a
    <b?                     @   s  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZmZ d dlmZmZ d dlmZmZmZ d d	lmZ d d
lmZmZ d dlmZ d dlmZ d dlmZm Z m!Z!m"Z" d dl#m$Z$ d dl%m&Z& d dl'm(Z(m)Z) d dl*m+Z+m,Z, d dl%m-Z-m.Z. d dl/m0Z0m1Z1m2Z2 d dl3m4Z4 d dl5m6Z6 d dl7m8Z8m9Z9 G dd deZ:G dd de:Z;G dd de:Z<G dd de:Z=G dd  d e:Z>G d!d" d"e:Z?G d#d$ d$e:Z@d%d& ZAG d'd( d(e:ZBd)d* ZCd+d, ZDG d-d. d.eBZEG d/d0 d0eBZFG d1d2 d2eBZGG d3d4 d4eGZHG d5d6 d6eGZIdHd9d:ZJG d;d< d<eZKG d=d> d>eKZLG d?d@ d@eKZMG dAdB dBeKZNG dCdD dDeKZOG dEdF dFeZPdGS )I    wraps)S)Add)cacheit)Expr)FunctionArgumentIndexError_mexpand)fuzzy_or	fuzzy_not)RationalpiI)Pow)DummyWild)sympify)	factorial)sincoscsccot)ceiling)Abs)explog)sqrtroot)reim)gammadigamma
uppergamma)hyper)spherical_bessel_fn)mpworkprecc                   @   s^   e Zd ZdZedd Zedd Zedd Zdd	d
Z	dd Z
dd Zdd Zdd ZdS )
BesselBasea  
    Abstract base class for Bessel-type functions.

    This class is meant to reduce code duplication.
    All Bessel-type functions can 1) be differentiated, with the derivatives
    expressed in terms of similar functions, and 2) be rewritten in terms
    of other Bessel-type functions.

    Here, Bessel-type functions are assumed to have one complex parameter.

    To use this base class, define class attributes ``_a`` and ``_b`` such that
    ``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``.

    c                 C   s
   | j d S )z( The order of the Bessel-type function. r   argsself r-   n/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/functions/special/bessel.pyorder5   s    zBesselBase.orderc                 C   s
   | j d S )z+ The argument of the Bessel-type function.    r)   r+   r-   r-   r.   argument:   s    zBesselBase.argumentc                 C   s   d S Nr-   clsnuzr-   r-   r.   eval?   s    zBesselBase.eval   c                 C   sN   |dkrt | || jd | | jd | j | jd | | jd | j  S Nr8   r0   )r	   _b	__class__r/   r1   _ar,   argindexr-   r-   r.   fdiffC   s
    
zBesselBase.fdiffc                 C   s*   | j }|jdu r&| | j | S d S NF)r1   is_extended_negativer;   r/   	conjugater,   r6   r-   r-   r.   _eval_conjugateI   s    
zBesselBase._eval_conjugatec                 C   sx   | j | j }}||rdS |||s,d S |||}|jrdt| ttt	t
ttfsZ|jsdt|jS tt|j|jgS r@   )r/   r1   Zhas_eval_is_meromorphicsubs
is_integer
isinstancebesseljbesselihn1hn2jnynis_zeror   is_infiniter   )r,   xar5   r6   Zz0r-   r-   r.   rE   N   s    

zBesselBase._eval_is_meromorphicc                 K   s   | j | j| j  }}}|jr|d jrn| j | j ||d |  d| j |d  ||d |  |  S |d jrd| j |d  ||d |  | | j| j ||d |   S | S Nr0   r8   )	r/   r1   r;   Zis_realis_positiver<   r:   _eval_expand_funcis_negative)r,   hintsr5   r6   fr-   r-   r.   rU   [   s    
&
&zBesselBase._eval_expand_funcc                 K   s   ddl m} || S )Nr   )
besselsimp)Zsympy.simplify.simplifyrY   )r,   kwargsrY   r-   r-   r.   _eval_simplifyf   s    zBesselBase._eval_simplifyN)r8   )__name__
__module____qualname____doc__propertyr/   r1   classmethodr7   r?   rD   rE   rU   r[   r-   r-   r-   r.   r(   %   s   



r(   c                       sd   e Zd ZdZejZejZedd Z	dd Z
dd Zdd	 ZdddZdd Zd fdd	Z  ZS )rI   a3  
    Bessel function of the first kind.

    Explanation
    ===========

    The Bessel $J$ function of order $\nu$ is defined to be the function
    satisfying Bessel's differential equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
        + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,

    with Laurent expansion

    .. math ::
        J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),

    if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$
    *is* a negative integer, then the definition is

    .. math ::
        J_{-n}(z) = (-1)^n J_n(z).

    Examples
    ========

    Create a Bessel function object:

    >>> from sympy import besselj, jn
    >>> from sympy.abc import z, n
    >>> b = besselj(n, z)

    Differentiate it:

    >>> b.diff(z)
    besselj(n - 1, z)/2 - besselj(n + 1, z)/2

    Rewrite in terms of spherical Bessel functions:

    >>> b.rewrite(jn)
    sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)

    Access the parameter and argument:

    >>> b.order
    n
    >>> b.argument
    z

    See Also
    ========

    bessely, besseli, besselk

    References
    ==========

    .. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9",
           Handbook of Mathematical Functions with Formulas, Graphs, and
           Mathematical Tables
    .. [2] Luke, Y. L. (1969), The Special Functions and Their
           Approximations, Volume 1
    .. [3] https://en.wikipedia.org/wiki/Bessel_function
    .. [4] http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/

    c                 C   sf  |j rX|j rtjS |jr"|j du s,t|jr2tjS t|jrL|jdurLtjS |j	rXtj
S |tjtjfv rntjS | r|| | |   t||  S |jr| rtj|  t| | S |t}|rt| t|| S ddlm} |jr||}||krFt||S n8| \}}|dkrFtd| t | t t|| S ||}||krbt||S d S NFTr   )
unpolarifyr8   )rO   r   OnerG   r   rT   ZerorV   ComplexInfinityis_imaginaryNaNInfinityNegativeInfinitycould_extract_minus_signrI   NegativeOneextract_multiplicativelyr   rJ   $sympy.functions.elementary.complexesrc   extract_branch_factorr   r   r4   r5   r6   Znewzrc   nZnnur-   r-   r.   r7      s<     


