a
    <b#e                     @   sL  d Z ddlmZmZmZmZmZmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z) ddl*m+Z+m,Z, ddl-m.Z. ddl/m0Z1m2Z3 dd Z4d	d
 Z5dd Z6dd Z7dd Z8dd Z9dd Z:dd Z;dd Z<dd Z=dd Z>dd Z?dd  Z@d!d" ZAd#d$ ZBd%d& ZCd'd( ZDd)d* ZEd+d, ZFd-d. ZGd/d0 ZHd1d2 ZId3d4 ZJd5d6 ZKd7d8 ZLd9d: ZMd;d< ZNd=d> ZOd?d@ ZPdAdB ZQdCdD ZRdEdF ZSdGdH ZTdIdJ ZUdKdL ZVdMdN ZWdOdP ZXdQdR ZYdSdT ZZdUdV Z[dcdYdZZ\d[d\ Z]ddd]d^Z^d_d` Z_dadb Z`dWS )ezHAdvanced tools for dense recursive polynomials in ``K[x]`` or ``K[X]``.     )dup_add_termdmp_add_term
dup_lshiftdup_adddmp_adddup_subdmp_subdup_muldmp_muldup_sqrdup_divdup_remdmp_rem
dmp_expanddup_mul_grounddmp_mul_grounddup_quo_grounddmp_quo_grounddup_exquo_grounddmp_exquo_ground)	dup_strip	dmp_stripdup_convertdmp_convert
dup_degree
dmp_degreedmp_to_dictdmp_from_dictdup_LCdmp_LCdmp_ground_LCdup_TCdmp_TCdmp_zero
dmp_ground
dmp_zero_pdup_to_raw_dictdup_from_raw_dict	dmp_zeros)MultivariatePolynomialErrorDomainError)
variations)ceillogc              	   C   sv   |dks| s| S |j g| }tt| D ]H\}}|d }td|D ]}||| d 9 }qB|d|||| q(|S )a  
    Computes the indefinite integral of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> R.dup_integrate(x**2 + 2*x, 1)
    1/3*x**3 + x**2
    >>> R.dup_integrate(x**2 + 2*x, 2)
    1/12*x**4 + 1/3*x**3

    r      )zero	enumeratereversedrangeinsertZexquo)fmKgicnj r<   f/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/polys/densetools.pydup_integrate'   s    r>   c           
   	   C   s   |st | ||S |dks"t| |r&| S t||d ||d  }}tt| D ]J\}}|d }td|D ]}	|||	 d 9 }qf|dt||||| qL|S )a&  
    Computes the indefinite integral of ``f`` in ``x_0`` in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y = ring("x,y", QQ)

    >>> R.dmp_integrate(x + 2*y, 1)
    1/2*x**2 + 2*x*y
    >>> R.dmp_integrate(x + 2*y, 2)
    1/6*x**3 + x**2*y

    r   r.   )r>   r%   r(   r0   r1   r2   r3   r   )
r4   r5   ur6   r7   vr8   r9   r:   r;   r<   r<   r=   dmp_integrateG   s    rA   c                    sH   krt | | S |d d  t fdd| D |S )z.Recursive helper for :func:`dmp_integrate_in`.r.   c              	      s   g | ]}t | qS r<   )_rec_integrate_in.0r9   r6   r8   r;   r5   wr<   r=   
<listcomp>q       z%_rec_integrate_in.<locals>.<listcomp>)rA   r   r7   r5   r@   r8   r;   r6   r<   rE   r=   rB   j   s    rB   c                 C   s2   |dk s||kr t d||f t| ||d||S )a+  
    Computes the indefinite integral of ``f`` in ``x_j`` in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y = ring("x,y", QQ)

    >>> R.dmp_integrate_in(x + 2*y, 1, 0)
    1/2*x**2 + 2*x*y
    >>> R.dmp_integrate_in(x + 2*y, 1, 1)
    x*y + y**2

    r   z(0 <= j <= u expected, got u = %d, j = %d)
IndexErrorrB   r4   r5   r;   r?   r6   r<   r<   r=   dmp_integrate_int   s    rL   c                 C   s   |dkr| S t | }||k r g S g }|dkr\| d|  D ]}||||  |d8 }q:nT| d|  D ]D}|}t|d || dD ]}||9 }q||||  |d8 }qjt|S )a#  
    ``m``-th order derivative of a polynomial in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_diff(x**3 + 2*x**2 + 3*x + 4, 1)
    3*x**2 + 4*x + 3
    >>> R.dup_diff(x**3 + 2*x**2 + 3*x + 4, 2)
    6*x + 4

    r   r.   N)r   appendr2   r   )r4   r5   r6   r:   derivcoeffkr8   r<   r<   r=   dup_diff   s"    

rR   c           
      C   s   |st | ||S |dkr| S t| |}||k r6t|S g |d  }}|dkr| d|  D ]$}|t||||| |d8 }qZnZ| d|  D ]J}|}t|d || dD ]}	||	9 }q|t||||| |d8 }qt||S )a3  
    ``m``-th order derivative in ``x_0`` of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1

