a
    aEQ                     @   sx  d Z ddgZddlZddlZddlmZ ddlmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZ ddlmZmZmZmZmZ dd	lmZ dd
lmZmZ dZeee j!Z"dd Z#dddddddddddddde"dfddZ$dddddddde"ddfddZ%dd Z&dd Z'e(dkrtg dfddZ)ee gd egd gj*Z+ddge+dddf< d:dd Z,d;d!d"Z-d<d$d%Z.d=d&d'Z/d(e,e-d)d*d+e.e/d,d*fZ0e1d-2d.d/ e1d0 e$e)ed1dge+dd2d3dd \Z3Z4e1d4 e%e)ed1dgfd5e+id6d2iZ5e1d72d.d/ e1d0 e$e)ed1dge,e-e.e/dd2d8dd \Z3Z4e1d4 e%e)ed1dgfd9e0id6d2iZ5dS )>a  
This module implements the Sequential Least Squares Programming optimization
algorithm (SLSQP), originally developed by Dieter Kraft.
See http://www.netlib.org/toms/733

Functions
---------
.. autosummary::
   :toctree: generated/

    approx_jacobian
    fmin_slsqp

approx_jacobian
fmin_slsqp    N)slsqp)zerosarraylinalgappendasfarrayconcatenatefinfosqrtvstackexpinfisfinite
atleast_1d   )OptimizeResult_check_unknown_options_prepare_scalar_function_clip_x_for_func_check_clip_x)approx_derivative)old_bound_to_new_arr_to_scalarzrestructuredtext enc                 G   s   t || d||d}t|S )a  
    Approximate the Jacobian matrix of a callable function.

    Parameters
    ----------
    x : array_like
        The state vector at which to compute the Jacobian matrix.
    func : callable f(x,*args)
        The vector-valued function.
    epsilon : float
        The perturbation used to determine the partial derivatives.
    args : sequence
        Additional arguments passed to func.

    Returns
    -------
    An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length
    of the outputs of `func`, and ``lenx`` is the number of elements in
    `x`.

    Notes
    -----
    The approximation is done using forward differences.

    2-point)methodabs_stepargs)r   npZ
atleast_2d)xfuncepsilonr   jac r$   d/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/scipy/optimize/slsqp.pyr   #   s    
r$   d   gư>c                    s   |dur|}||||dk||d}d}|t  fdd|D 7 }|t  fdd|D 7 }|rr|d|| d	f7 }|r|d
||	 d	f7 }t| | f|||d|}|r|d |d |d |d |d fS |d S dS )a/  
    Minimize a function using Sequential Least Squares Programming

    Python interface function for the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.  Must return a scalar.
    x0 : 1-D ndarray of float
        Initial guess for the independent variable(s).
    eqcons : list, optional
        A list of functions of length n such that
        eqcons[j](x,*args) == 0.0 in a successfully optimized
        problem.
    f_eqcons : callable f(x,*args), optional
        Returns a 1-D array in which each element must equal 0.0 in a
        successfully optimized problem. If f_eqcons is specified,
        eqcons is ignored.
    ieqcons : list, optional
        A list of functions of length n such that
        ieqcons[j](x,*args) >= 0.0 in a successfully optimized
        problem.
    f_ieqcons : callable f(x,*args), optional
        Returns a 1-D ndarray in which each element must be greater or
        equal to 0.0 in a successfully optimized problem. If
        f_ieqcons is specified, ieqcons is ignored.
    bounds : list, optional
        A list of tuples specifying the lower and upper bound
        for each independent variable [(xl0, xu0),(xl1, xu1),...]
        Infinite values will be interpreted as large floating values.
    fprime : callable `f(x,*args)`, optional
        A function that evaluates the partial derivatives of func.
    fprime_eqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of equality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_eqcons should be sized as ( len(eqcons), len(x0) ).
    fprime_ieqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of inequality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ).
    args : sequence, optional
        Additional arguments passed to func and fprime.
    iter : int, optional
        The maximum number of iterations.
    acc : float, optional
        Requested accuracy.
    iprint : int, optional
        The verbosity of fmin_slsqp :