"
zbesselj.evalc                 K   s4   ddl m} ttt | d t||t |  S Nr   )
polar_liftr8   )rn   rs   r   r   r   rJ   r,   r5   r6   rZ   rs   r-   r-   r.   _eval_rewrite_as_besseli   s    z besselj._eval_rewrite_as_besselic                 K   s<   |j du r8tt| t| | tt| t||  S d S r@   )rG   r   r   besselyr   r,   r5   r6   rZ   r-   r-   r.   _eval_rewrite_as_bessely   s    
z besselj._eval_rewrite_as_besselyc                 K   s"   t d| t t|tj | j S Nr8   )r   r   rM   r   Halfr1   rw   r-   r-   r.   _eval_rewrite_as_jn   s    zbesselj._eval_rewrite_as_jnNr   c                 C   sR   | j \}}||}||jv r:|| d| t|d   S | |||dS d S Nr8   r0   r   )r*   as_leading_termfree_symbolsr!   funcrF   )r,   rQ   logxcdirr5   r6   argr-   r-   r.   _eval_as_leading_term   s
    


zbesselj._eval_as_leading_termc                 C   s   | j \}}|jr|jrdS d S NTr*   rG   is_extended_realr,   r5   r6   r-   r-   r.   _eval_is_extended_real   s    
zbesselj._eval_is_extended_realc              	      s$  ddl m} | j\}}z||\}}	W n ttfyB   |  Y S 0 |	jrt||	 }
||| |}|d ||||	 }|t
ju r|S t|d | 	 }|| t|d  }|g}td|
d d D ]4}|| |||   9 }t|| 	 }|| qt| | S tt| ||||S Nr   )Orderr8   r0   )sympy.series.orderr   r*   leadterm
ValueErrorNotImplementedErrorrT   r   _eval_nseriesremoveOr   re   r
   r!   rangeappendr   superrI   )r,   rQ   rq   r   r   r   r5   r6   _r   newnorttermskr;   r-   r.   r      s*    


zbesselj._eval_nseries)Nr   )r   )r\   r]   r^   r_   r   rd   r<   r:   ra   r7   ru   rx   r{   r   r   r   __classcell__r-   r-   r   r.   rI   k   s   D
$
rI   c                       sd   e Zd ZdZejZejZedd Z	dd Z
dd Zdd	 ZdddZdd Zd fdd	Z  ZS )rv   a_  
    Bessel function of the second kind.

    Explanation
    ===========

    The Bessel $Y$ function of order $\nu$ is defined as

    .. math ::
        Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu)
                                            - J_{-\mu}(z)}{\sin(\pi \mu)},

    where $J_\mu(z)$ is the Bessel function of the first kind.

    It is a solution to Bessel's equation, and linearly independent from
    $J_\nu$.

    Examples
    ========

    >>> from sympy import bessely, yn
    >>> from sympy.abc import z, n
    >>> b = bessely(n, z)
    >>> b.diff(z)
    bessely(n - 1, z)/2 - bessely(n + 1, z)/2
    >>> b.rewrite(yn)
    sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)

    See Also
    ========

    besselj, besseli, besselk

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/

    c                 C   sv   |j r6|j rtjS t|j du r&tjS t|j r6tjS |tjtjfv rLtjS |jrr|	 rrtj
|  t| | S d S r@   )rO   r   rj   r   rf   rh   ri   re   rG   rk   rl   rv   r3   r-   r-   r.   r7   :  s    
zbessely.evalc                 K   s<   |j du r8tt| tt| t|| t| |  S d S r@   )rG   r   r   r   rI   rw   r-   r-   r.   _eval_rewrite_as_besseljJ  s    
z bessely._eval_rewrite_as_besseljc                 K   s   | j | j }|r|tS d S r2   )r   r*   rewriterJ   r,   r5   r6   rZ   Zajr-   r-   r.   ru   N  s    z bessely._eval_rewrite_as_besselic                 K   s"   t d| t t|tj | j S ry   )r   r   rN   r   rz   r1   rw   r-   r-   r.   _eval_rewrite_as_ynS  s    zbessely._eval_rewrite_as_ynNr   c           
      C   s   | j \}}dt t|d  t|| }|d jrP|d |  t|d  t ntj}|d | tt|  t|d tj	  }t
|||g |}	||	jv r|	S | |||d S d S r|   )r*   r   r   rI   rT   r   r   re   r"   
EulerGammar   r}   r~   r   rF   cancel)
r,   rQ   r   r   r5   r6   Zterm_oneZterm_twoZ
term_threer   r-   r-   r.   r   V  s    
.*
zbessely._eval_as_leading_termc                 C   s   | j \}}|jr|jrdS d S r   r*   rG   rT   r   r-   r-   r.   r   a  s    
zbessely._eval_is_extended_realc              	      s   ddl m} | j\}}z||\}}	W n ttfyB   |  Y S 0 |	jr
|jr
t||	 }
t	||}dt
 t|d  | ||||}g g  }}||| |}|d |||| }|tju r|S t|d |  }|tjkrX||  t|d  t
 }|| td|d D ]8}|||| d  | 9 }t||  }|| q|| t
t|  }|t|d tj  }|| td|
d d D ]V}|| |||   9 }t||  }|t|| d t|d   }|| q|t|  t|  S tt| ||||S r   )r   r   r*   r   r   r   rT   rG   r   rI   r   r   r   r   r   re   r
   rd   r   r   r   r"   r   r   r   rv   )r,   rQ   rq   r   r   r   r5   r6   r   r   r   ZbnrR   bcr   r   r   r   r   pr   r-   r.   r   f  sB    


$



 zbessely._eval_nseries)Nr   )r   )r\   r]   r^   r_   r   rd   r<   r:   ra   r7   r   ru   r   r   r   r   r   r-   r-   r   r.   rv     s   (

rv   c                   @   sJ   e Zd ZdZej ZejZedd Z	dd Z
dd Zdd	 Zd
d ZdS )rJ   a  
    Modified Bessel function of the first kind.

    Explanation
    ===========

    The Bessel $I$ function is a solution to the modified Bessel equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
        + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.

    It can be defined as

    .. math ::
        I_\nu(z) = i^{-\nu} J_\nu(iz),

    where $J_\nu(z)$ is the Bessel function of the first kind.