    >>> R.dmp_diff(f, 1)
    y**2 + 2*y + 3
    >>> R.dmp_diff(f, 2)
    0

    r   r.   NrM   )rR   r   r#   rN   r   r2   r   )
r4   r5   r?   r6   r:   rO   r@   rP   rQ   r8   r<   r<   r=   dmp_diff   s&    


rS   c                    sH   krt | | S |d d  t fdd| D |S )z)Recursive helper for :func:`dmp_diff_in`.r.   c              	      s   g | ]}t | qS r<   )_rec_diff_inrC   rE   r<   r=   rG      rH   z _rec_diff_in.<locals>.<listcomp>)rS   r   rI   r<   rE   r=   rT      s    rT   c                 C   s2   |dk s||kr t d||f t| ||d||S )aS  
    ``m``-th order derivative in ``x_j`` of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1

    >>> R.dmp_diff_in(f, 1, 0)
    y**2 + 2*y + 3
    >>> R.dmp_diff_in(f, 1, 1)
    2*x*y + 2*x + 4*y + 3

    r   0 <= j <= %s expected, got %s)rJ   rT   rK   r<   r<   r=   dmp_diff_in   s    rV   c                 C   s2   |st | |S |j}| D ]}||9 }||7 }q|S )z
    Evaluate a polynomial at ``x = a`` in ``K[x]`` using Horner scheme.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_eval(x**2 + 2*x + 3, 2)
    11

    )r!   r/   )r4   ar6   resultr9   r<   r<   r=   dup_eval  s    

rY   c                 C   sd   |st | ||S |st| |S t| ||d  }}| dd D ] }t||||}t||||}q>|S )z
    Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_eval(2*x*y + 3*x + y + 2, 2)
    5*y + 8

    r.   N)rY   r"   r   r   r   )r4   rW   r?   r6   rX   r@   rP   r<   r<   r=   dmp_eval   s    
rZ   c                    sH   krt |  S d d  t fdd| D S )z)Recursive helper for :func:`dmp_eval_in`.r.   c              	      s   g | ]}t | qS r<   )_rec_eval_inrC   r6   rW   r8   r;   r@   r<   r=   rG   D  rH   z _rec_eval_in.<locals>.<listcomp>)rZ   r   )r7   rW   r@   r8   r;   r6   r<   r\   r=   r[   =  s    r[   c                 C   s2   |dk s||kr t d||f t| ||d||S )a2  
    Evaluate a polynomial at ``x_j = a`` in ``K[X]`` using the Horner scheme.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = 2*x*y + 3*x + y + 2

    >>> R.dmp_eval_in(f, 2, 0)
    5*y + 8
    >>> R.dmp_eval_in(f, 2, 1)
    7*x + 4

    r   rU   )rJ   r[   )r4   rW   r;   r?   r6   r<   r<   r=   dmp_eval_inG  s    r]   c                    sf   krt |  d S  fdd| D }t  d k rH|S t |   d  S dS )z+Recursive helper for :func:`dmp_eval_tail`.rM   c                    s    g | ]}t |d   qS r.   )_rec_eval_tailrC   Ar6   r8   r?   r<   r=   rG   d  rH   z"_rec_eval_tail.<locals>.<listcomp>r.   N)rY   len)r7   r8   ra   r?   r6   hr<   r`   r=   r_   _  s    r_   c                 C   s\   |s| S t | |r"t|t| S t| d|||}|t|d krF|S t||t| S dS )a!  
    Evaluate a polynomial at ``x_j = a_j, ...`` in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = 2*x*y + 3*x + y + 2

