a
    ¬<b¥*  ã                   @   sÆ   d Z ddlmZ ddlmZ ddlmZ ddlmZm	Z	m
Z
 ddlmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZmZmZ ddlmZ dd„ Zdd„ Zddd„Zdd„ Zdd„ ZdS )zAThis module implements tools for integrating rational functions. é    )ÚLambda)ÚI)ÚS)ÚDummyÚSymbolÚsymbols)Úlog)Úatan)Úroots)Úcancel)ÚRootSum)ÚPolyÚ	resultantÚZZ)Úsolvec              
   K   s8  t | tƒr| \}}n|  ¡ \}}t||dddt||ddd }}| |¡\}}}| |¡\}}| |¡ ¡ }|jr||| S t	|||ƒ\}}	|	 ¡ \}
}t|
|ƒ}
t||ƒ}|
 |¡\}}||| |¡ ¡  7 }|js0| 
dd¡}t |tƒsøt|ƒ}n| ¡ }t||||ƒ}| 
d¡}|du rxt | tƒrH| \}}| ¡ | ¡ B }n|  ¡ }||h D ]}|jsZd} qxqZd}tj}|sÆ|D ]:\}	}|	 ¡ \}}	|t|t||t|	 ¡ ƒ ƒdd7 }qˆnb|D ]\\}	}|	 ¡ \}}	t|	|||ƒ}|dur ||7 }n$|t|t||t|	 ¡ ƒ ƒdd7 }qÊ||7 }|| S )	aa  
    Performs indefinite integration of rational functions.

    Explanation
    ===========

    Given a field :math:`K` and a rational function :math:`f = p/q`,
    where :math:`p` and :math:`q` are polynomials in :math:`K[x]`,
    returns a function :math:`g` such that :math:`f = g'`.

    Examples
    ========

    >>> from sympy.integrals.rationaltools import ratint
    >>> from sympy.abc import x

    >>> ratint(36/(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2), x)
    (12*x + 6)/(x**2 - 1) + 4*log(x - 2) - 4*log(x + 1)

    References
    ==========

    .. [1] M. Bronstein, Symbolic Integration I: Transcendental
       Functions, Second Edition, Springer-Verlag, 2005, pp. 35-70

    See Also
    ========

    sympy.integrals.integrals.Integral.doit
    sympy.integrals.rationaltools.ratint_logpart
    sympy.integrals.rationaltools.ratint_ratpart

    FT)Ú	compositeÚfieldÚsymbolÚtÚrealN)Z	quadratic)Ú
isinstanceÚtupleZas_numer_denomr   r   ÚdivZ	integrateÚas_exprÚis_zeroÚratint_ratpartÚgetr   r   Zas_dummyÚratint_logpartÚatomsÚis_extended_realr   ÚZeroÚ	primitiver   r   r   Úlog_to_real)ÚfÚxÚflagsÚpÚqÚcoeffZpolyÚresultÚgÚhÚPÚQÚrr   r   ÚLr   r   ÚeltZepsÚ_ÚR© r3   úm/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/integrals/rationaltools.pyÚratint   sb    "

"






ÿ

ÿr5   c                    s  t | |ƒ} t ||ƒ}| | ¡ ¡\}}}| ¡ ‰| ¡ ‰ ‡fdd„tdˆƒD ƒ}‡ fdd„tdˆ ƒD ƒ}|| }t ||t| d}	t ||t| d}
| |	 ¡ |  |	| ¡ |  |¡  |
|  }t| ¡ |ƒ}|	 	¡  
|¡}	|
 	¡  
|¡}
t|	| 	¡  |ƒ}t|
| 	¡  |ƒ}||fS )a«  
    Horowitz-Ostrogradsky algorithm.

    Explanation
    ===========

    Given a field K and polynomials f and g in K[x], such that f and g
    are coprime and deg(f) < deg(g), returns fractions A and B in K(x),
    such that f/g = A' + B and B has square-free denominator.