    Examples
    ========

    >>> from sympy import besseli
    >>> from sympy.abc import z, n
    >>> besseli(n, z).diff(z)
    besseli(n - 1, z)/2 + besseli(n + 1, z)/2

    See Also
    ========

    besselj, bessely, besselk

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/

    c                 C   sb  |j rX|j rtjS |jr"|j du s,t|jr2tjS t|jrL|jdurLtjS |j	rXtj
S t|tjtjfv rrtjS | r|| | |   t||  S |jr| rt| |S |t}|rt|  t||  S ddlm} |jr
||}||krBt||S n8| \}}|dkrBtd| t | t t|| S ||}||kr^t||S d S rb   )rO   r   rd   rG   r   rT   re   rV   rf   rg   rh   r    ri   rj   rk   rJ   rm   r   rI   rn   rc   ro   r   r   rp   r-   r-   r.   r7     s<     


"
zbesseli.evalc                 K   s4   ddl m} tt t | d t||t|  S rr   )rn   rs   r   r   r   rI   rt   r-   r-   r.   r     s    z besseli._eval_rewrite_as_besseljc                 K   s   | j | j }|r|tS d S r2   r   r*   r   rv   r   r-   r-   r.   rx     s    z besseli._eval_rewrite_as_besselyc                 K   s   | j | j tS r2   )r   r*   r   rM   rw   r-   r-   r.   r{     s    zbesseli._eval_rewrite_as_jnc                 C   s   | j \}}|jr|jrdS d S r   r   r   r-   r-   r.   r     s    
zbesseli._eval_is_extended_realN)r\   r]   r^   r_   r   rd   r<   r:   ra   r7   r   rx   r{   r   r-   r-   r-   r.   rJ     s   '
$rJ   c                   @   sR   e Zd ZdZejZej Zedd Z	dd Z
dd Zdd	 Zd
d Zdd ZdS )besselka  
    Modified Bessel function of the second kind.

    Explanation
    ===========

    The Bessel $K$ function of order $\nu$ is defined as

    .. math ::
        K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2}
                   \frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},

    where $I_\mu(z)$ is the modified Bessel function of the first kind.

    It is a solution of the modified Bessel equation, and linearly independent
    from $Y_\nu$.

    Examples
    ========

    >>> from sympy import besselk
    >>> from sympy.abc import z, n
    >>> besselk(n, z).diff(z)
    -besselk(n - 1, z)/2 - besselk(n + 1, z)/2

    See Also
    ========

    besselj, besseli, bessely

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/

    c                 C   sv   |j r6|j rtjS t|j du r&tjS t|j r6tjS |tjttj ttj fv rXtjS |j	rr|
 rrt| |S d S r@   )rO   r   ri   r   rf   rh   r   rj   re   rG   rk   r   r3   r-   r-   r.   r7     s    
zbesselk.evalc                 K   s8   |j du r4ttt|  t| |t||  d S d S )NFr8   )rG   r   r   rJ   rw   r-   r-   r.   ru   -  s    
z besselk._eval_rewrite_as_besselic                 K   s   | j | j }|r|tS d S r2   )ru   r*   r   rI   )r,   r5   r6   rZ   Zair-   r-   r.   r   1  s    z besselk._eval_rewrite_as_besseljc                 K   s   | j | j }|r|tS d S r2   r   r   r-   r-   r.   rx   6  s    z besselk._eval_rewrite_as_besselyc                 K   s   | j | j }|r|tS d S r2   )rx   r*   r   rN   )r,   r5   r6   rZ   Zayr-   r-   r.   r   ;  s    zbesselk._eval_rewrite_as_ync                 C   s   | j \}}|jr|jrdS d S r   r   r   r-   r-   r.   r   @  s    
zbesselk._eval_is_extended_realN)r\   r]   r^   r_   r   rd   r<   r:   ra   r7   ru   r   rx   r   r   r-   r-   r-   r.   r     s   %
r   c                   @   s$   e Zd ZdZejZejZdd ZdS )hankel1a  
    Hankel function of the first kind.

    Explanation
    ===========

    This function is defined as

    .. math ::
        H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),

    where $J_\nu(z)$ is the Bessel function of the first kind, and
    $Y_\nu(z)$ is the Bessel function of the second kind.

    It is a solution to Bessel's equation.

    Examples
    ========

    >>> from sympy import hankel1
    >>> from sympy.abc import z, n
    >>> hankel1(n, z).diff(z)
    hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2

    See Also
    ========

    hankel2, besselj, bessely

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/

    c                 C   s(   | j }|jdu r$t| j | S d S r@   )r1   rA   hankel2r/   rB   rC   r-   r-   r.   rD   n  s    
zhankel1._eval_conjugateN	r\   r]   r^   r_   r   rd   r<   r:   rD   r-   r-   r-   r.   r   F  s   $r   c                   @   s$   e Zd ZdZejZejZdd ZdS )r   a  
    Hankel function of the second kind.

    Explanation
    ===========

    This function is defined as

    .. math ::
        H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),

    where $J_\nu(z)$ is the Bessel function of the first kind, and
    $Y_\nu(z)$ is the Bessel function of the second kind.

    It is a solution to Bessel's equation, and linearly independent from
    $H_\nu^{(1)}$.

    Examples
    ========

    >>> from sympy import hankel2
    >>> from sympy.abc import z, n
    >>> hankel2(n, z).diff(z)
    hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2

    See Also
    ========

    hankel1, besselj, bessely

    References
    ==========

    .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/

    c                 C   s(   | j }|jdu r$t| j | S d S r@   )r1   rA   r   r/   rB   rC   r-   r-   r.   rD     s    
zhankel2._eval_conjugateNr   r-   r-   r-   r.   r   t  s   %r   c                    s   t   fdd}|S )Nc                    s   |j r | ||S d S r2   )rG   r   fnr-   r.   g  s    zassume_integer_order.<locals>.gr   )r   r   r-   r   r.   assume_integer_order  s    r   c                   @   s*   e Zd ZdZdd Zdd Zd
ddZd	S )SphericalBesselBasea-  
    Base class for spherical Bessel functions.

    These are thin wrappers around ordinary Bessel functions,
    since spherical Bessel functions differ from the ordinary
    ones just by a slight change in order.

