MatPow   s    zJuliaCodePrinter._print_MatPowc                    s   | j d rdS t |S d S )Nr9   pi	_settingsr:   Z_print_NumberSymbolrB   r   rD   rF   rG   	_print_Pi   s    
zJuliaCodePrinter._print_Pic                 C   s   dS )Nr-   rF   r   rF   rF   rG   _print_ImaginaryUnit   s    z%JuliaCodePrinter._print_ImaginaryUnitc                    s   | j d rdS t |S d S )Nr9   r   r   r   rD   rF   rG   _print_Exp1   s    
zJuliaCodePrinter._print_Exp1c                    s   | j d rdS t |S d S )Nr9   Z
eulergammar   r   rD   rF   rG   _print_EulerGamma   s    
z"JuliaCodePrinter._print_EulerGammac                    s   | j d rdS t |S d S )Nr9   catalanr   r   rD   rF   rG   _print_Catalan   s    
zJuliaCodePrinter._print_Catalanc                    s   | j d rdS t |S d S )Nr9   Zgoldenr   r   rD   rF   rG   _print_GoldenRatio  s    
z#JuliaCodePrinter._print_GoldenRatioc                 C   s   ddl m} ddlm} ddlm} |j}|j}| jd st	|j|rg }g }|j
D ]"\}	}
||||	 ||
 qT|t|| }| |S | jd r||s||r| ||S | |}| |}| d||f S d S )Nr   )
Assignment)	Piecewise)IndexedBaser9   r8   z%s = %s)Zsympy.codegen.astr   Z$sympy.functions.elementary.piecewiser   Zsympy.tensor.indexedr   r   r   r   r   r   rk   r=   rg   ZhasZ_doprint_loopsrL   )rB   r   r   r   r   r   r   ZexpressionsZ
conditionsr   r   tempr   r   rF   rF   rG   _print_Assignment  s(    


z"JuliaCodePrinter._print_Assignmentc                 C   s   dS )NZInfrF   r   rF   rF   rG   _print_Infinity%  s    z JuliaCodePrinter._print_Infinityc                 C   s   dS )Nz-InfrF   r   rF   rF   rG   _print_NegativeInfinity)  s    z(JuliaCodePrinter._print_NegativeInfinityc                 C   s   dS )NNaNrF   r   rF   rF   rG   
_print_NaN-  s    zJuliaCodePrinter._print_NaNc                    s    dd  fdd|D  d S )NzAny[, c                 3   s   | ]}  |V  qd S rT   rg   rY   r   rB   rF   rG   r^   2  r_   z/JuliaCodePrinter._print_list.<locals>.<genexpr>])joinr   rF   r   rG   _print_list1  s    zJuliaCodePrinter._print_listc                 C   s2   t |dkrd| |d  S d| |d S d S )Nrd   z(%s,)r   r~   r   )r   rg   Z	stringifyr   rF   rF   rG   _print_tuple5  s    zJuliaCodePrinter._print_tuplec                 C   s   dS )NtruerF   r   rF   rF   rG   _print_BooleanTrue=  s    z#JuliaCodePrinter._print_BooleanTruec                 C   s   dS )NfalserF   r   rF   rF   rG   _print_BooleanFalseA  s    z$JuliaCodePrinter._print_BooleanFalsec                 C   s   t | S rT   )strri   r   rF   rF   rG   _print_boolE  s    zJuliaCodePrinter._print_boolc                    s   t j|jv rd|j|jf S |j|jfdkr8d|d  S |jdkrXd|j dddd S |jdkr~dd	 fd
d|D  S d|j ddddd S )Nzzeros(%s, %s))rd   rd   z[%s])r   r   rd   rr    )rowstartrowendcolsepr   c                    s   g | ]}  |qS rF   r   r   r   rF   rG   r}   W  r_   z6JuliaCodePrinter._print_MatrixBase.<locals>.<listcomp>z;
)r   r   Zrowsepr   )r   ZZeror`   r]   rb   tabler   )rB   ArF   r   rG   _print_MatrixBaseM  s    

