a
    a[N                     @   s"  d dl Zd dlZd dlm  mZ d dlZdZ	e
ede	Ze
ede	 Zedej Zedej ZdZedZejd Zejd Zejd Zg d	Zd
d Zdd Zd%ddZd&ddZdd Zd'ddZd(ddZd)ddZ dd Z!dd Z"d*dd Z#d!d" Z$d+d#d$Z%dS ),    N         i<         )gSˆBgAAz?g}<ٰj_g#+K?g88CgJ?gllfgUUUUUU?c                 C   s6   d|  }t | d |  td  |t t||    S )N      ?r   )nplog_LOG_2PIZpolyval_STIRLING_COEFFS)nZrn r   d/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/scipy/stats/_ksstats.py_log_nfactorial_div_n_pow_n\   s    r   c                 C   s   t | ddS )z%clips a probability to range 0<=p<=1.        r   )r	   Zclip)pr   r   r   
_clip_probf   s    r   Tc                 C   s   t || |}t|S )z>Selects either the CDF or SF, and then clips to range 0<=p<=1.)r	   wherer   )cdfprobZsfprobcdfr   r   r   r   _select_and_clip_probk   s    r   c                 C   s`  |dkrt dd|S | | }|dkr0t dd|S tt|}|| }d| d }t||g}td|d }d||  }	t|}
d}|D ],}||
|d < || }|	|d   |9  < qtd| d d| d||   }d| | |	d< td|D ](}|
d|| d  ||d d|f< q|	|dddf< tj	|	dd	|dddf< t
t|d }| }d}d}|dkr|d rt||}||7 }t||}|d9 }t||d |d f tkr|t }|t7 }|d }ql||d |d f }td| d D ]2}|| |  }t|tk r|t9 }|t8 }q|dkrPt||}t |d| |S )
zComputes the Kolmogorov CDF:  Pr(D_n <= d) using the MTW approach to
    the Durbin matrix algorithm.

    Durbin (1968); Marsaglia, Tsang, Wang (2003). [1], [3].
    r   r         ?r   r   r   N)Zaxis)r   intr	   ceilzerosarangeemptymaxrangeZflipZeyeshapematmulabs_EP128_E128_EM128ldexp)r   dr   ndkhmHZintmvwZfacjttiZHpwrnnexpntZHexpntr   r   r   r   _kolmogn_DMTWq   s\    
"&

 
r5   c           	      C   s   | dkr&| | d || d  }}nt | d d\}}|dkr||d krp|| | d || | d  }}q|d | | d || d | d  }}n"|d | d || | d  }}t|d dt||fS )z0Compute the endpoints of the interval for row i.r   r   r   )divmodr   min)	r2   r   llceilfroundfj1j2Zip1div2Zip1mod2r   r   r   _pomeranz_compute_j1j2   s    $,"r=   c                  C   s  | | }t t|}d||  }t|d| }|dkr<dnd}|dkrLdnd}d|d  }	t|	}
t|	}t|	}d|
d< d|d< d|d< d}||  d| |  dd|  |    }}}td|	D ]L}|
|d  | | |
|< ||d  | | ||< ||d  | | ||< qt|	g}t|	g}d|d< d\}}td| |||\}}tdd|  d D ]}|}|| }}|| }}|d t|| |||\}}|dks|d|  d kr|
}n|d r|n|}|| d }|dkrdt	||| || |  |d| }|| }|| d }||||  |d|< dt
|  k r\tk rpn n|t9 }|t8 }|| | }qd|| |  }td| d D ].}t|tkr|t9 }|t7 }||9 }q|dkrt||}t|d| |}|S )	z[Computes Pr(D_n <= d) using the Pomeranz recursion algorithm.