    To use this class, define the ``_eval_evalf()`` and ``_expand()`` methods.

    c                 K   s   t ddS )z@ Expand self into a polynomial. Nu is guaranteed to be Integer. Z	expansionNr   r,   rW   r-   r-   r.   _expand  s    zSphericalBesselBase._expandc                 K   s   | j jr| jf i |S | S r2   )r/   
is_Integerr   r   r-   r-   r.   rU     s    z%SphericalBesselBase._eval_expand_funcr8   c                 C   s:   |dkrt | || | jd | j| | jd  | j  S r9   )r	   r;   r/   r1   r=   r-   r-   r.   r?     s
    
zSphericalBesselBase.fdiffN)r8   )r\   r]   r^   r_   r   rU   r?   r-   r-   r-   r.   r     s   r   c                 C   s8   t | |t| tj| d  t |  d | t|  S Nr0   )r%   r   r   rl   r   rq   r6   r-   r-   r.   _jn  s    $r   c                 C   s8   t j| d  t|  d | t| t| |t|  S r   )r   rl   r%   r   r   r   r-   r-   r.   _yn  s    $r   c                   @   sD   e Zd ZdZedd Zdd Zdd Zdd	 Zd
d Z	dd Z
dS )rM   a  
    Spherical Bessel function of the first kind.

    Explanation
    ===========

    This function is a solution to the spherical Bessel equation

    .. math ::
        z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
          + 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.

    It can be defined as

    .. math ::
        j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),

    where $J_\nu(z)$ is the Bessel function of the first kind.

    The spherical Bessel functions of integral order are
    calculated using the formula:

    .. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},

    where the coefficients $f_n(z)$ are available as
    :func:`sympy.polys.orthopolys.spherical_bessel_fn`.

    Examples
    ========

    >>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(jn(0, z)))
    sin(z)/z
    >>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
    True
    >>> expand_func(jn(3, z))
    (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
    >>> jn(nu, z).rewrite(besselj)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
    >>> jn(nu, z).rewrite(bessely)
    (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
    >>> jn(2, 5.2+0.3j).evalf(20)
    0.099419756723640344491 - 0.054525080242173562897*I

    See Also
    ========

    besselj, bessely, besselk, yn

    References
    ==========

    .. [1] http://dlmf.nist.gov/10.47

    c                 C   sD   |j r*|j rtjS |jr*|jr$tjS tjS |tjtjfv r@tjS d S r2   )	rO   r   rd   rG   rT   re   rf   rj   ri   r3   r-   r-   r.   r7     s    zjn.evalc                 K   s    t td|  t|tj | S ry   )r   r   rI   r   rz   rw   r-   r-   r.   r     s    zjn._eval_rewrite_as_besseljc                 K   s,   t j| ttd|   t| t j | S ry   )r   rl   r   r   rv   rz   rw   r-   r-   r.   rx     s    zjn._eval_rewrite_as_besselyc                 K   s   t j| t| d | S r   )r   rl   rN   rw   r-   r-   r.   r     s    zjn._eval_rewrite_as_ync                 K   s   t | j| jS r2   )r   r/   r1   r   r-   r-   r.   r   "  s    z
jn._expandc                 C   s   | j jr| t|S d S r2   r/   r   r   rI   _eval_evalfr,   precr-   r-   r.   r   %  s    zjn._eval_evalfN)r\   r]   r^   r_   ra   r7   r   rx   r   r   r   r-   r-   r-   r.   rM     s   9
rM   c                   @   s@   e Zd ZdZedd Zedd Zdd Zdd	 Zd
d Z	dS )rN   a  
    Spherical Bessel function of the second kind.

    Explanation
    ===========

    This function is another solution to the spherical Bessel equation, and
    linearly independent from $j_n$. It can be defined as

    .. math ::
        y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),

    where $Y_\nu(z)$ is the Bessel function of the second kind.

    For integral orders $n$, $y_n$ is calculated using the formula:

    .. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(yn(0, z)))
    -cos(z)/z
    >>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
    True
    >>> yn(nu, z).rewrite(besselj)
    (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
    >>> yn(nu, z).rewrite(bessely)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
    >>> yn(2, 5.2+0.3j).evalf(20)
    0.18525034196069722536 + 0.014895573969924817587*I

    See Also
    ========

    besselj, bessely, besselk, jn

    References
    ==========

    .. [1] http://dlmf.nist.gov/10.47

    c                 K   s0   t j|d  ttd|   t| t j | S rS   )r   rl   r   r   rI   rz   rw   r-   r-   r.   r   Y  s    zyn._eval_rewrite_as_besseljc                 K   s    t td|  t|tj | S ry   )r   r   rv   r   rz   rw   r-   r-   r.   rx   ]  s    zyn._eval_rewrite_as_besselyc                 K   s   t j|d  t| d | S r   )r   rl   rM   rw   r-   r-   r.   r{   a  s    zyn._eval_rewrite_as_jnc                 K   s   t | j| jS r2   )r   r/   r1   r   r-   r-   r.   r   d  s    z
yn._expandc                 C   s   | j jr| t|S d S r2   )r/   r   r   rv   r   r   r-   r-   r.   r   g  s    zyn._eval_evalfN)
r\   r]   r^   r_   r   r   rx   r{   r   r   r-   r-   r-   r.   rN   *  s   .

rN   c                   @   sL   e Zd Zedd Zedd Zdd Zdd Zd	d
 Zdd Z	dd Z
dS )SphericalHankelBasec                 K   sN   | j }ttd|  t|tj ||t tj|d   t| tj |   S r9   )_hankel_kind_signr   r   rI   r   rz   r   rl   r,   r5   r6   rZ   hksr-   r-   r.   r   n  s    &z,SphericalHankelBase._eval_rewrite_as_besseljc                 K   sJ   | j }ttd|  tj| t| tj | |t t|tj |   S ry   )r   r   r   r   rl   rv   rz   r   r   r-   r-   r.   rx   w  s    (z,SphericalHankelBase._eval_rewrite_as_besselyc                 K   s(   | j }t||t|t t||  S r2   )r   rM   r   rN   r   r   r-   r-   r.   r     s    z'SphericalHankelBase._eval_rewrite_as_ync                 K   s(   | j }t|||t t||t  S r2   )r   rM   r   rN   r   r   r-   r-   r.   r{     s    z'SphericalHankelBase._eval_rewrite_as_jnc                 K   sJ   | j jr| jf i |S | j }| j}| j}t|||t t||  S d S r2   )r/   r   r   r1   r   rM   r   rN   )r,   rW   r5   r6   r   r-   r-   r.   rU     s    z%SphericalHankelBase._eval_expand_funcc                 K   s2   | j }| j}| j}t|||t t||   S r2   )r/   r1   r   r   r   r   expand)r,   rW   rq   r6   r   r-   r-   r.   r     s    
zSphericalHankelBase._expandc                 C   s   | j jr| t|S d S r2   r   r   r-   r-   r.   r     s    zSphericalHankelBase._eval_evalfN)r\   r]   r^   r   r   rx   r   r{   rU   r   r   r-   r-   r-   r.   r   l  s   

	r   c                   @   s"   e Zd ZdZejZedd ZdS )rK   a  
    Spherical Hankel function of the first kind.