        * iprint <= 0 : Silent operation
        * iprint == 1 : Print summary upon completion (default)
        * iprint >= 2 : Print status of each iterate and summary
    disp : int, optional
        Overrides the iprint interface (preferred).
    full_output : bool, optional
        If False, return only the minimizer of func (default).
        Otherwise, output final objective function and summary
        information.
    epsilon : float, optional
        The step size for finite-difference derivative estimates.
    callback : callable, optional
        Called after each iteration, as ``callback(x)``, where ``x`` is the
        current parameter vector.

    Returns
    -------
    out : ndarray of float
        The final minimizer of func.
    fx : ndarray of float, if full_output is true
        The final value of the objective function.
    its : int, if full_output is true
        The number of iterations.
    imode : int, if full_output is true
        The exit mode from the optimizer (see below).
    smode : string, if full_output is true
        Message describing the exit mode from the optimizer.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'SLSQP' `method` in particular.

    Notes
    -----
    Exit modes are defined as follows ::

        -1 : Gradient evaluation required (g & a)
         0 : Optimization terminated successfully
         1 : Function evaluation required (f & c)
         2 : More equality constraints than independent variables
         3 : More than 3*n iterations in LSQ subproblem
         4 : Inequality constraints incompatible
         5 : Singular matrix E in LSQ subproblem
         6 : Singular matrix C in LSQ subproblem
         7 : Rank-deficient equality constraint subproblem HFTI
         8 : Positive directional derivative for linesearch
         9 : Iteration limit reached

    Examples
    --------
    Examples are given :ref:`in the tutorial <tutorial-sqlsp>`.

    Nr   )maxiterftoliprintdispepscallbackr$   c                 3   s   | ]}d | dV  qdS )eqtypefunr   Nr$   .0cr   r$   r%   	<genexpr>       zfmin_slsqp.<locals>.<genexpr>c                 3   s   | ]}d | dV  qdS )ineqr.   Nr$   r1   r4   r$   r%   r5      r6   r-   r/   r0   r#   r   r7   )r#   boundsconstraintsr    r0   nitstatusmessage)tuple_minimize_slsqp)r!   x0Zeqconsf_eqconsZieqcons	f_ieqconsr9   Zfprimefprime_eqconsfprime_ieqconsr   iteraccr)   r*   full_outputr"   r,   optsconsresr$   r4   r%   r   E   s8    p

"Fc           C   !      sD  t | |d }|}|
 |	s d}t| |du s@t|dkrPtj tjfnt|td d t|t	r~|f}ddd}t
|D ]0\}}z|d  }W n ty } ztd| |W Y d}~nd}~0  ty
 } ztd|W Y d}~nRd}~0  ty8 } ztd	|W Y d}~n$d}~0 0 |dvrTtd
|d  d|vrjtd| |d}|du r fdd}||d }||  |d ||dddf7  < qdddddddddddd}tttfdd|d  D }tttfd!d|d" D }|| }td|g }t}|d }|| | | }d#| | |d  || d |d$   d$|  || ||   d$|  | |d | d$  d$|  d#|  d#|  d }|} t|}!t| }"|du st|dkr2tj|td%}#tj|td%}$|#tj |$tj ntd&d |D t}%|%jd |kr^td'tjd(d)0 |%dddf |%dddf k}&W d   n1 s0    Y  |& rtd*d+d,d- |&D  |%dddf |%dddf  }#}$t|% }'tj|#|'dddf < tj|$|'dddf < t | ||
d.}(t!|(j"})t!|(j#}*tdt$}+t|t}t|t$},d}-tdt}.tdt}/tdt}0tdt}1tdt}2tdt}3tdt}4tdt}5tdt}6tdt}7tdt$}8tdt$}9tdt$}:tdt$};tdt$}<tdt$}tdt$}=tdt$}>|d$krDt%d/d0  |)}?ztt&|?}?W n4 ttfy } ztd1|W Y d}~n
d}~0 0 t'|*d2}@t(|}At)||||||}Bt*|||#|$|?|A|@|B||,|+|!|"|.|/|0|1|2|3|4|5|6|7|8|9|:|;|<||=|>  |+dkr"|)}?t(|}A|+d3krNt'|*d2}@t)||||||}B|,|-kr|durp|t+ |d$krt%d4|,|(j,|?t-.|@f  t/|+dkrqt$|,}-q|dkr
t%|t$|+ d5 t0|+ d6  t%d7|? t%d8|, t%d9|(j, t%d:|(j1 t2|?|@dd3 t$|,|(j,|(j1t$|+|t$|+ |+dkd;	S )<a  
    Minimize a scalar function of one or more variables using Sequential
    Least Squares Programming (SLSQP).

