a
    <b k                     @   s  d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
mZmZmZ ddlmZmZ ddlmZ dd	lmZmZmZmZmZmZmZ d
d Zdd Zd)ddZdd Zd*ddZd+ddZ dd Z!dd Z"dd Z#dd  Z$d!d" Z%d#d$ Z&d,d%d&Z'd'd( Z(dS )-a  
Algorithms for solving the Risch differential equation.

Given a differential field K of characteristic 0 that is a simple
monomial extension of a base field k and f, g in K, the Risch
Differential Equation problem is to decide if there exist y in K such
that Dy + f*y == g and to find one if there are some.  If t is a
monomial over k and the coefficients of f and g are in k(t), then y is
in k(t), and the outline of the algorithm here is given as:

1. Compute the normal part n of the denominator of y.  The problem is
then reduced to finding y' in k<t>, where y == y'/n.
2. Compute the special part s of the denominator of y.   The problem is
then reduced to finding y'' in k[t], where y == y''/(n*s)
3. Bound the degree of y''.
4. Reduce the equation Dy + f*y == g to a similar equation with f, g in
k[t].
5. Find the solutions in k[t] of bounded degree of the reduced equation.

See Chapter 6 of "Symbolic Integration I: Transcendental Functions" by
Manuel Bronstein.  See also the docstring of risch.py.
    )mul)reduce)oo)Dummy)PolygcdZZcancel)imre)sqrt)gcdex_diophantinefrac_in
derivationsplitfactorNonElementaryIntegralExceptionDecrementLevelrecognize_log_derivativec                 C   s   | j r
tS |t||kr.| | d d S g }|}| |}d}|j rt|||f || }|d9 }| |}qDd}td|}t|dkr| }	||	d  }
| |
}|j r||	d 7 }|
}q|S )aY  
    Computes the order of a at p, with respect to t.

    Explanation
    ===========

    For a, p in k[t], the order of a at p is defined as nu_p(a) = max({n
    in Z+ such that p**n|a}), where a != 0.  If a == 0, nu_p(a) = +oo.

    To compute the order at a rational function, a/b, use the fact that
    nu_p(a/b) == nu_p(a) - nu_p(b).
    r         )	is_zeror   r   as_polyETremappendlenpop)aptZ
power_listp1rZtracks_powernproductfinalZproductf r%   c/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/integrals/rde.pyorder_at)   s.    


r'   c                 C   s   | j r
tS ||| | S )z
    Computes the order of a/d at oo (infinity), with respect to t.

    For f in k(t), the order or f at oo is defined as deg(d) - deg(a), where
    f == a/d.
    )r   r   degree)r   dr   r%   r%   r&   order_at_ooT   s    r*   Nc                    sF  |p
t d}t| \}}t|| j}||}|t||t| j j j\}}	t| jt	    j
 j}
t|
|}
|
j|std j|ffS dd |
 D }tt fdd|D td j}t	| }| ||  }|| }|j|dd\}}|||ffS )a  
    Weak normalization.

    Explanation
    ===========

    Given a derivation D on k[t] and f == a/d in k(t), return q in k[t]
    such that f - Dq/q is weakly normalized with respect to t.

    f in k(t) is said to be "weakly normalized" with respect to t if
    residue_p(f) is not a positive integer for any normal irreducible p
    in k[t] such that f is in R_p (Definition 6.1.1).  If f has an
    elementary integral, this is equivalent to no logarithm of
    integral(f) whose argument depends on t has a positive integer
    coefficient, where the arguments of the logarithms not in k(t) are
    in k[t].

    Returns (q, f - Dq/q)
    zr   c                 S   s    g | ]}|t v r|d kr|qS )r   )r   .0ir%   r%   r&   
<listcomp>       z#weak_normalizer.<locals>.<listcomp>c                    s,   g | ]$}t t| jt   qS r%   )r   r   r   r   )r-   r"   DEr   Zd1r%   r&   r/      r0   Tinclude)r   r   r   diffr   quor   r   r   r   Z	resultantexprZhasZ
real_rootsr   r   r	   )r   r)   r2   r+   dndsgZ
d_sqf_parta1br!   NqZdqZsnsdr%   r1   r&   weak_normalizer`   s.    