    Explanation
    ===========

    This function is defined as

    .. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),

    where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
    Bessel function of the first and second kinds.

    For integral orders $n$, $h_n^(1)$ is calculated using the formula:

    .. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(hn1(nu, z)))
    jn(nu, z) + I*yn(nu, z)
    >>> print(expand_func(hn1(0, z)))
    sin(z)/z - I*cos(z)/z
    >>> print(expand_func(hn1(1, z)))
    -I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2
    >>> hn1(nu, z).rewrite(jn)
    (-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
    >>> hn1(nu, z).rewrite(yn)
    (-1)**nu*yn(-nu - 1, z) + I*yn(nu, z)
    >>> hn1(nu, z).rewrite(hankel1)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2

    See Also
    ========

    hn2, jn, yn, hankel1, hankel2

    References
    ==========

    .. [1] http://dlmf.nist.gov/10.47

    c                 K   s   t td|  t|| S ry   )r   r   r   rw   r-   r-   r.   _eval_rewrite_as_hankel1  s    zhn1._eval_rewrite_as_hankel1N)	r\   r]   r^   r_   r   rd   r   r   r   r-   r-   r-   r.   rK     s   0rK   c                   @   s$   e Zd ZdZej Zedd ZdS )rL   a  
    Spherical Hankel function of the second kind.

    Explanation
    ===========

    This function is defined as

    .. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),

    where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
    Bessel function of the first and second kinds.

    For integral orders $n$, $h_n^(2)$ is calculated using the formula:

    .. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)

    Examples
    ========

    >>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn
    >>> z = Symbol("z")
    >>> nu = Symbol("nu", integer=True)
    >>> print(expand_func(hn2(nu, z)))
    jn(nu, z) - I*yn(nu, z)
    >>> print(expand_func(hn2(0, z)))
    sin(z)/z + I*cos(z)/z
    >>> print(expand_func(hn2(1, z)))
    I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2
    >>> hn2(nu, z).rewrite(hankel2)
    sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2
    >>> hn2(nu, z).rewrite(jn)
    -(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
    >>> hn2(nu, z).rewrite(yn)
    (-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)

    See Also
    ========

    hn1, jn, yn, hankel1, hankel2

    References
    ==========

    .. [1] http://dlmf.nist.gov/10.47

    c                 K   s   t td|  t|| S ry   )r   r   r   rw   r-   r-   r.   _eval_rewrite_as_hankel2  s    zhn2._eval_rewrite_as_hankel2N)	r\   r]   r^   r_   r   rd   r   r   r   r-   r-   r-   r.   rL     s   0rL   sympy   c                    s  ddl m} dkrTddlm  ddlm} || fddtd|d D S d	krdd
lm zddl	m
 fdd}W q ty   ddl	m fdd}Y q0 ntdfdd}| }|||}|g}	t|d D ]}
|||| }|	| q|	S )a  
    Zeros of the spherical Bessel function of the first kind.

    Explanation
    ===========

    This returns an array of zeros of $jn$ up to the $k$-th zero.

    * method = "sympy": uses `mpmath.besseljzero
      <http://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_
    * method = "scipy": uses the
      `SciPy's sph_jn <http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_
      and
      `newton <http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_
      to find all
      roots, which is faster than computing the zeros using a general
      numerical solver, but it requires SciPy and only works with low
      precision floating point numbers. (The function used with
      method="sympy" is a recent addition to mpmath; before that a general
      solver was used.)

    Examples
    ========

    >>> from sympy import jn_zeros
    >>> jn_zeros(2, 4, dps=5)
    [5.7635, 9.095, 12.323, 15.515]

    See Also
    ========

    jn, yn, besselj, besselk, bessely

    Parameters
    ==========

    n : integer
        order of Bessel function

    k : integer
        number of zeros to return


    r   )r   r   )besseljzero)dps_to_precc                    s0   g | ](}t  td  t|qS )g      ?)r   _from_mpmathr   
_to_mpmathint).0l)r   rq   r   r-   r.   
<listcomp>H  s   zjn_zeros.<locals>.<listcomp>r0   scipy)newton)spherical_jnc                    s
    | S r2   r-   rQ   )rq   r   r-   r.   <lambda>O      zjn_zeros.<locals>.<lambda>)sph_jnc                    s    | d d S )Nr   r-   r   )rq   r   r-   r.   r   R  r   Unknown method.c                    s     dkr| |}nt d|S )Nr   r   r   )rX   rQ   r   )methodr   r-   r.   solverV  s    zjn_zeros.<locals>.solver)mathr   mpmathr   Zmpmath.libmp.libmpfr   r   Zscipy.optimizer   Zscipy.specialr   ImportErrorr   r   r   )rq   r   r   ZdpsZmath_pir   rX   r   r   rootsir-   )r   r   rq   r   r   r   r   r.   jn_zeros  s2    -
r   c                   @   s4   e Zd ZdZdd Zdd ZdddZdd	d
ZdS )AiryBasezg
    Abstract base class for Airy functions.

    This class is meant to reduce code duplication.

    c                 C   s   |  | jd  S Nr   )r   r*   rB   r+   r-   r-   r.   rD   q  s    zAiryBase._eval_conjugatec                 C   s   | j d jS r   )r*   r   r+   r-   r-   r.   r   t  s    zAiryBase._eval_is_extended_realTc                 K   sL   | j d }| }| j}|||| d }t||||  d }||fS )Nr   r8   )r*   rB   r   r   )r,   deeprW   r6   ZzcrX   uvr-   r-   r.   as_real_imagw  s    
zAiryBase.as_real_imagc                 K   s&   | j f d|i|\}}||tj  S )Nr   )r   r   ZImaginaryUnit)r,   r   rW   Zre_partZim_partr-   r-   r.   _eval_expand_complex  s    zAiryBase._eval_expand_complexN)T)T)r\   r]   r^   r_   rD   r   r   r   r-   r-   r-   r.   r   i  s
   
r   c                   @   s^   e Zd ZdZdZdZedd ZdddZe	e
dd	 Zd
d Zdd Zdd Zdd ZdS )airyaia  
    The Airy function $\operatorname{Ai}$ of the first kind.

