a
    <b'                     @   s   d dl mZ d dlmZmZ ddlmZm	Z	 ddl
mZ dddZdd	d
Ze	fddZe	ddfddZe	dfddZe	dddfddZdS )    )FunctionType)simplifydotprodsimp   )_get_intermediate_simp_iszero)_find_reasonable_pivotTc	                    sD   fdd}	 fdd}
 fdd}t td\}}g }g }| k r||k rt|	||d ||\}}}}|D ] \}}||7 }||  | < q||du r|d	7 }qD|| |d
kr|
|||  |||| f |du rD|| }}||  | < t|  | d	 |d	   D ]}| | |< q$|}t|D ]X}||kr^qL|du rv||k rvqL|  |  }||rqL||||| qL|d	7 }qD|du r2|du r2t|D ]d\}}|  |  }||  | < t|  | d	 |d	   D ]}| | |< qq̈t|t|fS )a  Row reduce a flat list representation of a matrix and return a tuple
    (rref_matrix, pivot_cols, swaps) where ``rref_matrix`` is a flat list,
    ``pivot_cols`` are the pivot columns and ``swaps`` are any row swaps that
    were used in the process of row reduction.

    Parameters
    ==========

    mat : list
        list of matrix elements, must be ``rows`` * ``cols`` in length

    rows, cols : integer
        number of rows and columns in flat list representation

    one : SymPy object
        represents the value one, from ``Matrix.one``

    iszerofunc : determines if an entry can be used as a pivot

    simpfunc : used to simplify elements and test if they are
        zero if ``iszerofunc`` returns `None`

    normalize_last : indicates where all row reduction should
        happen in a fraction-free manner and then the rows are
        normalized (so that the pivots are 1), or whether
        rows should be normalized along the way (like the naive
        row reduction algorithm)

    normalize : whether pivot rows should be normalized so that
        the pivot value is 1

    zero_above : whether entries above the pivot should be zeroed.
        If ``zero_above=False``, an echelon matrix will be returned.
    c                    s   | d   S N icolsmatr
   i/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/matrices/reductions.pyget_col/   s    z!_row_reduce_list.<locals>.get_colc                    s^   |  |d    |   | d     |   | d   < |  |d   < d S )Nr   r
   )r   jr   r
   r   row_swap2   s    .z"_row_reduce_list.<locals>.row_swapc                    sP   ||   }t |  |d   D ](}| |  |||    |< q"dS )z,Does the row op row[i] = a*row[i] - b*row[j]r   N)range)ar   br   qpr   Zisimpr   r
   r   cross_cancel6   s    z&_row_reduce_list.<locals>.cross_cancelr   r   Nr   r   FT)r   _dotprodsimpr   appendr   	enumeratetuple)r   rowsr   one
iszerofuncsimpfuncnormalize_last	normalize
zero_abover   r   r   Zpiv_rowZpiv_col
pivot_colsswapsZpivot_offsetZ	pivot_valZassumed_nonzeroZnewly_determinedoffsetvalr   r   r   rowZpiv_iZpiv_jr
   r   r   _row_reduce_list
   s\    %


"


"r,   c           	      C   sB   t t| | j| j| j|||||d	\}}}| | j| j|||fS )Nr$   r%   r&   )r,   listr    r   r!   _new)	Mr"   r#   r$   r%   r&   r   r'   r(   r
   r
   r   _row_reduce|   s
    r1   c                    s   | j dks| jdkrdS t fdd| dddf D } | d rd|obt| ddddf  S |ot| ddddf  S )zReturns `True` if the matrix is in echelon form. That is, all rows of
    zeros are at the bottom, and below each leading non-zero in a row are
    exclusively zeros.r   Tc                 3   s   | ]} |V  qd S r	   r
   ).0tr"   r
   r   	<genexpr>       z_is_echelon.<locals>.<genexpr>r   Nr   )r    r   all_is_echelon)r0   r"   Zzeros_belowr
   r4   r   r8      s    "r8   Fc                 C   s<   t |tr|nt}t| ||dddd\}}}|r8||fS |S )an  Returns a matrix row-equivalent to ``M`` that is in echelon form. Note
    that echelon form of a matrix is *not* unique, however, properties like the
    row space and the null space are preserved.