    Pomeranz (1974) [2]
    r   r   r   r   r   )r   r   r   N)r   r	   floorr7   r   r    r   r=   fillZconvolver   r&   r$   r%   r#   r'   r   ) r   xr   tr8   fgr9   r:   ZnpwrsZgpowerZ	twogpowerZonem2gpowerr4   Zg_over_nZtwo_g_over_nZone_minus_two_g_over_nr,   ZV0ZV1ZV0sZV1sr;   r<   r2   Zk1ZpwrsZln2convZ
conv_startZconv_lenZansr   r   r   _kolmogn_Pomeranz   sj    


(



("
rE   c           %   	   C   s0  |dkrt dd|dS |dkr,t dd|dS t| | }|d |d |d |d f\}}}}t d | }|tk rt dd|dS t|}	| }
td }d| d|  }d| d	|  t d }td
d|   d }td	d|   d }td| d|   d }td| d|   d }d| d|d   }td}t	t
d| tj }t|ddD ]}d| d
 }|d |d |d   }}}t|	d| }td|
||  |||  ||  |||  ||  ||  g}||9 }||7 }q\||	9 }|t9 }|t|d| d|d  d|d  g }tt d | }	t|dd}|d }t| }tj| }|	| } t||  }!|!tt d|  9 }!|d  |!7  < t|| ||  | |  }"|"tt d|  9 }"|d  |"7  < t| d tt|d }#||# }|s$|d9 }|d  d
7  < t|}$|$S )aP  Computes the Pelz-Good approximation to Prob(Dn <= x) with 0<=x<=1.

    Start with Li-Chien, Korolyuk approximation:
        Prob(Dn <= x) ~ K0(z) + K1(z)/sqrt(n) + K2(z)/n + K3(z)/n**1.5
    where z = x*sqrt(n).
    Transform each K_(z) using Jacobi theta functions into a form suitable
    for small z.
    Pelz-Good (1976). [6]
    r   r   r   r   r   r   r         r         @   i      `   iZ   r   r   H      iP  
   i          @)r   r	   sqrt_PI_SQUARED_MIN_LOGexp_PI_FOUR_PI_SIXr   r   r   pir    powerarray_SQRT2PIr   _SQRT3sumlen)%r   r@   r   zZzsquaredZzthreeZzfourZzsixZqlogqZk1aZk1bZk2aZk2bZk2cZk3dZk3cZk3bZk3aZK0to3Zmaxkr*   r,   ZmsquaredZmfourZmsixZqpowerZcoeffsksZksquaredZsqrt3zZkspiZqpwersZk2extraZk3extraZpowers_of_nZKsumr   r   r   _kolmogn_PelzGood"  sl    
$


*
re   c                 C   s`  t | r| S t| | ks"| dkr(t jS |dkr>tdd|dS |dkrTtdd|dS | | }|dkr|dkrztdd|dS | dkrt t d| d d|   d| d  }n$t t| | t 	d| d   }t|d| |dS || d krdd| |   }td| ||dS |dkrBdt
j| | }td| ||dS || }| dkr|d	kr~t| |d
d}t|d| |dS |dkrt| |d
d}t|d| |dS dt
j| | }td| ||dS |s|dkrdS |dkrdt
j| | }t|S |dkrd}n:| dkr@| |d  dkr@t| |d
d}nt| |d
d}t|d| |dS )zComputes the CDF(or SF) for the two-sided Kolmogorov-Smirnov statistic.

    x must be of type float, n of type integer.

    Simard & L'Ecuyer (2011) [7].
    r   r   r   rF   r      r   r   g0q&?Tr   g      w@g@g      2@i g      ?gffffff?)r	   isnanr   nanr   prodr   rX   r   r
   scipyspecialZsmirnovr5   rE   r   re   )r   r@   r   rA   ZprobZ	nxsquaredr   r   r   r   _kolmognu  sX    
,$






rl   c                    sJ  t  r S t  ks" dkr(t jS |dks8|dkr<dS  | }|dkr|dkrXdS  dkrt t d d   d| d  }n(t t  d t d| d   }|d  d  S | d krdd|  d     S |dkrdt	j
j|  S |d }t||d   }t|d| } fd	d
}t	jj|||ddS )zvComputes the PDF for the two-sided Kolmogorov-Smirnov statistic.