    Explanation
    ===========

    The Airy function $\operatorname{Ai}(z)$ is defined to be the function
    satisfying Airy's differential equation

    .. math::
        \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.

    Equivalently, for real $z$

    .. math::
        \operatorname{Ai}(z) := \frac{1}{\pi}
        \int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airyai
    >>> from sympy.abc import z

    >>> airyai(z)
    airyai(z)

    Several special values are known:

    >>> airyai(0)
    3**(1/3)/(3*gamma(2/3))
    >>> from sympy import oo
    >>> airyai(oo)
    0
    >>> airyai(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airyai(z))
    airyai(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airyai(z), z)
    airyaiprime(z)
    >>> diff(airyai(z), z, 2)
    z*airyai(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airyai(z), z, 0, 3)
    3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airyai(-2).evalf(50)
    0.22740742820168557599192443603787379946077222541710

    Rewrite $\operatorname{Ai}(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airyai(z).rewrite(hyper)
    -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))

    See Also
    ========

    airybi: Airy function of the second kind.
    airyaiprime: Derivative of the Airy function of the first kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] http://dlmf.nist.gov/9
    .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
    .. [4] http://mathworld.wolfram.com/AiryFunctions.html

    r0   Tc                 C   s   |j r^|tju rtjS |tju r&tjS |tju r6tjS |jr^tjdtdd t	tdd  S |jrtjdtdd t	tdd  S d S )N   r8   )
	is_Numberr   rh   ri   re   rj   rO   rd   r   r!   r4   r   r-   r-   r.   r7     s    


"zairyai.evalc                 C   s$   |dkrt | jd S t| |d S Nr0   r   )airyaiprimer*   r	   r=   r-   r-   r.   r?     s    zairyai.fdiffc                 G   sJ  | dk rt jS t|}t|dkr|d }dtdd | |   dtdd | | d   tt| tdd tdd   t|  t| d tdd  tt| tdd tdd  t| d  t| d tdd   | S t j	dtdd t  t| t j	 t d  tdt | t j	  t d  t|  t
dd| |   S d S )Nr   r0   r   r   r8      )r   re   r   lenr   r   r   r   r!   rd   r   rq   rQ   Zprevious_termsr   r-   r-   r.   taylor_term  s"    X@Jzairyai.taylor_termc                 K   s`   t dd}t dd}t| t dd}t|jr\|t|  t| || t|||   S d S Nr0   r   r8   r   r   r   rV   r   rI   r,   r6   rZ   otttrR   r-   r-   r.   r     s
    


zairyai._eval_rewrite_as_besseljc                 K   s   t dd}t dd}t|t dd}t|jrX|t| t| || t|||   S |t||t| ||  |t||  t|||    S d S r   r   r   r   rT   r   rJ   r   r-   r-   r.   ru   
  s    


*zairyai._eval_rewrite_as_besselic                 K   s~   t jdtdd ttdd  }|tddttdd  }|tg tddg|d d  |tg tddg|d d   S )Nr   r8   r0   	   r   )r   rd   r   r!   r   r$   r,   r6   rZ   Zpf1Zpf2r-   r-   r.   _eval_rewrite_as_hyper  s    "zairyai._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|||  | || |||    }
|||  |||   }tj|
tj	 t
| |
tj	 td t|   S d S 	Nr   r0   r   )excludedmrq   r   )r*   r~   r   popr   matchrG   r   rz   rd   r   r   airybir,   rW   r   Zsymbsr6   r   r   r   rq   MpfZnewargr-   r-   r.   rU     s$    

$zairyai._eval_expand_funcN)r0   r\   r]   r^   r_   nargs
unbranchedra   r7   r?   staticmethodr   r   r   ru   r   rU   r-   r-   r-   r.   r     s   X

	r   c                   @   s^   e Zd ZdZdZdZedd ZdddZe	e
dd	 Zd
d Zdd Zdd Zdd ZdS )r   a  
    The Airy function $\operatorname{Bi}$ of the second kind.

    Explanation
    ===========

    The Airy function $\operatorname{Bi}(z)$ is defined to be the function
    satisfying Airy's differential equation

    .. math::
        \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.

    Equivalently, for real $z$

    .. math::
        \operatorname{Bi}(z) := \frac{1}{\pi}
                 \int_0^\infty
                   \exp\left(-\frac{t^3}{3} + z t\right)
                   + \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airybi
    >>> from sympy.abc import z

    >>> airybi(z)
    airybi(z)

    Several special values are known:

    >>> airybi(0)
    3**(5/6)/(3*gamma(2/3))
    >>> from sympy import oo
    >>> airybi(oo)
    oo
    >>> airybi(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airybi(z))
    airybi(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airybi(z), z)
    airybiprime(z)
    >>> diff(airybi(z), z, 2)
    z*airybi(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airybi(z), z, 0, 3)
    3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airybi(-2).evalf(50)
    -0.41230258795639848808323405461146104203453483447240

    Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airybi(z).rewrite(hyper)
    3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))

    See Also
    ========

    airyai: Airy function of the first kind.
    airyaiprime: Derivative of the Airy function of the first kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] http://dlmf.nist.gov/9
    .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
    .. [4] http://mathworld.wolfram.com/AiryFunctions.html

    r0   Tc                 C   s   |j r^|tju rtjS |tju r&tjS |tju r6tjS |jr^tjdtdd t	tdd  S |jrtjdtdd t	tdd  S d S )Nr   r0      r8   )
r   r   rh   ri   rj   re   rO   rd   r   r!   r   r-   r-   r.   r7     s    


"zairybi.evalc                 C   s$   |dkrt | jd S t| |d S r   )airybiprimer*   r	   r=   r-   r-   r.   r?     s    zairybi.fdiffc                 G   s"  | dk rt jS t|}t|dkr|d }dtdd | ttdt | t j  t d  t	| t j t d  | t j tt
dt | t j  t d  t	| d t d   | S t jtddt  t| t j t d  ttdt | t j  t d  t	|  tdd| |   S d S )Nr   r0   r   r   r8   r  )r   re   r   r   r   r   r   r   rd   r   r   rz   r   r!   r   r-   r-   r.   r     s    H>Jzairybi.taylor_termc                 K   s`   t dd}t dd}t| t dd}t|jr\t| d t| || t|||   S d S r   r   r   r-   r-   r.   r     s
    


zairybi._eval_rewrite_as_besseljc                 K   s   t dd}t dd}t|t dd}t|jr\t|td t| || t|||   S t||}t|| }t||t| ||  || t|||    S d S r   r   r,   r6   rZ   r   r   rR   r   r   r-   r-   r.   ru     s    