    >>> R.dmp_eval_tail(f, [2])
    7*x + 4
    >>> R.dmp_eval_tail(f, [2, 2])
    18

    r   r.   N)r%   r#   rb   r_   r   )r4   ra   r?   r6   er<   r<   r=   dmp_eval_taill  s    
re   c                    sT   kr t t|   S d d  t fdd| D S )z+Recursive helper for :func:`dmp_diff_eval`.r.   c              
      s    g | ]}t | qS r<   )_rec_diff_evalrC   r6   rW   r8   r;   r5   r@   r<   r=   rG     rH   z"_rec_diff_eval.<locals>.<listcomp>)rZ   rS   r   )r7   r5   rW   r@   r8   r;   r6   r<   rg   r=   rf     s    rf   c                 C   sJ   ||krt d|||f |s6tt| ||||||S t| |||d||S )a]  
    Differentiate and evaluate a polynomial in ``x_j`` at ``a`` in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1

    >>> R.dmp_diff_eval_in(f, 1, 2, 0)
    y**2 + 2*y + 3
    >>> R.dmp_diff_eval_in(f, 1, 2, 1)
    6*x + 11

    z-%s <= j < %s expected, got %sr   )rJ   rZ   rS   rf   )r4   r5   rW   r;   r?   r6   r<   r<   r=   dmp_diff_eval_in  s
    rh   c                    s^   |j rDg }| D ]2}|  }| d kr6||   q|| qn fdd| D }t|S )z
    Reduce a ``K[x]`` polynomial modulo a constant ``p`` in ``K``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_trunc(2*x**3 + 3*x**2 + 5*x + 7, ZZ(3))
    -x**3 - x + 1

       c                    s   g | ]}|  qS r<   r<   rC   pr<   r=   rG     rH   zdup_trunc.<locals>.<listcomp>)is_ZZrN   r   )r4   rk   r6   r7   r9   r<   rj   r=   	dup_trunc  s    rm   c                    s   t  fdd| D S )a9  
    Reduce a ``K[X]`` polynomial modulo a polynomial ``p`` in ``K[Y]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3
    >>> g = (y - 1).drop(x)

    >>> R.dmp_trunc(f, g)
    11*x**2 + 11*x + 5

    c                    s   g | ]}t |d   qS r^   )r   rC   r6   rk   r?   r<   r=   rG     rH   zdmp_trunc.<locals>.<listcomp>)r   r4   rk   r?   r6   r<   rn   r=   	dmp_trunc  s    rp   c                    s4   |st |  S |d t fdd| D |S )a   
    Reduce a ``K[X]`` polynomial modulo a constant ``p`` in ``K``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3

    >>> R.dmp_ground_trunc(f, ZZ(3))
    -x**2 - x*y - y

    r.   c                    s   g | ]}t | qS r<   )dmp_ground_truncrC   r6   rk   r@   r<   r=   rG     rH   z$dmp_ground_trunc.<locals>.<listcomp>)rm   r   ro   r<   rr   r=   rq     s    rq   c                 C   s0   | s| S t | |}||r | S t| ||S dS )a7  
    Divide all coefficients by ``LC(f)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ, QQ

    >>> R, x = ring("x", ZZ)
    >>> R.dup_monic(3*x**2 + 6*x + 9)
    x**2 + 2*x + 3

    >>> R, x = ring("x", QQ)
    >>> R.dup_monic(3*x**2 + 4*x + 2)
    x**2 + 4/3*x + 2/3

    N)r   is_oner   )r4   r6   lcr<   r<   r=   	dup_monic  s    

ru   c                 C   sH   |st | |S t| |r| S t| ||}||r6| S t| |||S dS )a  
    Divide all coefficients by ``LC(f)`` in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ, QQ

    >>> R, x,y = ring("x,y", ZZ)
    >>> f = 3*x**2*y + 6*x**2 + 3*x*y + 9*y + 3

    >>> R.dmp_ground_monic(f)
    x**2*y + 2*x**2 + x*y + 3*y + 1

    >>> R, x,y = ring("x,y", QQ)
    >>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3

    >>> R.dmp_ground_monic(f)
    x**2*y + 8/3*x**2 + 5/3*x*y + 2*x + 2/3*y + 1

    N)ru   r%   r    rs   r   )r4   r?   r6   rt   r<   r<   r=   dmp_ground_monic  s    


rv   c                 C   sd   ddl m} | s|jS |j}||kr<| D ]}|||}q(n$| D ]}|||}||r@ q`q@|S )aA  
    Compute the GCD of coefficients of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ, QQ