z"JuliaCodePrinter._print_MatrixBasec                 C   sr   ddl m} | }|dd |D }|dd |D }|dd |D }d| || || ||j|jf S )Nr   )Matrixc                 S   s   g | ]}|d  d qS )r   rd   rF   rY   krF   rF   rG   r}   `  r_   z;JuliaCodePrinter._print_SparseRepMatrix.<locals>.<listcomp>c                 S   s   g | ]}|d  d  qS )rd   rF   r   rF   rF   rG   r}   a  r_   c                 S   s   g | ]}|d  qS )   rF   r   rF   rF   rG   r}   b  r_   zsparse(%s, %s, %s, %s, %s))Zsympy.matricesr   Zcol_listrg   r]   rb   )rB   r   r   LIJZAIJrF   rF   rG   _print_SparseRepMatrix\  s    z'JuliaCodePrinter._print_SparseRepMatrixc                 C   s.   | j |jtd ddd|jd |jd f  S )NZAtomT)strictz[%s,%s]rd   )rx   parentr   r[   rZ   r   rF   rF   rG   _print_MatrixElementg  s    z%JuliaCodePrinter._print_MatrixElementc                    sL    fdd}  |jd ||j|jjd  d ||j|jjd  d S )Nc                    s   | d d }| d }| d }  |}||kr2dn  |}|dkrr|dkrX||krXdS ||krd|S |d | S nd|  ||fS d S )Nr   rd   r   re   :)rg   r   )rz   ZlimlhstepZlstrZhstrr   rF   rG   strslicem  s    
z5JuliaCodePrinter._print_MatrixSlice.<locals>.strslice[r   ,rd   r   )rg   r   Zrowslicer`   Zcolslice)rB   r   r   rF   r   rG   _print_MatrixSlicel  s    z#JuliaCodePrinter._print_MatrixSlicec                    s0    fdd|j D }d |jjd|f S )Nc                    s   g | ]}  |qS rF   r   )rY   r[   r   rF   rG   r}     r_   z3JuliaCodePrinter._print_Indexed.<locals>.<listcomp>z%s[%s]r   )rl   rg   r   rh   r   )rB   r   ZindsrF   r   rG   _print_Indexed  s    zJuliaCodePrinter._print_Indexedc                 C   s   |  |jS rT   )rg   rh   r   rF   rF   rG   
_print_Idx  s    zJuliaCodePrinter._print_Idxc                 C   s   d|  |jd  S )Nzeye(%s)r   )rg   r`   r   rF   rF   rG   _print_Identity  s    z JuliaCodePrinter._print_Identityc                    s   d  fdd jD S )Nr   c                    s   g | ]} |t qS rF   )rx   r
   )rY   argr   rB   rF   rG   r}     s   z;JuliaCodePrinter._print_HadamardProduct.<locals>.<listcomp>)r   r   r   rF   r   rG   _print_HadamardProduct  s    z'JuliaCodePrinter._print_HadamardProductc                 C   s*   t |}d| |j|| |j|gS )Nz.**)r
   r   rx   r   r   r   rF   rF   rG   _print_HadamardPower  s
    z%JuliaCodePrinter._print_HadamardPowerc                 C   sD   ddl m}m} |j}|tjd|  ||jtj | }| |S )Nr   )r    r&   r   )	sympy.functionsr    r&   argumentr   Pir6   r   rg   )rB   r   r    r&   rz   expr2rF   rF   rG   	_print_jn  s    $zJuliaCodePrinter._print_jnc                 C   sD   ddl m}m} |j}|tjd|  ||jtj | }| |S )Nr   )r    r'   r   )	r   r    r'   r   r   r   r6   r   rg   )rB   r   r    r'   rz   r   rF   rF   rG   	_print_yn  s    $zJuliaCodePrinter._print_ync           
         s   |j d jdkrtdg } jd rr fdd|j d d D }d |j d j }d|| }d	| d
 S t|j D ]\}\}}|dkr|d |  n:|t	|j d kr|dkr|d n|d |   |}	||	 |t	|j d kr||d q|d|S d S )Nru   TzAll Piecewise expressions must contain an (expr, True) statement to be used as a default condition. Without one, the generated expression may not evaluate to anything under some condition.r9   c                    s(   g | ] \}}d   | |qS )z({}) ? ({}) :)rN   rg   )rY   r   r   r   rF   rG   r}     s   z5JuliaCodePrinter._print_Piecewise.<locals>.<listcomp>z (%s)
()r   zif (%s)rd   elsezelseif (%s)re   )
r   Zcond
ValueErrorr   rg   r   r   	enumeraterk   r   )
rB   r   rV   ZecpairsZelastpwr[   r   r   Zcode0rF   r   rG   _print_Piecewise  s*    



z!JuliaCodePrinter._print_Piecewisec           
         s   t |tr$| |d}d|S d}dd dd |D }fdd|D } fd	d|D }g }d
}t|D ]J\}}	|	dv r||	 qr||| 8 }|d|| |	f  ||| 7 }qr|S )z0Accepts a string of code or a list of code linesTrr   z    )z
^function z^if ^elseif ^else$z^for )z^end$r   r   c                 S   s   g | ]}| d qS )z 	)lstrip)rY   linerF   rF   rG   r}     r_   z0JuliaCodePrinter.indent_code.<locals>.<listcomp>c                    s&   g | ] t t fd dD qS )c                 3   s   | ]}t | V  qd S rT   r   rY   r.   r   rF   rG   r^     r_   :JuliaCodePrinter.indent_code.<locals>.<listcomp>.<genexpr>intanyrY   )	inc_regexr   rG   r}     s   c                    s&   g | ] t t fd dD qS )c                 3   s   | ]}t | V  qd S rT   r   r   r   rF   rG   r^     r_   r   r   r  )	dec_regexr   rG   r}     s   r   )rr   r   z%s%s)r   r   rU   
splitlinesr   r   rk   )
rB   codeZ
code_linestabZincreaseZdecreaseprettylevelnr   rF   )r  r  rG   rU     s.    




zJuliaCodePrinter.indent_code)2__name__
__module____qualname____doc__Zprintmethodlanguage
_operatorsZ_default_settingsr;   rJ   rL   rP   rS   rW   rc   rp   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Z_print_Tupler   r   r   r   r   r   r   r   r   r   r   r   r   r   r   rU   __classcell__rF   rF   rD   rG   r/   .   sr   J%r/   Nc                 K   s   t || |S )a   Converts `expr` to a string of Julia code.