.
zairybi._eval_rewrite_as_besselic                 K   sz   t jtddttdd  }|tdd ttdd }|tg tddg|d d  |tg tddg|d d   S )Nr   r  r8   r0   r   r   )r   rd   r   r!   r   r$   r   r-   r-   r.   r     s    zairybi._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|||  | || |||    }
|||  |||   }tjt	dtj
|
  t| tj
|
 t|   S d S r   )r*   r~   r   r   r   r   rG   r   rz   r   rd   r   r   r  r-   r-   r.   rU     s$    

$zairybi._eval_expand_funcN)r0   r  r-   r-   r-   r.   r   0  s   Z

r   c                   @   sV   e Zd ZdZdZdZedd ZdddZdd	 Z	d
d Z
dd Zdd Zdd ZdS )r   a+  
    The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first
    kind.

    Explanation
    ===========

    The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the
    function

    .. math::
        \operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airyaiprime
    >>> from sympy.abc import z

    >>> airyaiprime(z)
    airyaiprime(z)

    Several special values are known:

    >>> airyaiprime(0)
    -3**(2/3)/(3*gamma(1/3))
    >>> from sympy import oo
    >>> airyaiprime(oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airyaiprime(z))
    airyaiprime(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airyaiprime(z), z)
    z*airyai(z)
    >>> diff(airyaiprime(z), z, 2)
    z*airyaiprime(z) + airyai(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airyaiprime(z), z, 0, 3)
    -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airyaiprime(-2).evalf(50)
    0.61825902074169104140626429133247528291577794512415

    Rewrite $\operatorname{Ai}^\prime(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airyaiprime(z).rewrite(hyper)
    3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))

    See Also
    ========

    airyai: Airy function of the first kind.
    airybi: Airy function of the second kind.
    airybiprime: Derivative of the Airy function of the second kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] http://dlmf.nist.gov/9
    .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
    .. [4] http://mathworld.wolfram.com/AiryFunctions.html

    r0   Tc                 C   sR   |j r&|tju rtjS |tju r&tjS |jrNtjdtdd ttdd  S d S )Nr   r0   )	r   r   rh   ri   re   rO   rl   r   r!   r   r-   r-   r.   r7   6  s    

zairyaiprime.evalc                 C   s.   |dkr | j d t| j d  S t| |d S r   )r*   r   r	   r=   r-   r-   r.   r?   A  s    zairyaiprime.fdiffc                 C   sR   | j d |}t| tj|dd}W d    n1 s<0    Y  t||S Nr   r0   )Z
derivative)r*   r   r'   r&   r   r   r   r,   r   r6   resr-   r-   r.   r   G  s    
,zairyaiprime._eval_evalfc                 K   sP   t dd}t| t dd}t|jrL|d t| || t|||   S d S Nr8   r   )r   r   r   rV   rI   r,   r6   rZ   r   rR   r-   r-   r.   r   M  s    

z$airyaiprime._eval_rewrite_as_besseljc                 K   s   t dd}t dd}|t|t dd }t|jrP|d t||t| |  S t|t dd}t||}t|| }||d | t|||  |t| ||    S d S r   )r   r   r   rT   rJ   r
  r-   r-   r.   ru   S  s    



z$airyaiprime._eval_rewrite_as_besselic                 K   s   |d ddt dd  tt dd  }dtddtt dd  }|tg t ddg|d d  |tg t ddg|d d   S )Nr8   r   r0      r   )r   r!   r   r$   r   r-   r-   r.   r   _  s    (z"airyaiprime._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|| |||   |||  |  }
|||  |||   }tj|
tj	 t
| |
tj	 td t|   S d S r   )r*   r~   r   r   r   r   rG   r   rz   rd   r   r   r	  r  r-   r-   r.   rU   d  s$    

$zairyaiprime._eval_expand_funcN)r0   r\   r]   r^   r_   r  r  ra   r7   r?   r   r   ru   r   rU   r-   r-   r-   r.   r     s   Q


r   c                   @   sV   e Zd ZdZdZdZedd ZdddZdd	 Z	d
d Z
dd Zdd Zdd ZdS )r	  a<  
    The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first
    kind.

    Explanation
    ===========

    The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the
    function

    .. math::
        \operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.

    Examples
    ========

    Create an Airy function object:

    >>> from sympy import airybiprime
    >>> from sympy.abc import z

    >>> airybiprime(z)
    airybiprime(z)

    Several special values are known:

    >>> airybiprime(0)
    3**(1/6)/gamma(1/3)
    >>> from sympy import oo
    >>> airybiprime(oo)
    oo
    >>> airybiprime(-oo)
    0

    The Airy function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(airybiprime(z))
    airybiprime(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(airybiprime(z), z)
    z*airybi(z)
    >>> diff(airybiprime(z), z, 2)
    z*airybiprime(z) + airybi(z)

    Series expansion is also supported:

    >>> from sympy import series
    >>> series(airybiprime(z), z, 0, 3)
    3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)

    We can numerically evaluate the Airy function to arbitrary precision
    on the whole complex plane:

    >>> airybiprime(-2).evalf(50)
    0.27879516692116952268509756941098324140300059345163

    Rewrite $\operatorname{Bi}^\prime(z)$ in terms of hypergeometric functions:

    >>> from sympy import hyper
    >>> airybiprime(z).rewrite(hyper)
    3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)

    See Also
    ========

    airyai: Airy function of the first kind.
    airybi: Airy function of the second kind.
    airyaiprime: Derivative of the Airy function of the first kind.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Airy_function
    .. [2] http://dlmf.nist.gov/9
    .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
    .. [4] http://mathworld.wolfram.com/AiryFunctions.html

    r0   Tc                 C   s~   |j rX|tju rtjS |tju r&tjS |tju r6tjS |jrXdtdd ttdd S |jrzdtdd ttdd S d S )Nr   r0   r  )	r   r   rh   ri   rj   re   rO   r   r!   r   r-   r-   r.   r7     s    


zairybiprime.evalc                 C   s.   |dkr | j d t| j d  S t| |d S r   )r*   r   r	   r=   r-   r-   r.   r?     s    zairybiprime.fdiffc                 C   sR   | j d |}t| tj|dd}W d    n1 s<0    Y  t||S r  )r*   r   r'   r&   r   r   r   r  r-   r-   r.   r     s    
,zairybiprime._eval_evalfc                 K   sR   t dd}|t| t dd }t|jrN| td t| |t||  S d S r  r   r  r-   r-   r.   r     s    

z$airybiprime._eval_rewrite_as_besseljc                 K   s   t dd}t dd}|t|t dd }t|jrT|td t| |t||  S t|t dd}t||}t|| }t||t| ||  |d | t|||    S d S r   r   r
  r-   r-   r.   ru     s    