"



r@   c                 C   s   t ||\}}t ||\}}||}	|||j|	|	|j}
||
 }||
 }||d rnt|| }|j|dd\}}||  |t|
| |  }|j|dd\}}|||f||f|
fS )a  
    Normal part of the denominator.

    Explanation
    ===========

    Given a derivation D on k[t] and f, g in k(t) with f weakly
    normalized with respect to t, either raise NonElementaryIntegralException,
    in which case the equation Dy + f*y == g has no solution in k(t), or the
    quadruplet (a, b, c, h) such that a, h in k[t], b, c in k<t>, and for any
    solution y in k(t) of Dy + f*y == g, q = y*h in k<t> satisfies
    a*Dq + b*q == c.

    This constitutes step 1 in the outline given in the rde.py docstring.
    r   Tr3   )	r   r   r5   r   r6   divr   r	   r   )fafdgagdr2   r8   r9   enesr   hr   ccacdbabdr%   r%   r&   normal_denom   s    
&rN   autoc                 C   sx  |dkr|j }|dkr&t|j|j}nd|dkrFt|jd d |j}nD|dv r~| |}| |}	| ||	td|jfS td| t|||jt|||j }
t|||jt|||j }td|td|
 }|
sdd	lm	} |dkr|j
t|j|j}t| t|d |d | d |j\}}t||j\}}||||||}|d
ur|\}}}|dkrt||}W d
   n1 s0    Y  nN|dkr|j
t|jd d |j}t|
 tt|td |td | td |j\}}tt|td |td | td |j\}}t||j\}}ttd|j| ||r||ttd|j | ||  || |||}|d
ur|\}}}|dkrt||}W d
   n1 s0    Y  td|
 || }|| }||  }| | }||| t||j|  t||| |  }|| | |}	|}|||	|fS )a  
    Special part of the denominator.

    Explanation
    ===========

    case is one of {'exp', 'tan', 'primitive'} for the hyperexponential,
    hypertangent, and primitive cases, respectively.  For the
    hyperexponential (resp. hypertangent) case, given a derivation D on
    k[t] and a in k[t], b, c, in k<t> with Dt/t in k (resp. Dt/(t**2 + 1) in
    k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp.
    gcd(a, t**2 + 1) == 1), return the quadruplet (A, B, C, 1/h) such that
    A, B, C, h in k[t] and for any solution q in k<t> of a*Dq + b*q == c,
    r = qh in k[t] satisfies A*Dr + B*r == C.

    For ``case == 'primitive'``, k<t> == k[t], so it returns (a, b, c, 1) in
    this case.

    This constitutes step 2 of the outline given in the rde.py docstring.
    rO   exptanr   r   )	primitivebasez@case must be one of {'exp', 'tan', 'primitive', 'base'}, not %s.r   parametric_log_derivN)caser   r   to_fieldr6   
ValueErrorr'   minprderU   r)   r   r   evalr
   r   r   r   maxr   )r   rL   rM   rJ   rK   r2   rW   r   BCnbZncr"   rU   ZdcoeffalphaaalphadetaaetadAQmr+   betaabetadr=   ZpNZpnrH   r%   r%   r&   special_denom   s`    

,


.
<<0


*
2rj   Fc              	      s  |dkr j }|  j}| j}|rBt fdd|D }n| j}t| j   |  j   }	|dkrtd|t||d  }
||d kr|	jrtd|	|| }
nR|dkr||krtd|| }
ntd|| d }
t	 j
 j jd  \}} j}t  t	|	 j\}}||d krddlm} z |||||fg \\}}}W n ty   Y n&0 t|dkrtd	t|
|d }
n||krdd
lm} ||| }|dur|\}}|dkr| t| | |||    | |    }t	| j\}}ddlm} z |||||fg \\}}}W n typ   Y n*0 t|dkrtd	t|
|d  }
W d   n1 s0    Y  nV|dkrddlm} td|t|| }
||krt	 j
t j j j jd  \}}t X t	|	 j\}}||||| }|durp|\} }}| dkrpt|
|}
W d   n1 s0    Y  n|dv r j
 j} j
 }t|	| }	td|t|| d | }
||| d kr|	jrtd|	|| }
ntd| |
S )am  
    Bound on polynomial solutions.

