a
    <b
                     @   sF   d Z ddlmZ ddlmZ ddlmZ dddZd	d
 Zdd Z	dS )z)Numerical Methods for Holonomic Functions    sympify)DMFsubs)mpFRK4c              	      s   | j }|j |jj}| }|dkr*t}nt}g |jD ]}|	|j
 q8 fddt D }	| j}
t|
 k rtd| j}||	||d |
 g}t|dd D ]&\}}|||	|| ||d   q|sd	d |D S t|S dS )
zk
    Numerical methods for numerical integration along a given set of
    points in the complex plane.
    ZEulerc                    s   g | ]}|     qS  r   .0iaZdmfr   i/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/holonomic/numerical.py
<listcomp>       z_evalf.<locals>.<listcomp>zNot Enough Initial Conditionsr      Nc                 S   s   g | ]}t |d  qS )r   r   r   r   r   r   r   )   r   )Zannihilatororderparentbase	get_field_euler_rk4Z
listofpolyappendnewreprangey0len	TypeErrorx0	enumerater   )funcZpointsZderivativesmethodannRKmethjredr   r   solr
   r   r   r   _evalf	   s*    
 r*   c                 C   s   t |tj}t |tj}dd |D }|| }|dd }	d}
t|D ].}|
t t| | |ddtj||  7 }
qN|	|
 g }t|D ]}||| ||	|    q|S )zs
    Euler's method for numerical integration.
    From x0 to x1 with initial values given at x0 as vector y0.
    c                 S   s   g | ]}t |tjqS r   r   
_to_mpmathr   precr   r   r   r   r   6   r   z_euler.<locals>.<listcomp>r   Nr   TZmpmr   r,   r   r-   r   r   r   )r(   r   x1r   r   ABy_0hf_0f_0_nr
   r)   r   r   r   r   .   s    ,
r   c              	      sH  t |tj}t |tj}dd |D || d}d}d}	d}
dd  t|D ].}|t t| | |ddtj|  7 }qZ |  fddtd|D t|D ]F}|t t| | |d	  ddtj|  |  d	   7 }q| fd
dtd|D t|D ]H}|	t t| | |d	  ddtj| |  d	   7 }	q.|	 fddtd|D }t|D ]@}|
t t| | | ddtj| |    7 }
q||
 g }t|D ]D}||  | d	|   d	|   ||   d   q|S )z1
    Runge-Kutta 4th order numerical method.
    c                 S   s   g | ]}t |tjqS r   r+   r   r   r   r   r   M   r   z_rk4.<locals>.<listcomp>r   r   NTr.   c                    s$   g | ]}|  |  d   qS    r   r   )r5   r4   r3   r   r   r   Z   r   r8   c                    s$   g | ]}|  |  d   qS r7   r   r   )f_1r4   r3   r   r   r   _   r   c                    s    g | ]}|  |   qS r   r   r   )f_2r4   r3   r   r   r   d   r      r/   )r(   r   r0   r   r   r1   r2   r6   Zf_1_nZf_2_nZf_3_nr
   Zf_3r)   r   )r5   r9   r:   r4   r3   r   r   F   s8    ,
D
F
>
Br   N)Fr   )
__doc__Zsympy.core.sympifyr   Zsympy.holonomic.holonomicr   Zmpmathr   r*   r   r   r   r   r   r   <module>   s   
%