    Examples
    ========

    >>> from sympy import Matrix
    >>> M = Matrix([[1, 2], [3, 4]])
    >>> M.echelon_form()
    Matrix([
    [1,  2],
    [0, -2]])
    TFr-   
isinstancer   	_simplifyr1   )r0   r"   r   Zwith_pivotsr#   r   pivots_r
   r
   r   _echelon_form   s    r>   c           
         s   dd }t |tr|nt}| jdks.| jdkr2dS | jdksF| jdkrd fdd| D }d|v rddS | jdkr| jdkrʇ fd	d| D }d|vrd
|vrdS |  } |rd|v rdS  |du rdS ||  d\}}t| |dddd\}}	}t|	S )zReturns the rank of a matrix.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.abc import x
    >>> m = Matrix([[1, 2], [x, 1 - 1/x]])
    >>> m.rank()
    2
    >>> n = Matrix(3, 3, range(1, 10))
    >>> n.rank()
    2
    c                    sJ    fddfddt  jD }dd t|D } j|dd|fS )a  Permute columns with complicated elements as
        far right as they can go.  Since the ``sympy`` row reduction
        algorithms start on the left, having complexity right-shifted
        speeds things up.

        Returns a tuple (mat, perm) where perm is a permutation
        of the columns to perform to shift the complex columns right, and mat
        is the permuted matrix.c                    s"   t fdd d d | f D S )Nc                 3   s"   | ]} |d u rdndV  qd S )Nr   r   r
   )r2   er4   r
   r   r5      r6   zO_rank.<locals>._permute_complexity_right.<locals>.complexity.<locals>.<genexpr>)sumr   )r0   r"   r
   r   
complexity   s    z<_rank.<locals>._permute_complexity_right.<locals>.complexityc                    s   g | ]} ||fqS r
   r
   )r2   r   )rA   r
   r   
<listcomp>   r6   z<_rank.<locals>._permute_complexity_right.<locals>.<listcomp>c                 S   s   g | ]\}}|qS r
   r
   )r2   r   r   r
   r
   r   rB      r6   r   )Zorientation)r   r   sortedZpermute)r0   r"   complexpermr
   )r0   rA   r"   r   _permute_complexity_right   s    
z(_rank.<locals>._permute_complexity_rightr   r   c                    s   g | ]} |qS r
   r
   r2   xr4   r
   r   rB      r6   z_rank.<locals>.<listcomp>F   c                    s   g | ]} |qS r
   r
   rG   r4   r
   r   rB      r6   Nr4   Tr-   )r:   r   r;   r    r   Zdetr1   len)
r0   r"   r   rF   r#   Zzerosdr   r=   r<   r
   r4   r   _rank   s,    
rL   c           	      C   s<   t |tr|nt}t| |||ddd\}}}|r8||f}|S )a  Return reduced row-echelon form of matrix and indices of pivot vars.

    Parameters
    ==========

    iszerofunc : Function
        A function used for detecting whether an element can
        act as a pivot.  ``lambda x: x.is_zero`` is used by default.

    simplify : Function
        A function used to simplify elements when looking for a pivot.
        By default SymPy's ``simplify`` is used.

    pivots : True or False
        If ``True``, a tuple containing the row-reduced matrix and a tuple
        of pivot columns is returned.  If ``False`` just the row-reduced
        matrix is returned.

    normalize_last : True or False
        If ``True``, no pivots are normalized to `1` until after all
        entries above and below each pivot are zeroed.  This means the row
        reduction algorithm is fraction free until the very last step.
        If ``False``, the naive row reduction procedure is used where
        each pivot is normalized to be `1` before row operations are
        used to zero above and below the pivot.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.abc import x
    >>> m = Matrix([[1, 2], [x, 1 - 1/x]])
    >>> m.rref()
    (Matrix([
    [1, 0],
    [0, 1]]), (0, 1))
    >>> rref_matrix, rref_pivots = m.rref()
    >>> rref_matrix
    Matrix([
    [1, 0],
    [0, 1]])
    >>> rref_pivots
    (0, 1)

    Notes
    =====

    The default value of ``normalize_last=True`` can provide significant
    speedup to row reduction, especially on matrices with symbols.  However,
    if you depend on the form row reduction algorithm leaves entries
    of the matrix, set ``noramlize_last=False``
    T)r%   r&   r9   )	r0   r"   r   r<   r$   r#   r   r'   r=   r
   r
   r   _rref   s    7rM   N)TTT)TTT)typesr   Zsympy.simplify.simplifyr   r;   r   r   Z	utilitiesr   r   Zdeterminantr   r,   r1   r8   r>   rL   rM   r
   r
   r
   r   <module>   s    
r  

F