    Examples
    ========

        >>> from sympy.integrals.rationaltools import ratint_ratpart
        >>> from sympy.abc import x, y
        >>> from sympy import Poly
        >>> ratint_ratpart(Poly(1, x, domain='ZZ'),
        ... Poly(x + 1, x, domain='ZZ'), x)
        (0, 1/(x + 1))
        >>> ratint_ratpart(Poly(1, x, domain='EX'),
        ... Poly(x**2 + y**2, x, domain='EX'), x)
        (0, 1/(x**2 + y**2))
        >>> ratint_ratpart(Poly(36, x, domain='ZZ'),
        ... Poly(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2, x, domain='ZZ'), x)
        ((12*x + 6)/(x**2 - 1), 12/(x**2 - x - 2))

    See Also
    ========

    ratint, ratint_logpart
    c                    s    g | ]}t d tˆ | ƒ ƒ‘qS )Úa©r   Ústr©Ú.0Úi)Únr3   r4   Ú
<listcomp>¥   ó    z"ratint_ratpart.<locals>.<listcomp>r   c                    s    g | ]}t d tˆ | ƒ ƒ‘qS )Úbr7   r9   )Úmr3   r4   r=   ¦   r>   )Údomain)r   Z	cofactorsÚdiffÚdegreeÚranger   Úquor   Úcoeffsr   Úsubsr   )r#   r*   r$   ÚuÚvr1   ZA_coeffsZB_coeffsZC_coeffsÚAÚBÚHr)   Zrat_partZlog_partr3   )r@   r<   r4   r   }   s"     

.r   Nc                 C   sÈ  t | |ƒt ||ƒ } }|p tdƒ}|| | ¡ t ||ƒ   }}t||dd\}}t ||dd}|srJ d||f ƒ‚i g  }}	|D ]}
|
||
 ¡ < q€dd„ }| ¡ \}}|||ƒ |D ]\}}| ¡ \}}| ¡ |kræ|	 ||f¡ q´|| }t | ¡ |dd	}|jdd
\}}|||ƒ |D ]$\}}| 	t | 
|¡| |ƒ¡}q| |¡tjg }}| ¡ dd… D ].}| |j¡}||  |¡}| | ¡ ¡ qht ttt| ¡ |ƒƒƒ|ƒ}|	 ||f¡ q´|	S )an  
    Lazard-Rioboo-Trager algorithm.

    Explanation
    ===========

    Given a field K and polynomials f and g in K[x], such that f and g
    are coprime, deg(f) < deg(g) and g is square-free, returns a list
    of tuples (s_i, q_i) of polynomials, for i = 1..n, such that s_i
    in K[t, x] and q_i in K[t], and::

                           ___    ___
                 d  f   d  \  `   \  `
                 -- - = --  )      )   a log(s_i(a, x))
                 dx g   dx /__,   /__,
                          i=1..n a | q_i(a) = 0

    Examples
    ========

    >>> from sympy.integrals.rationaltools import ratint_logpart
    >>> from sympy.abc import x
    >>> from sympy import Poly
    >>> ratint_logpart(Poly(1, x, domain='ZZ'),
    ... Poly(x**2 + x + 1, x, domain='ZZ'), x)
    [(Poly(x + 3*_t/2 + 1/2, x, domain='QQ[_t]'),
    ...Poly(3*_t**2 + 1, _t, domain='ZZ'))]
    >>> ratint_logpart(Poly(12, x, domain='ZZ'),
    ... Poly(x**2 - x - 2, x, domain='ZZ'), x)
    [(Poly(x - 3*_t/8 - 1/2, x, domain='QQ[_t]'),
    ...Poly(-_t**2 + 16, _t, domain='ZZ'))]

    See Also
    ========

    ratint, ratint_ratpart
    r   T)Z
includePRSF)r   z%BUG: resultant(%s, %s) cannot be zeroc                 S   s>   | j r:| dk dkr:|d \}}|  |j¡}|| |f|d< d S )Nr   T)r   Úas_polyÚgens)ÚcZsqfr+   ÚkZc_polyr3   r3   r4   Ú_include_signï   s    z%ratint_logpart.<locals>._include_sign)r   )Úallé   N)r   r   rB   r   rC   Zsqf_listr!   ÚappendZLCrE   ÚgcdÚinvertr   ÚOnerF   rM   rN   Úremr   ÚdictÚlistÚzipZmonoms)r#   r*   r$   r   r6   r?   Úresr2   ZR_maprL   r.   rQ   ÚCZres_sqfr'   r;   r1   r+   Zh_lcrO   Zh_lc_sqfÚjÚinvrF   r(   ÚTr3   r3   r4   r   º   s<    &


r   c           	      C   sš   |   ¡ |  ¡ k r| |  } }|  ¡ } | ¡ }|  |¡\}}|jrPdt| ¡ ƒ S | |  ¡\}}}| | ||   |¡}dt| ¡ ƒ }|t||ƒ S dS )a0  
    Convert complex logarithms to real arctangents.