    Explanation
    ===========

    Given a derivation D on k[t] and ``a``, ``b``, ``c`` in k[t] with ``a != 0``, return
    n in ZZ such that deg(q) <= n for any solution q in k[t] of
    a*Dq + b*q == c, when parametric=False, or deg(q) <= n for any solution
    c1, ..., cm in Const(k) and q in k[t] of a*Dq + b*q == Sum(ci*gi, (i, 1, m))
    when parametric=True.

    For ``parametric=False``, ``cQ`` is ``c``, a ``Poly``; for ``parametric=True``, ``cQ`` is Q ==
    [q1, ..., qm], a list of Polys.

    This constitutes step 3 of the outline given in the rde.py docstring.
    rO   c                    s   g | ]}|  jqS r%   )r(   r   r,   r2   r%   r&   r/   (  r0   z bound_degree.<locals>.<listcomp>rS   r   r   rR   )limited_integratezLength of m should be 1!is_log_deriv_k_t_radical_in_fieldNrP   rT   )rQ   Zother_nonlinearzScase must be one of {'exp', 'tan', 'primitive', 'other_nonlinear', 'base'}, not %s.)rW   r(   r   r]   r	   r   LCas_expr
is_Integerr   r)   Tlevelr   r[   rl   r   r   rY   rn   r   rU   r6   r   )r   r<   cQr2   rW   
parametricdadbdcalphar"   rc   rd   t1ra   rb   rl   ZzaZzdrg   rn   re   Zaar+   betarh   ri   rU   deltaZlamr%   rk   r&   bound_degree  s    




6

,



,

r}   c                 C   s  t d|j}t d|j}t d|j}|jr8||d||fS |dk du rHt| |}||jsbt| |||||  } }}| |jdkr| | }| | }|||||fS t	|| |\}	}
|t
| |7 }|
t
|	| }|| |j8 }|||	 7 }|| 9 }q$dS )a  
    Rothstein's Special Polynomial Differential Equation algorithm.

    Explanation
    ===========

    Given a derivation D on k[t], an integer n and ``a``,``b``,``c`` in k[t] with
    ``a != 0``, either raise NonElementaryIntegralException, in which case the
    equation a*Dq + b*q == c has no solution of degree at most ``n`` in
    k[t], or return the tuple (B, C, m, alpha, beta) such that B, C,
    alpha, beta in k[t], m in ZZ, and any solution q in k[t] of degree
    at most n of a*Dq + b*q == c must be of the form
    q == alpha*h + beta, where h in k[t], deg(h) <= m, and Dh + B*h == C.

    This constitutes step 4 of the outline given in the rde.py docstring.
    r   r   TN)r   r   r   r   r   r   r6   r(   rX   r   r   )r   r<   rI   r"   r2   Zzerory   r{   r:   r!   r+   r%   r%   r&   spde  s*    
"r~   c                 C   s   t d|j}|js||j| |j }d|  kr>|ksDn tt ||j | |j  |j|  |jdd}|| }|d }|t|| | |  }q|S )a  
    Poly Risch Differential Equation - No cancellation: deg(b) large enough.

    Explanation
    ===========

    Given a derivation D on k[t], ``n`` either an integer or +oo, and ``b``,``c``
    in k[t] with ``b != 0`` and either D == d/dt or
    deg(b) > max(0, deg(D) - 1), either raise NonElementaryIntegralException, in
    which case the equation ``Dq + b*q == c`` has no solution of degree at
    most n in k[t], or a solution q in k[t] of this equation with
    ``deg(q) < n``.
    r   Fexpandr   )r   r   r   r(   r   r   ro   r   r<   rI   r"   r2   r>   rg   r   r%   r%   r&   no_cancel_b_large  s    .r   c                 C   sR  t d|j}|jsN|dkr"d}n||j|j|j d }d|  krT|ksZn t|dkrt ||j ||j|j   |j|  |jdd}n| |j||jkrt| |jdkr|| |j|j	d  ||j|j	d  fS t ||j | |j  |jdd}|| }|d }|t
|| | |  }q|S )a  
    Poly Risch Differential Equation - No cancellation: deg(b) small enough.