    >>> R, x = ring("x", ZZ)
    >>> f = 6*x**2 + 8*x + 12

    >>> R.dup_content(f)
    2

    >>> R, x = ring("x", QQ)
    >>> f = 6*x**2 + 8*x + 12

    >>> R.dup_content(f)
    2

    r   QQ)sympy.polys.domainsrx   r/   gcdrs   )r4   r6   rx   contr9   r<   r<   r=   dup_content;  s    
r|   c                 C   s   ddl m} |st| |S t| |r*|jS |j|d  }}||krb| D ]}||t|||}qFn,| D ]&}||t|||}||rf qqf|S )aa  
    Compute the GCD of coefficients of ``f`` in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ, QQ

    >>> R, x,y = ring("x,y", ZZ)
    >>> f = 2*x*y + 6*x + 4*y + 12

    >>> R.dmp_ground_content(f)
    2

    >>> R, x,y = ring("x,y", QQ)
    >>> f = 2*x*y + 6*x + 4*y + 12

    >>> R.dmp_ground_content(f)
    2

    r   rw   r.   )ry   rx   r|   r%   r/   rz   dmp_ground_contentrs   )r4   r?   r6   rx   r{   r@   r9   r<   r<   r=   r}   e  s    


r}   c                 C   s>   | s|j | fS t| |}||r*|| fS |t| ||fS dS )at  
    Compute content and the primitive form of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ, QQ

    >>> R, x = ring("x", ZZ)
    >>> f = 6*x**2 + 8*x + 12

    >>> R.dup_primitive(f)
    (2, 3*x**2 + 4*x + 6)

    >>> R, x = ring("x", QQ)
    >>> f = 6*x**2 + 8*x + 12

    >>> R.dup_primitive(f)
    (2, 3*x**2 + 4*x + 6)

    N)r/   r|   rs   r   )r4   r6   r{   r<   r<   r=   dup_primitive  s    


r~   c                 C   sV   |st | |S t| |r"|j| fS t| ||}||r@|| fS |t| |||fS dS )a  
    Compute content and the primitive form of ``f`` in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ, QQ

    >>> R, x,y = ring("x,y", ZZ)
    >>> f = 2*x*y + 6*x + 4*y + 12

    >>> R.dmp_ground_primitive(f)
    (2, x*y + 3*x + 2*y + 6)

    >>> R, x,y = ring("x,y", QQ)
    >>> f = 2*x*y + 6*x + 4*y + 12

    >>> R.dmp_ground_primitive(f)
    (2, x*y + 3*x + 2*y + 6)

    N)r~   r%   r/   r}   rs   r   )r4   r?   r6   r{   r<   r<   r=   dmp_ground_primitive  s    



r   c                 C   sL   t | |}t ||}|||}||sBt| ||} t|||}|| |fS )a  
    Extract common content from a pair of polynomials in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_extract(6*x**2 + 12*x + 18, 4*x**2 + 8*x + 12)
    (2, 3*x**2 + 6*x + 9, 2*x**2 + 4*x + 6)

    )r|   rz   rs   r   )r4   r7   r6   fcgcrz   r<   r<   r=   dup_extract  s    


r   c                 C   sT   t | ||}t |||}|||}||sJt| |||} t||||}|| |fS )a  
    Extract common content from a pair of polynomials in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_ground_extract(6*x*y + 12*x + 18, 4*x*y + 8*x + 12)
    (2, 3*x*y + 6*x + 9, 2*x*y + 4*x + 6)

    )r}   rz   rs   r   )r4   r7   r?   r6   r   r   rz   r<   r<   r=   dmp_ground_extract  s    
r   c           
      C   s  |j s|jstd| td}td}| s4||fS |j|jgg|jgg gg}t| d d}| dd D ](}t||d|}t|t|ddd|}qht	|}|
 D ]b\}}|d }	|	st||d|}q|	dkrt||d|}q|	dkrt||d|}qt||d|}q||fS )a4  
    Return bivariate polynomials ``f1`` and ``f2``, such that ``f = f1 + f2*I``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dup_real_imag(x**3 + x**2 + x + 1)
    (x**3 + x**2 - 3*x*y**2 + x - y**2 + 1, 3*x**2*y + 2*x*y - y**3 + y)

    z;computing real and imaginary parts is not supported over %sr.   r   ri   N   )rl   Zis_QQr*   r#   oner/   r$   r
   r   r&   itemsr   r   )
r4   r6   f1f2r7   rc   r9   HrQ   r5   r<   r<   r=   dup_real_imag  s,    r   c                 C   s4   t | } tt| d ddD ]}| |  | |< q| S )z
    Evaluate efficiently the composition ``f(-x)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_mirror(x**3 + 2*x**2 - 4*x + 2)
    -x**3 + 2*x**2 + 4*x + 2