    Options
    -------
    ftol : float
        Precision goal for the value of f in the stopping criterion.
    eps : float
        Step size used for numerical approximation of the Jacobian.
    disp : bool
        Set to True to print convergence messages. If False,
        `verbosity` is ignored and set to 0.
    maxiter : int
        Maximum number of iterations.
    finite_diff_rel_step : None or array_like, optional
        If `jac in ['2-point', '3-point', 'cs']` the relative step size to
        use for numerical approximation of `jac`. The absolute step
        size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``,
        possibly adjusted to fit into the bounds. For ``method='3-point'``
        the sign of `h` is ignored. If None (default) then step is selected
        automatically.
    r   r   Nr$   )r-   r7   r/   z"Constraint %d has no type defined.z/Constraints must be defined using a dictionary.z#Constraint's type must be a string.zUnknown constraint type '%s'.r0   z&Constraint %d has no function defined.r#   c                    s    fdd}|S )Nc                    s>   t | } dv r&t| |dS t| d |dS d S )N)r   z3-pointcs)r   r   Zrel_stepr9   r   )r   r   r   r9   )r   r   )r    r   )r"   finite_diff_rel_stepr0   r#   
new_boundsr$   r%   cjac&  s    

z3_minimize_slsqp.<locals>.cjac_factory.<locals>.cjacr$   )r0   rN   )r"   rL   r#   rM   )r0   r%   cjac_factory%  s    z%_minimize_slsqp.<locals>.cjac_factoryr   )r0   r#   r   z$Gradient evaluation required (g & a)z$Optimization terminated successfullyz$Function evaluation required (f & c)z4More equality constraints than independent variablesz*More than 3*n iterations in LSQ subproblemz#Inequality constraints incompatiblez#Singular matrix E in LSQ subproblemz#Singular matrix C in LSQ subproblemz2Rank-deficient equality constraint subproblem HFTIz.Positive directional derivative for linesearchzIteration limit reached)r   r                        	   c                    s(   g | ] }t |d   g|d R  qS r0   r   r   r1   r    r$   r%   
<listcomp>H  s   z#_minimize_slsqp.<locals>.<listcomp>r-   c                    s(   g | ] }t |d   g|d R  qS rY   rZ   r1   r[   r$   r%   r\   J  s   r7   rR   rQ   )Zdtypec                 S   s    g | ]\}}t |t |fqS r$   )r   )r2   lur$   r$   r%   r\   c  s   zDSLSQP Error: the length of bounds is not compatible with that of x0.ignore)invalidz"SLSQP Error: lb > ub in bounds %s.z, c                 s   s   | ]}t |V  qd S )N)str)r2   br$   r$   r%   r5   n  r6   z"_minimize_slsqp.<locals>.<genexpr>)r#   r   r"   rL   r9   z%5s %5s %16s %16s)ZNITZFCZOBJFUNZGNORMz'Objective function must return a scalarg        rP   z%5i %5i % 16.6E % 16.6Ez    (Exit mode )z#            Current function value:z            Iterations:z!            Function evaluations:z!            Gradient evaluations:)	r    r0   r#   r;   nfevZnjevr<   r=   success)3r   r	   flattenlenr   r   r   Zclip
isinstancedict	enumeratelowerKeyError	TypeErrorAttributeError
ValueErrorgetsummapr   maxr   emptyfloatfillnanshape
IndexErrorZerrstateanyjoinr   r   r   r0   ZgradintprintZasarrayr   _eval_constraint_eval_con_normalsr   copyrd   r   Znormabsra   Zngevr   )Cr!   r@   r   r#   r9   r:   r'   r(   r)   r*   r+   r,   rL   Zunknown_optionsrE   rF   rI   ZicconctypeerN   rO   Z
exit_modesmeqmieqmlanZn1ZmineqZlen_wZlen_jwwZjwZxlZxubndsZbnderrZinfbndZsfZwrapped_funZwrapped_gradmodeZmajiterZmajiter_prevalphaZf0Zgsh1h2h3h4tt0ZtolZiexactZinconsZiresetZitermxlineZn2Zn3Zfxgr3   ar$   )r"   rL   r#   rM   r    r%   r?      sR   

