a
    <b,                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZm	Z	 ddl
mZ ddlmZ ddlmZ dd	lmZmZ d
ed
efddZdd ZdddZdd ZdddZd
efddZdS )zJ
Module to evaluate the proposition with assumptions using SAT algorithm.
    )S)Symbol)get_all_known_facts)global_assumptionsAppliedPredicate)class_fact_registry)oo)satisfiable)CNF
EncodedCNFTc           	      C   sj   t | }t |  }t |}t  }|r4||}t|||||d}|| |r^|| t|||S )a  
    Function to evaluate the proposition with assumptions using SAT algorithm.

    This function extracts every fact relevant to the expressions composing
    proposition and assumptions. For example, if a predicate containing
    ``Abs(x)`` is proposed, then ``Q.zero(Abs(x)) | Q.positive(Abs(x))``
    will be found and passed to SAT solver because ``Q.nonnegative`` is
    registered as a fact for ``Abs``.

    Proposition is evaluated to ``True`` or ``False`` if the truth value can be
    determined. If not, ``None`` is returned.

    Parameters
    ==========

    proposition : Any boolean expression.
        Proposition which will be evaluated to boolean value.

    assumptions : Any boolean expression, optional.
        Local assumptions to evaluate the *proposition*.

    context : AssumptionsContext, optional.
        Default assumptions to evaluate the *proposition*. By default,
        this is ``sympy.assumptions.global_assumptions`` variable.

    use_known_facts : bool, optional.
        If ``True``, facts from ``sympy.assumptions.ask_generated``
        module are passed to SAT solver as well.

    iterations : int, optional.
        Number of times that relevant facts are recursively extracted.
        Default is infinite times until no new fact is found.

    Returns
    =======

    ``True``, ``False``, or ``None``

    Examples
    ========

    >>> from sympy import Abs, Q
    >>> from sympy.assumptions.satask import satask
    >>> from sympy.abc import x
    >>> satask(Q.zero(Abs(x)), Q.zero(x))
    True

    )use_known_facts
iterations)r
   Z	from_propextendget_all_relevant_factsadd_from_cnfcheck_satisfiability)	propositionassumptionscontextr   r   propsZ_propsZcontext_cnfsat r   h/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/sympy/assumptions/satask.pysatask   s    2




r   c                 C   sl   |  }|  }||  || t|}t|}|r@|r@d S |rL|sLdS |sX|rXdS |sh|shtdd S )NTFzInconsistent assumptions)copyr   r	   
ValueError)propZ_propZfactbaseZsat_trueZ	sat_falseZcan_be_trueZcan_be_falser   r   r   r   S   s    

r   Nc                    s   t |  |  }t }|r&|| O }|r6|| O }|tjtjh }d}|t krt }|D ]"}t |}| @ t kr^||O }q^|  } |O  qJ| fdd|D O }t }	|D ](}
t|
tr|	t|
jO }	q|		|
 q|	S )a  
    Extract every expression in the argument of predicates from *proposition*,
    *assumptions* and *context*.

    Parameters
    ==========

    proposition : sympy.assumptions.cnf.CNF

    assumptions : sympy.assumptions.cnf.CNF, optional.

    context : sympy.assumptions.cnf.CNF, optional.
        CNF generated from assumptions context.

    Examples
    ========

    >>> from sympy import Q, Abs
    >>> from sympy.assumptions.cnf import CNF
    >>> from sympy.assumptions.satask import extract_predargs
    >>> from sympy.abc import x, y
    >>> props = CNF.from_prop(Q.zero(Abs(x*y)))
    >>> assump = CNF.from_prop(Q.zero(x) & Q.zero(y))
    >>> extract_predargs(props, assump)
    {x, y, Abs(x*y)}

    Nc                    s"   h | ]}t | @ t kr|qS r   )find_symbolsset).0lZreq_keysr   r   	<setcomp>       z#extract_predargs.<locals>.<setcomp>)
r   all_predicatesr   r   truefalse
isinstancer   	argumentsadd)r   r   r   keysZlkeysZtmp_keystmpr    Zsymsexprskeyr   r!   r   extract_predargsk   s0    



r.   c                 C   s8   t | tr.t }|  D ]}|t|O }q|S | tS )z
    Find every :obj:`~.Symbol` in *pred*.

    Parameters
    ==========

    pred : sympy.assumptions.cnf.CNF, or any Expr.

    )r'   r
   r   r$   r   Zatomsr   )predsymbolsar   r   r   r      s    

r   c                 C   sn   |s
t  }t }| D ]L}t|D ]>}t |}||}| D ]}t|tr@|t|jO }q@q q||  |fS )a1	  
    Extract relevant facts from the items in *exprs*. Facts are defined in
    ``assumptions.sathandlers`` module.

    This function is recursively called by ``get_all_relevant_facts()``.

    Parameters
    ==========

    exprs : set
        Expressions whose relevant facts are searched.

    relevant_facts : sympy.assumptions.cnf.CNF, optional.
        Pre-discovered relevant facts.

    Returns
    =======

    exprs : set
        Candidates for next relevant fact searching.

    relevant_facts : sympy.assumptions.cnf.CNF
        Updated relevant facts.