    ri   rM   )listr2   rb   )r4   r6   r8   r<   r<   r=   
dup_mirror:  s    r   c                 C   sP   t | t| d |  } }}t|d ddD ]}|| |  ||  | |< }q,| S )z
    Evaluate efficiently composition ``f(a*x)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_scale(x**2 - 2*x + 1, ZZ(2))
    4*x**2 - 4*x + 1

    r.   rM   r   rb   r2   )r4   rW   r6   r:   br8   r<   r<   r=   	dup_scaleP  s    r   c                 C   sX   t | t| d  } }t|ddD ]0}td|D ] }| |d   || |  7  < q0q"| S )z
    Evaluate efficiently Taylor shift ``f(x + a)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_shift(x**2 - 2*x + 1, ZZ(2))
    x**2 + 2*x + 1

    r.   r   rM   r   )r4   rW   r6   r:   r8   r;   r<   r<   r=   	dup_shiftf  s
     r   c           	      C   s   | sg S t | d }| d g|jgg }}td|D ]}|t|d || q4t| dd |dd D ],\}}t|||}t|||}t|||}qj|S )a  
    Evaluate functional transformation ``q**n * f(p/q)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_transform(x**2 - 2*x + 1, x**2 + 1, x - 1)
    x**4 - 2*x**3 + 5*x**2 - 4*x + 4

    r.   r   rM   N)rb   r   r2   rN   r	   zipr   r   )	r4   rk   qr6   r:   rc   Qr8   r9   r<   r<   r=   dup_transform}  s    "r   c                 C   sf   t |dkr$tt| t|||gS | s,g S | d g}| dd D ]}t|||}t||d|}qB|S )z
    Evaluate functional composition ``f(g)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_compose(x**2 + x, x - 1)
    x**2 - x

    r.   r   N)rb   r   rY   r   r	   r   )r4   r7   r6   rc   r9   r<   r<   r=   dup_compose  s    
r   c                 C   s\   |st | ||S t| |r| S | d g}| dd D ]"}t||||}t||d||}q4|S )z
    Evaluate functional composition ``f(g)`` in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_compose(x*y + 2*x + y, y)
    y**2 + 3*y

    r   r.   N)r   r%   r
   r   )r4   r7   r?   r6   rc   r9   r<   r<   r=   dmp_compose  s    

r   c                 C   s   t | d }t| |}t| } ||ji}|| }td|D ]}|j}td|D ]Z}	||	 | | vrdqN||	 |vrrqN| ||	 |  |||	   }
}||||	  |
 | 7 }qN|||| | ||| < q:t||S )+Helper function for :func:`_dup_decompose`.r.   r   )rb   r   r&   r   r2   r/   Zquor'   )r4   sr6   r:   rt   r7   rr8   rP   r;   r   r   r<   r<   r=   _dup_right_decompose  s     

r   c                 C   sV   i d }}| rLt | ||\}}t|dkr.dS t||||< ||d  } }q
t||S )r   r   Nr.   )r   r   r   r'   )r4   rc   r6   r7   r8   r   r   r<   r<   r=   _dup_left_decompose  s    
r   c                 C   sb   t | d }td|D ]F}|| dkr(qt| ||}|durt| ||}|dur||f  S qdS )z*Helper function for :func:`dup_decompose`.r.   ri   r   N)rb   r2   r   r   )r4   r6   Zdfr   rc   r7   r<   r<   r=   _dup_decompose  s    r   c                 C   s8   g }t | |}|dur.|\} }|g| }qq.q| g| S )ae  
    Computes functional decomposition of ``f`` in ``K[x]``.

    Given a univariate polynomial ``f`` with coefficients in a field of
    characteristic zero, returns list ``[f_1, f_2, ..., f_n]``, where::

              f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n))

    and ``f_2, ..., f_n`` are monic and homogeneous polynomials of at
    least second degree.