"
z$airybiprime._eval_rewrite_as_besselic                 K   s|   |d dt dd ttdd  }t ddttdd }|tg tddg|d d  |tg tddg|d d   S )Nr8   r   r  r0   r  r   )r   r!   r   r$   r   r-   r-   r.   r     s    $z"airybiprime._eval_rewrite_as_hyperc                 K   s   | j d }|j}t|dkr| }td|gd}td|gd}td|gd}td|gd}|||||  |  }	|	d ur|	| }d| jr|	| }|	| }|	| }|| |||   |||  |  }
|||  |||   }tjt	d|
tj
  t| |
tj
 t|   S d S r   )r*   r~   r   r   r   r   rG   r   rz   r   rd   r   r	  r  r-   r-   r.   rU     s$    

$zairybiprime._eval_expand_funcN)r0   r  r-   r-   r-   r.   r	  ~  s   S

r	  c                   @   sF   e Zd ZdZedd ZdddZdd Zd	d
 Zdd Z	dd Z
dS )marcumqa  
    The Marcum Q-function.

    Explanation
    ===========

    The Marcum Q-function is defined by the meromorphic continuation of

    .. math::
        Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx

    Examples
    ========

    >>> from sympy import marcumq
    >>> from sympy.abc import m, a, b
    >>> marcumq(m, a, b)
    marcumq(m, a, b)

    Special values:

    >>> marcumq(m, 0, b)
    uppergamma(m, b**2/2)/gamma(m)
    >>> marcumq(0, 0, 0)
    0
    >>> marcumq(0, a, 0)
    1 - exp(-a**2/2)
    >>> marcumq(1, a, a)
    1/2 + exp(-a**2)*besseli(0, a**2)/2
    >>> marcumq(2, a, a)
    1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)

    Differentiation with respect to $a$ and $b$ is supported:

    >>> from sympy import diff
    >>> diff(marcumq(m, a, b), a)
    a*(-marcumq(m, a, b) + marcumq(m + 1, a, b))
    >>> diff(marcumq(m, a, b), b)
    -a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Marcum_Q-function
    .. [2] http://mathworld.wolfram.com/MarcumQ-Function.html

    c                 C   sZ  |t ju r@|t ju r$|t ju r$t jS t||d t j t| S |t ju rn|t ju rnddt|d t j   S ||kr|t ju rdt|d  td|d   t j S |dkrt jt jt|d   td|d   t|d  td|d   S |jr,|jr|jrt jS t||d t j t| S |jrV|jrVddt|d t j   S d S r|   )	r   re   r#   rz   r!   r   rd   rJ   rO   )r4   r   rR   r   r-   r-   r.   r7   S  s"    

&Dzmarcumq.evalr8   c                 C   s   | j \}}}|dkr6|t||| td| ||  S |dkr||  ||d   t|d |d   d  t|d ||  S t| |d S )Nr8   r0   r   )r*   r  r   rJ   r	   )r,   r>   r   rR   r   r-   r-   r.   r?   k  s    "Bzmarcumq.fdiffc                 K   sj   ddl m} |dtd}|d|  ||| t|d |d   d  t|d ||  ||tjg S )Nr   )IntegralrQ   r0   r8   )Zsympy.integrals.integralsr  getr   r   rJ   r   ri   )r,   r   rR   r   rZ   r  rQ   r-   r-   r.   _eval_rewrite_as_Integralt  s
    
@z!marcumq._eval_rewrite_as_Integralc                 K   sb   ddl m} |dtd}t|d |d   d ||| | t|||  |d| tjg S )Nr   )Sumr   r8   r0   )Zsympy.concrete.summationsr  r  r   r   rJ   r   ri   )r,   r   rR   r   rZ   r  r   r-   r-   r.   _eval_rewrite_as_Sumz  s    zmarcumq._eval_rewrite_as_Sumc                    s    |kr|dkr4dt  d  td d   d S |jr|dkrt fddtd|D }tjt  d  td d  d  t  d  |  S d S )Nr0   r8   r   c                    s   g | ]}t | d  qS )r8   )rJ   )r   r   rR   r-   r.   r     r   z4marcumq._eval_rewrite_as_besseli.<locals>.<listcomp>)r   rJ   r   sumr   r   rz   )r,   r   rR   r   rZ   r   r-   r  r.   ru     s    $z marcumq._eval_rewrite_as_besselic                 C   s   t dd | jD rdS d S )Nc                 s   s   | ]}|j V  qd S r2   )rO   )r   r   r-   r-   r.   	<genexpr>  r   z(marcumq._eval_is_zero.<locals>.<genexpr>T)allr*   r+   r-   r-   r.   _eval_is_zero  s    zmarcumq._eval_is_zeroN)r8   )r\   r]   r^   r_   ra   r7   r?   r  r  ru   r  r-   r-   r-   r.   r  "  s   0

	r  N)r   r   )Q	functoolsr   Z
sympy.corer   Zsympy.core.addr   Zsympy.core.cacher   Zsympy.core.exprr   Zsympy.core.functionr   r	   r
   Zsympy.core.logicr   r   Zsympy.core.numbersr   r   r   Zsympy.core.powerr   Zsympy.core.symbolr   r   Zsympy.core.sympifyr   Z(sympy.functions.combinatorial.factorialsr   Z(sympy.functions.elementary.trigonometricr   r   r   r   Z#sympy.functions.elementary.integersr   rn   r   Z&sympy.functions.elementary.exponentialr   r   Z(sympy.functions.elementary.miscellaneousr   r   r   r    Z'sympy.functions.special.gamma_functionsr!   r"   r#   Zsympy.functions.special.hyperr$   Zsympy.polys.orthopolysr%   r   r&   r'   r(   rI   rv   rJ   r   r   r   r   r   r   r   rM   rN   r   rK   rL   r   r   r   r   r   r	  r  r-   r-   r-   r.   <module>   sd   F $ bR./XB988
T - 2  %