    Explanation
    ===========

    Given a derivation D on k[t], ``n`` either an integer or +oo, and ``b``,``c``
    in k[t] with deg(b) < deg(D) - 1 and either D == d/dt or
    deg(D) >= 2, either raise NonElementaryIntegralException, in which case the
    equation Dq + b*q == c has no solution of degree at most n in k[t],
    or a solution q in k[t] of this equation with deg(q) <= n, or the
    tuple (h, b0, c0) such that h in k[t], b0, c0, in k, and for any
    solution q in k[t] of degree at most n of Dq + bq == c, y == q - h
    is a solution in k of Dy + b0*y == c0.
    r   r   Fr   )r   r   r   r(   r)   r   r   ro   rr   rs   r   r   r%   r%   r&   no_cancel_b_small  s0    0$r   c           
      C   sp  t d|j}t| |j  |j|j  }|jrF|jrF|}nd}|jslt	||
|j|j
|j d }d|  kr|ksn tt||j|j  | |j  }|jr|||fS |dkrt ||j | |j|  |jdd}	nF|
|j|j
|jd kr$tn ||j | |j  }	||	 }|d }|t|	| | |	  }qJ|S )a  
    Poly Risch Differential Equation - No cancellation: deg(b) == deg(D) - 1

    Explanation
    ===========

    Given a derivation D on k[t] with deg(D) >= 2, n either an integer
    or +oo, and b, c in k[t] with deg(b) == deg(D) - 1, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c has
    no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n, or the tuple (h, m, C) such that h
    in k[t], m in ZZ, and C in k[t], and for any solution q in k[t] of
    degree at most n of Dq + b*q == c, y == q - h is a solution in k[t]
    of degree at most m of Dy + b*y == C.
    r   rV   r   Fr   )r   r   r	   r   ro   r)   rq   Zis_positiver   r]   r(   r   r   )
r<   rI   r"   r2   r>   lcMrg   ur   r%   r%   r&   no_cancel_equal  s*    ($*
,  r   c                 C   s^  ddl m} t|L t| |j\}}||||}|durR|\}}|dkrRtdW d   n1 sf0    Y  |jrz|S |||jk rtt	d|j}	|jsZ||j}
||
k rtt|8 t|
 |j\}}t|||||\}}W d   n1 s0    Y  t	| |  |j|
  |jdd}|	|7 }	|
d }|| | t|| 8 }q|	S )a  
    Poly Risch Differential Equation - Cancellation: Primitive case.

    Explanation
    ===========

    Given a derivation D on k[t], n either an integer or +oo, ``b`` in k, and
    ``c`` in k[t] with Dt in k and ``b != 0``, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c
    has no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n.
    r   rm   Nz7is_deriv_in_field() is required to  solve this problem.r   Fr   )r[   rn   r   r   r   NotImplementedErrorr   r(   r   r   ro   rischDErp   r   )r<   rI   r"   r2   rn   rL   rM   re   r+   r>   rg   a2aa2dsar?   stmr%   r%   r&   cancel_primitive.  s2    
&
4&r   c                 C   s  ddl m} |jt|j|j }t|b t||j\}}t| |j\}}	|||	|||}
|
dur|
\}}}|dkrt	dW d   n1 s0    Y  |j
r|S |||jk rttd|j}|j
s||j}||k rt|  }t|l t||j\}}|| || t||j  }|| }t| |j\}}t|||||\}}W d   n1 sn0    Y  t| |  |j|  |jdd}||7 }|d }|| | t|| 8 }q|S )a  
    Poly Risch Differential Equation - Cancellation: Hyperexponential case.