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned.  Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type.  This can be helpful for
        expressions that generate multi-line statements.
    precision : integer, optional
        The precision for numbers such as pi  [default=16].
    user_functions : dict, optional
        A dictionary where keys are ``FunctionClass`` instances and values are
        their string representations.  Alternatively, the dictionary value can
        be a list of tuples i.e. [(argument_test, cfunction_string)].  See
        below for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols.  If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text).  [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].
    inline: bool, optional
        If True, we try to create single-statement code instead of multiple
        statements.  [default=True].

    Examples
    ========

    >>> from sympy import julia_code, symbols, sin, pi
    >>> x = symbols('x')
    >>> julia_code(sin(x).series(x).removeO())
    'x.^5/120 - x.^3/6 + x'

    >>> from sympy import Rational, ceiling
    >>> x, y, tau = symbols("x, y, tau")
    >>> julia_code((2*tau)**Rational(7, 2))
    '8*sqrt(2)*tau.^(7/2)'

    Note that element-wise (Hadamard) operations are used by default between
    symbols.  This is because its possible in Julia to write "vectorized"
    code.  It is harmless if the values are scalars.

    >>> julia_code(sin(pi*x*y), assign_to="s")
    's = sin(pi*x.*y)'

    If you need a matrix product "*" or matrix power "^", you can specify the
    symbol as a ``MatrixSymbol``.

    >>> from sympy import Symbol, MatrixSymbol
    >>> n = Symbol('n', integer=True, positive=True)
    >>> A = MatrixSymbol('A', n, n)
    >>> julia_code(3*pi*A**3)
    '(3*pi)*A^3'

    This class uses several rules to decide which symbol to use a product.
    Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
    A HadamardProduct can be used to specify componentwise multiplication ".*"
    of two MatrixSymbols.  There is currently there is no easy way to specify
    scalar symbols, so sometimes the code might have some minor cosmetic
    issues.  For example, suppose x and y are scalars and A is a Matrix, then
    while a human programmer might write "(x^2*y)*A^3", we generate:

    >>> julia_code(x**2*y*A**3)
    '(x.^2.*y)*A^3'

    Matrices are supported using Julia inline notation.  When using
    ``assign_to`` with matrices, the name can be specified either as a string
    or as a ``MatrixSymbol``.  The dimensions must align in the latter case.

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
    >>> julia_code(mat, assign_to='A')
    'A = [x.^2 sin(x) ceil(x)]'

    ``Piecewise`` expressions are implemented with logical masking by default.
    Alternatively, you can pass "inline=False" to use if-else conditionals.
    Note that if the ``Piecewise`` lacks a default term, represented by
    ``(expr, True)`` then an error will be thrown.  This is to prevent
    generating an expression that may not evaluate to anything.

    >>> from sympy import Piecewise
    >>> pw = Piecewise((x + 1, x > 0), (x, True))
    >>> julia_code(pw, assign_to=tau)
    'tau = ((x > 0) ? (x + 1) : (x))'

    Note that any expression that can be generated normally can also exist
    inside a Matrix:

    >>> mat = Matrix([[x**2, pw, sin(x)]])
    >>> julia_code(mat, assign_to='A')
    'A = [x.^2 ((x > 0) ? (x + 1) : (x)) sin(x)]'

    Custom printing can be defined for certain types by passing a dictionary of
    "type" : "function" to the ``user_functions`` kwarg.  Alternatively, the
    dictionary value can be a list of tuples i.e., [(argument_test,
    cfunction_string)].  This can be used to call a custom Julia function.

    >>> from sympy import Function
    >>> f = Function('f')
    >>> g = Function('g')
    >>> custom_functions = {
    ...   "f": "existing_julia_fcn",
    ...   "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
    ...         (lambda x: not x.is_Matrix, "my_fcn")]
    ... }
    >>> mat = Matrix([[1, x]])
    >>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
    'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> julia_code(e.rhs, assign_to=e.lhs, contract=False)
    'Dy[i] = (y[i + 1] - y[i])./(t[i + 1] - t[i])'
    )r/   Zdoprint)r   Z	assign_torC   rF   rF   rG   
julia_code  s     r  c                 K   s   t t| fi | dS )z~Prints the Julia representation of the given expression.

    See `julia_code` for the meaning of the optional arguments.
    N)printr  )r   rC   rF   rF   rG   print_julia_codeu  s    r  )N)r  typingr   r   ZtDictZ
sympy.corer   r   r   r   Zsympy.core.mulr   Zsympy.printing.codeprinterr	   Zsympy.printing.precedencer
   r   r.   r   r>   r@   r/   r  r  rF   rF   rF   rG   <module>   s,      A
 