    Explanation
    ===========

    Given a real field K and polynomials f and g in K[x], with g != 0,
    returns a sum h of arctangents of polynomials in K[x], such that:

                   dh   d         f + I g
                   -- = -- I log( ------- )
                   dx   dx        f - I g

    Examples
    ========

        >>> from sympy.integrals.rationaltools import log_to_atan
        >>> from sympy.abc import x
        >>> from sympy import Poly, sqrt, S
        >>> log_to_atan(Poly(x, x, domain='ZZ'), Poly(1, x, domain='ZZ'))
        2*atan(x)
        >>> log_to_atan(Poly(x + S(1)/2, x, domain='QQ'),
        ... Poly(sqrt(3)/2, x, domain='EX'))
        2*atan(2*sqrt(3)*x/3 + sqrt(3)/3)

    See Also
    ========

    log_to_real
    é   N)	rC   Zto_fieldr   r   r	   r   ZgcdexrE   Úlog_to_atan)	r#   r*   r&   r'   Úsr   r+   rH   rJ   r3   r3   r4   rb     s    rb   c              	   C   st  ddl m} tdtd\}}|  ¡  ||t|  i¡ ¡ }| ¡  ||t|  i¡ ¡ }||tdd}	||tdd}
|	 t	j
t	j¡|	 tt	j¡ }}|
 t	j
t	j¡|
 tt	j¡ }}tt|||ƒ|ƒ}t|dd}t|ƒ| ¡ kræd	S t	j}| ¡ D ]*}t| ||i¡|ƒ}t|dd}t|ƒ| ¡ kr2 d	S g }|D ]N}||vr:| |vr:|jsf| ¡ rt| | ¡ n|js:| |¡ q:|D ]}| ||||i¡}|jd
ddkrºqŽt| ||||i¡|ƒ}t| ||||i¡|ƒ}|d |d   ¡ }||t|ƒ |t||ƒ  7 }qŽqôt|dd}t|ƒ| ¡ krDd	S | ¡ D ]"}||t|  ¡  ||¡ƒ 7 }qL|S )aw  
    Convert complex logarithms to real functions.

    Explanation
    ===========

    Given real field K and polynomials h in K[t,x] and q in K[t],
    returns real function f such that:
                          ___
                  df   d  \  `
                  -- = --  )  a log(h(a, x))
                  dx   dx /__,
                         a | q(a) = 0

    Examples
    ========

        >>> from sympy.integrals.rationaltools import log_to_real
        >>> from sympy.abc import x, y
        >>> from sympy import Poly, S
        >>> log_to_real(Poly(x + 3*y/2 + S(1)/2, x, domain='QQ[y]'),
        ... Poly(3*y**2 + 1, y, domain='ZZ'), x, y)
        2*sqrt(3)*atan(2*sqrt(3)*x/3 + sqrt(3)/3)/3
        >>> log_to_real(Poly(x**2 - 1, x, domain='ZZ'),
        ... Poly(-2*y + 1, y, domain='ZZ'), x, y)
        log(x**2 - 1)/2

    See Also
    ========

    log_to_atan
    r   )Úcollectzu,v)ÚclsF)Úevaluater2   )ÚfilterNT)Zchopra   )Zsympy.simplify.radsimprd   r   r   r   rG   r   Úexpandr   r   rW   r    r   r   r
   ÚlenZcount_rootsÚkeysZis_negativeZcould_extract_minus_signrT   r   Zevalfr   rb   )r+   r'   r$   r   rd   rH   rI   rL   r-   ZH_mapZQ_mapr6   r?   rO   Údr2   ZR_ur)   Zr_ur]   ZR_vZ
R_v_pairedZr_vÚDrJ   rK   ZABZR_qr.   r3   r3   r4   r"   F  sN    !  $ r"   )N) Ú__doc__Zsympy.core.functionr   Zsympy.core.numbersr   Zsympy.core.singletonr   Zsympy.core.symbolr   r   r   Z&sympy.functions.elementary.exponentialr   Z(sympy.functions.elementary.trigonometricr	   Zsympy.polys.polyrootsr
   Zsympy.polys.polytoolsr   Zsympy.polys.rootoftoolsr   Zsympy.polysr   r   r   Zsympy.solvers.solversr   r5   r   r   rb   r"   r3   r3   r3   r4   Ú<module>   s    m=
[1