" 






>@
"






















 










 

r?   c                    sh   |d r$t  fdd|d D }ntd}|d rPt  fdd|d D }ntd}t ||f}|S )Nr-   c                    s(   g | ] }t |d   g|d R  qS rY   rZ   r2   r   r[   r$   r%   r\     s   z$_eval_constraint.<locals>.<listcomp>r   r7   c                    s(   g | ] }t |d   g|d R  qS rY   rZ   r   r[   r$   r%   r\     s   )r
   r   )r    rI   Zc_eqZc_ieqr3   r$   r[   r%   r~     s    

r~   c           
         s   |d r$t  fdd|d D }nt||f}|d rTt  fdd|d D }nt||f}|dkrvt||f}	nt ||f}	t|	t|dgfd}	|	S )Nr-   c                    s$   g | ]}|d   g|d R  qS r#   r   r$   r   r[   r$   r%   r\     s   z%_eval_con_normals.<locals>.<listcomp>r7   c                    s$   g | ]}|d   g|d R  qS r   r$   r   r[   r$   r%   r\     s   r   r   )r   r   r
   )
r    rI   r   r   r   r   r   Za_eqZa_ieqr   r$   r[   r%   r     s    

r   __main__)rS   rQ   rS   rQ   r   c                 C   sd   t | d |d | d d  |d | d d   |d | d  | d   |d | d   |d   S )z Objective function r   rQ   r   rR   rS   )r   )r    rr$   r$   r%   r0     s    0r0   rQ   g?g?c                 C   s   t | d d | d  | gS )z Equality constraint r   rQ   r   r   r    rb   r$   r$   r%   feqcon  s    r   c                 C   s   t d| d  dggS )z! Jacobian of equality constraint rQ   r   r   r   r   r$   r$   r%   jeqcon  s    r   
   c                 C   s   t | d | d  | gS )z Inequality constraint r   r   r   r    r3   r$   r$   r%   fieqcon  s    r   c                 C   s   t ddggS )z# Jacobian of inequality constraint r   r   r   r$   r$   r%   jieqcon  s    r   r-   )r   r8   r7   )r   z Bounds constraints H   -z * fmin_slsqprP   T)r9   r*   rG   z * _minimize_slsqpr9   r*   z% Equality and inequality constraints )rA   rC   rB   rD   r*   rG   r:   )r   )r   )r   )r   )6__doc____all__warningsZnumpyr   Zscipy.optimize._slsqpr   r   r   r   r   r	   r
   r   r   r   r   r   r   r   optimizer   r   r   r   r   Z_numdiffr   _constraintsr   r   Z__docformat__ru   r+   Z_epsilonr   r   r?   r~   r   __name__r0   Tr   r   r   r   r   rI   r}   centerr    frJ   r$   r$   r$   r%   <module>   s|   <"
 
   