    x must be of type float, n of type integer.
    r   r   r   r   rf   r   r   g      @c                    s
   t  | S N)kolmogn)_xr   r   r   _kk  s    z_kolmogn_p.<locals>._kkrH   )Zdxorder)r	   rg   r   rh   ri   r   rX   r   r
   rj   statsZksoneZpdfr7   miscZ
derivative)r   r@   rA   Zprddeltarq   r   rp   r   
_kolmogn_p  s.    
((
rv   c                    s   t  r S t  ks" dkr(t jS dkr8d  S |dkrDdS t t tj d    }|d  kr|d   d S t 	t |d    }|dd   kr|S t
t   }t|dd   } fdd}tjj|d  |dd	S )
zeComputes the PPF/ISF of kolmogn.

    n of type integer, n>= 1
    p is the CDF, q the SF, p+q=1
    r   r   r   r   rT   c                    s   t  |  S rm   )rl   )r@   r   r   r   r   <lambda>      z_kolmogni.<locals>.<lambda>g+=)Zxtol)r	   rg   r   rh   rX   r
   rj   rk   Zloggammaexpm1scuZ	_kolmogcirU   r7   optimizeZbrentq)r   r   rc   ru   r@   x1Z_fr   rw   r   	_kolmogni  s$    
$r~   c           	      C   s   t j| ||dgdt jt jt jgd}|D ]P\}}}}t |rH||d< q(t||krbtd| tt|||d|d< q(|jd }|S )a  Computes the CDF for the two-sided Kolmogorov-Smirnov distribution.

    The two-sided Kolmogorov-Smirnov distribution has as its CDF Pr(D_n <= x),
    for a sample of size n drawn from a distribution with CDF F(t), where
    D_n &= sup_t |F_n(t) - F(t)|, and
    F_n(t) is the Empirical Cumulative Distribution Function of the sample.

    Parameters
    ----------
    n : integer, array_like
        the number of samples
    x : float, array_like
        The K-S statistic, float between 0 and 1
    cdf : bool, optional
        whether to compute the CDF(default=true) or the SF.

    Returns
    -------
    cdf : ndarray
        CDF (or SF it cdf is False) at the specified locations.

    The return value has shape the result of numpy broadcasting n and x.
    N)Z	op_dtypes.n is not integral: rF   r   )	r	   nditerZfloat64Zbool_rg   r   
ValueErrorrl   operands)	r   r@   r   it_nro   _cdfrb   resultr   r   r   rn     s    

rn   c                 C   sn   t | |dg}|D ]J\}}}t |r2||d< qt||krLtd| tt|||d< q|jd }|S )a  Computes the PDF for the two-sided Kolmogorov-Smirnov distribution.

    Parameters
    ----------
    n : integer, array_like
        the number of samples
    x : float, array_like
        The K-S statistic, float between 0 and 1

    Returns
    -------
    pdf : ndarray
        The PDF at the specified locations

    The return value has shape the result of numpy broadcasting n and x.
    N.r   r   )r	   r   rg   r   r   rv   r   )r   r@   r   r   ro   rb   r   r   r   r   kolmognp  s    

r   c                 C   s   t | ||dg}|D ]n\}}}}t |r6||d< qt||krPtd| |r`|d| fn
d| |f\}}	tt|||	|d< q|jd }
|
S )a  Computes the PPF(or ISF) for the two-sided Kolmogorov-Smirnov distribution.

    Parameters
    ----------
    n : integer, array_like
        the number of samples
    q : float, array_like
        Probabilities, float between 0 and 1
    cdf : bool, optional
        whether to compute the PPF(default=true) or the ISF.

    Returns
    -------
    ppf : ndarray
        PPF (or ISF if cdf is False) at the specified locations

    The return value has shape the result of numpy broadcasting n and x.
    N.r   r   r   )r	   r   rg   r   r   r~   r   )r   rc   r   r   r   Z_qr   rb   Z_pcdfZ_psfr   r   r   r   kolmogni7  s    
 
r   )T)T)T)T)T)T)T)&Znumpyr	   Zscipy.specialrj   Zscipy.special._ufuncsrk   Z_ufuncsr{   Z
scipy.miscr%   r'   Z
longdoubler$   r&   rU   r[   r^   r
   r   rW   r_   rV   rY   rZ   r   r   r   r   r5   r=   rE   re   rl   rv   r~   rn   r   r   r   r   r   r   <module>D   s6   






K
T
S
<*
%