    Examples
    ========

    Here, we will see how facts relevant to ``Abs(x*y)`` are recursively
    extracted. On the first run, set containing the expression is passed
    without pre-discovered relevant facts. The result is a set containig
    candidates for next run, and ``CNF()`` instance containing facts
    which are relevant to ``Abs`` and its argument.

    >>> from sympy import Abs
    >>> from sympy.assumptions.satask import get_relevant_clsfacts
    >>> from sympy.abc import x, y
    >>> exprs = {Abs(x*y)}
    >>> exprs, facts = get_relevant_clsfacts(exprs)
    >>> exprs
    {x*y}
    >>> facts.clauses #doctest: +SKIP
    {frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}),
    frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}),
    frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}),
    frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}),
    frozenset({Literal(Q.even(Abs(x*y)), False),
                Literal(Q.odd(Abs(x*y)), False),
                Literal(Q.odd(x*y), True)}),
    frozenset({Literal(Q.even(Abs(x*y)), False),
                Literal(Q.even(x*y), True),
                Literal(Q.odd(Abs(x*y)), False)}),
    frozenset({Literal(Q.positive(Abs(x*y)), False),
                Literal(Q.zero(Abs(x*y)), False)})}

    We pass the first run's results to the second run, and get the expressions
    for next run and updated facts.

    >>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts)
    >>> exprs
    {x, y}

    On final run, no more candidate is returned thus we know that all
    relevant facts are successfully retrieved.

    >>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts)
    >>> exprs
    set()

    )	r
   r   r   Zto_CNFZ_andr$   r'   r   r(   )r,   relevant_factsZnewexprsexprZfactZnewfactr-   r   r   r   get_relevant_clsfacts   s    F


r4   c                    s   d}t  }t }|dkr$t| ||}||O }t||\}}|d7 }||krLqT|sqTq|rt  }	|	t  t }
|
|	 dd fdd}g }g }t|
j	}t
|D ]4\} | fdd|
j	D 7 }|||
j|| 7 }qttt|tdt|d }t||}nt }|| |S )	al  
    Extract all relevant facts from *proposition* and *assumptions*.

    This function extracts the facts by recursively calling
    ``get_relevant_clsfacts()``. Extracted facts are converted to
    ``EncodedCNF`` and returned.

    Parameters
    ==========

    proposition : sympy.assumptions.cnf.CNF
        CNF generated from proposition expression.

    assumptions : sympy.assumptions.cnf.CNF
        CNF generated from assumption expression.

    context : sympy.assumptions.cnf.CNF
        CNF generated from assumptions context.

    use_known_facts : bool, optional.
        If ``True``, facts from ``sympy.assumptions.ask_generated``
        module are encoded as well.

    iterations : int, optional.
        Number of times that relevant facts are recursively extracted.
        Default is infinite times until no new fact is found.

    Returns
    =======

    sympy.assumptions.cnf.EncodedCNF

    Examples
    ========

    >>> from sympy import Q
    >>> from sympy.assumptions.cnf import CNF
    >>> from sympy.assumptions.satask import get_all_relevant_facts
    >>> from sympy.abc import x, y
    >>> props = CNF.from_prop(Q.nonzero(x*y))
    >>> assump = CNF.from_prop(Q.nonzero(x))
    >>> context = CNF.from_prop(Q.nonzero(y))
    >>> get_all_relevant_facts(props, assump, context) #doctest: +SKIP
    <sympy.assumptions.cnf.EncodedCNF at 0x7f09faa6ccd0>

    r      c                 S   s   | dkr| | S | | S d S )Nr   r   )Zlitdeltar   r   r   translate_literalS  s    z1get_all_relevant_facts.<locals>.translate_literalc                    s    fdd| D S )Nc                    s    g | ]} fd d|D qS )c                    s   h | ]}| qS r   r   )r   ir6   r7   r   r   r"   Z  r#   zLget_all_relevant_facts.<locals>.translate_data.<locals>.<listcomp>.<setcomp>r   )r   Zclauser9   r   r   
<listcomp>Z  r#   zBget_all_relevant_facts.<locals>.translate_data.<locals>.<listcomp>r   )datar6   )r7   )r6   r   translate_dataY  s    z.get_all_relevant_facts.<locals>.translate_datac                    s   g | ]}| qS r   r   )r   r/   )r3   r   r   r:   _  r#   z*get_all_relevant_facts.<locals>.<listcomp>)r
   r   r.   r4   Zadd_clausesr   r   Zfrom_cnflenr0   	enumerater;   dictlistzipranger   )r   r   r   r   r   r8   r2   Z	all_exprsr,   Zknown_facts_CNFZ
kf_encodedr<   r;   r0   Zn_litencodingctxr   )r3   r7   r   r     s<    4

 
r   )NN)N)__doc__Zsympy.core.singletonr   Zsympy.core.symbolr   Zsympy.assumptions.ask_generatedr   Zsympy.assumptions.assumer   r   Zsympy.assumptions.sathandlersr   Z
sympy.corer   Zsympy.logic.inferencer	   Zsympy.assumptions.cnfr
   r   r   r   r.   r   r4   r   r   r   r   r   <module>   s"   
D
9
V