    Unlike factorization, complete functional decompositions of
    polynomials are not unique, consider examples:

    1. ``f o g = f(x + b) o (g - b)``
    2. ``x**n o x**m = x**m o x**n``
    3. ``T_n o T_m = T_m o T_n``

    where ``T_n`` and ``T_m`` are Chebyshev polynomials.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_decompose(x**4 - 2*x**3 + x**2)
    [x**2, x**2 - x]

    References
    ==========

    .. [1] [Kozen89]_

    N)r   )r4   r6   FrX   rc   r<   r<   r=   dup_decompose  s    $
r   c                 C   s   |j r | }t| |||} |}|js.tdt| |g g   }}}| D ]\}}|jsL|| qLt	ddgt
|dd}	|	D ]H}
t|}t|
|D ]\}}|dkr||  ||< q|t||| qtt||||||jS )a^  
    Convert algebraic coefficients to integers in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> from sympy import I

    >>> K = QQ.algebraic_field(I)
    >>> R, x = ring("x", K)

    >>> f = x**2 + K([QQ(1), QQ(0)])*x + K([QQ(2), QQ(0)])

    >>> R.dmp_lift(f)
    x**8 + 2*x**6 + 9*x**4 - 8*x**2 + 16

    z3computation can be done only in an algebraic domainrM   r.   T)Z
repetition)Zis_GaussianFieldZas_AlgebraicFieldr   Zis_Algebraicr*   r   r   Z	is_groundrN   r+   rb   dictr   r   r   dom)r4   r?   r6   K1r   ZmonomsZpolysZmonomrP   ZpermspermGsignr<   r<   r=   dmp_liftG  s(    r   c                 C   s8   |j d }}| D ]"}||| r*|d7 }|r|}q|S )z
    Compute the number of sign variations of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_sign_variations(x**4 - x**2 - x + 1)
    2

    r   r.   )r/   Zis_negative)r4   r6   prevrQ   rP   r<   r<   r=   dup_sign_variationsw  s    r   NFc                 C   st   |du r|j r| }n|}|j}| D ]}||||}q&||sTt| ||} |s`|| fS |t| ||fS dS )a@  
    Clear denominators, i.e. transform ``K_0`` to ``K_1``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = QQ(1,2)*x + QQ(1,3)

    >>> R.dup_clear_denoms(f, convert=False)
    (6, 3*x + 2)
    >>> R.dup_clear_denoms(f, convert=True)
    (6, 3*x + 2)

    N)has_assoc_Ringget_ringr   lcmdenomrs   r   r   )r4   K0r   convertcommonr9   r<   r<   r=   dup_clear_denoms  s    

r   c              	   C   sT   |j }|s(| D ]}||||}qn(|d }| D ]}||t||||}q4|S )z.Recursive helper for :func:`dmp_clear_denoms`.r.   )r   r   r   _rec_clear_denoms)r7   r@   r   r   r   r9   rF   r<   r<   r=   r     s    r   c                 C   sx   |st | |||dS |du r0|jr,| }n|}t| |||}||sVt| |||} |sb|| fS |t| |||fS dS )aV  
    Clear denominators, i.e. transform ``K_0`` to ``K_1``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y = ring("x,y", QQ)

    >>> f = QQ(1,2)*x + QQ(1,3)*y + 1

    >>> R.dmp_clear_denoms(f, convert=False)
    (6, 3*x + 2*y + 6)
    >>> R.dmp_clear_denoms(f, convert=True)
    (6, 3*x + 2*y + 6)

    )r   N)r   r   r   r   rs   r   r   )r4   r?   r   r   r   r   r<   r<   r=   dmp_clear_denoms  s    

r   c           	      C   s   | t| |g}|j|j|jg}ttt|d}td|d D ]J}t||d|}t	| t
|||}tt|||||}t|t||}qB|S )a  
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1

    >>> R.dup_revert(f, 8)
    61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1

    ri   r.   )revertr!   r   r/   int_ceil_logr2   r   r	   r   r   r   r   r   )	r4   r:   r6   r7   rc   Nr8   rW   r   r<   r<   r=   
dup_revert  s    r   c                 C   s   |st | ||S t| |dS )z
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y = ring("x,y", QQ)

    N)r   r)   )r4   r7   r?   r6   r<   r<   r=   
dmp_revert  s    r   )NF)NF)a__doc__Zsympy.polys.densearithr   r   r   r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   Zsympy.polys.densebasicr   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   Zsympy.polys.polyerrorsr)   r*   Zsympy.utilitiesr+   mathr,   r   r-   r   r>   rA   rB   rL   rR   rS   rT   rV   rY   rZ   r[   r]   r_   re   rf   rh   rm   rp   rq   ru   rv   r|   r}   r~   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r<   r<   r<   r=   <module>   sd   XT #
+/

 
$*-!$/20
&
&"