    Explanation
    ===========

    Given a derivation D on k[t], n either an integer or +oo, ``b`` in k, and
    ``c`` in k[t] with Dt/t in k and ``b != 0``, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c
    has no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n.
    r   rT   Nz6is_deriv_in_field() is required to solve this problem.r   Fr   )r[   rU   r)   r6   r   r   rp   r   r   r   r   r(   r   ro   r   r   )r<   rI   r"   r2   rU   etarc   rd   rL   rM   re   r   rg   r+   r>   r;   Za1aZa1dr   r   r   r?   r   r%   r%   r&   
cancel_exp`  s>    

&
4&r   c                 C   s  | j s`|jdks4| |jtd|j|jd kr`|rRddlm} || |||S t| |||S | j s| |j|j|jd k rr|jdks|j|jdkrr|rddlm	} || |||S t
| |||}t|tr|S |\}}	}
t|d |	|j|
|j }	}
|	du rtd|
du r0td	t|	|
|||j}W d   n1 s\0    Y  || S nN|j|jdkr:| |j|j|jd kr:|| |j  |j|j  kr:| |j jstd
|rtdt| |||}t|tr|S |\}}}t| |||}|| S n| j rLtdn^|jdkrt|rftdt| |||S |jdkr|rtdt| |||S td|j |rtdtddS )a  
    Solve a Polynomial Risch Differential Equation with degree bound ``n``.

    This constitutes step 4 of the outline given in the rde.py docstring.

    For parametric=False, cQ is c, a Poly; for parametric=True, cQ is Q ==
    [q1, ..., qm], a list of Polys.
    rS   r   r   )prde_no_cancel_b_larger   )prde_no_cancel_b_smallNzb0 should be a non-Null valuezc0 should be a non-Null valuezResult should be a numberz0prde_no_cancel_b_equal() is not yet implemented.zWRemaining cases for Poly (P)RDE are not yet implemented (is_deriv_in_field() required).rP   zIParametric RDE cancellation hyperexponential case is not yet implemented.rR   zBParametric RDE cancellation primitive case is not yet implemented.zBOther Poly (P)RDE cancellation cases are not yet implemented (%s).z2Remaining cases for Poly PRDE not yet implemented.z1Remaining cases for Poly RDE not yet implemented.)r   rW   r(   r   r]   r)   r[   r   r   r   r   
isinstancer   r   r   rY   solve_poly_rdero   Z	is_number	TypeErrorr   r   r   r   )r<   rt   r"   r2   ru   r   r   RrH   Zb0Zc0yrg   r_   r%   r%   r&   r     sp    
"&




64&


r   c                 C   s   t | ||\}\} }t| ||||\}\}}\}	}
}t||||	|
|\}}}}zt||||}W n tyv   t}Y n0 t|||||\}}}}}|jr|}nt||||}|| | || fS )a  
    Solve a Risch Differential Equation: Dy + f*y == g.

    Explanation
    ===========

    See the outline in the docstring of rde.py for more information
    about the procedure used.  Either raise NonElementaryIntegralException, in
    which case there is no solution y in the given differential field,
    or return y in k(t) satisfying Dy + f*y == g, or raise
    NotImplementedError, in which case, the algorithms necessary to
    solve the given Risch Differential Equation have not yet been
    implemented.
    )	r@   rN   rj   r}   r   r   r~   r   r   )rB   rC   rD   rE   r2   _r   rL   rM   rJ   rK   Zhnre   r^   r_   Zhsr"   rg   ry   r{   r   r%   r%   r&   r     s     
r   )N)rO   )rO   F)F))__doc__operatorr   	functoolsr   Z
sympy.corer   Zsympy.core.symbolr   Zsympy.polysr   r   r   r	   Z$sympy.functions.elementary.complexesr
   r   Z(sympy.functions.elementary.miscellaneousr   Zsympy.integrals.rischr   r   r   r   r   r   r   r'   r*   r@   rN   rj   r}   r~   r   r   r   r   r   r   r   r%   r%   r%   r&   <module>   s,   $+
3%
T
w///2<
]