a
    a                     @   s  d Z ddlZddlZddlmZmZmZmZm	Z	m
Z
 ddlmZmZmZ ddlZddlZddlmZ ddlZddlmZ ddlmZmZ g d	ZG d
d deZdd Zdd Zdd Zdd Ze d! d! dZ"dd Z#dHddZ$e#e$ dId!d"Z%G d#d$ d$Z&G d%d& d&Z'G d'd( d(Z(d)d* Z)G d+d, d,e'Z*G d-d. d.Z+d/! e"d0< G d1d2 d2e*Z,G d3d4 d4e,Z-G d5d6 d6e*Z.G d7d8 d8e*Z/G d9d: d:e*Z0G d;d< d<e*Z1G d=d> d>e'Z2d?d@ Z3e3dAe,Z4e3dBe-Z5e3dCe.Z6e3dDe0Z7e3dEe/Z8e3dFe1Z9e3dGe2Z:dS )Ja  

Nonlinear solvers
-----------------

.. currentmodule:: scipy.optimize

This is a collection of general-purpose nonlinear multidimensional
solvers. These solvers find *x* for which *F(x) = 0*. Both *x*
and *F* can be multidimensional.

Routines
~~~~~~~~

Large-scale nonlinear solvers:

.. autosummary::

   newton_krylov
   anderson

General nonlinear solvers:

.. autosummary::

   broyden1
   broyden2

Simple iterations:

.. autosummary::

   excitingmixing
   linearmixing
   diagbroyden


Examples
~~~~~~~~

**Small problem**

>>> def F(x):
...    return np.cos(x) + x[::-1] - [1, 2, 3, 4]
>>> import scipy.optimize
>>> x = scipy.optimize.broyden1(F, [1,1,1,1], f_tol=1e-14)
>>> x
array([ 4.04674914,  3.91158389,  2.71791677,  1.61756251])
>>> np.cos(x) + x[::-1]
array([ 1.,  2.,  3.,  4.])


**Large problem**

Suppose that we needed to solve the following integrodifferential
equation on the square :math:`[0,1]\times[0,1]`:

.. math::

   \nabla^2 P = 10 \left(\int_0^1\int_0^1\cosh(P)\,dx\,dy\right)^2

with :math:`P(x,1) = 1` and :math:`P=0` elsewhere on the boundary of
the square.

The solution can be found using the `newton_krylov` solver:

.. plot::

   import numpy as np
   from scipy.optimize import newton_krylov
   from numpy import cosh, zeros_like, mgrid, zeros

   # parameters
   nx, ny = 75, 75
   hx, hy = 1./(nx-1), 1./(ny-1)

   P_left, P_right = 0, 0
   P_top, P_bottom = 1, 0

   def residual(P):
       d2x = zeros_like(P)
       d2y = zeros_like(P)

       d2x[1:-1] = (P[2:]   - 2*P[1:-1] + P[:-2]) / hx/hx
       d2x[0]    = (P[1]    - 2*P[0]    + P_left)/hx/hx
       d2x[-1]   = (P_right - 2*P[-1]   + P[-2])/hx/hx

       d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
       d2y[:,0]    = (P[:,1]  - 2*P[:,0]    + P_bottom)/hy/hy
       d2y[:,-1]   = (P_top   - 2*P[:,-1]   + P[:,-2])/hy/hy

       return d2x + d2y - 10*cosh(P).mean()**2

   # solve
   guess = zeros((nx, ny), float)
   sol = newton_krylov(residual, guess, method='lgmres', verbose=1)
   print('Residual: %g' % abs(residual(sol)).max())

   # visualize
   import matplotlib.pyplot as plt
   x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
   plt.pcolormesh(x, y, sol, shading='gouraud')
   plt.colorbar()
   plt.show()

    N)normsolveinvqrsvdLinAlgError)asarraydotvdot)get_blas_funcs)getfullargspec_no_self   )scalar_search_wolfe1scalar_search_armijo)broyden1broyden2andersonlinearmixingdiagbroydenexcitingmixingnewton_krylovc                   @   s   e Zd ZdS )NoConvergenceN)__name__
__module____qualname__ r   r   e/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/scipy/optimize/nonlin.pyr      s   r   c                 C   s   t |  S N)npabsolutemaxxr   r   r   maxnorm   s    r#   c                 C   s*   t | } t| jtjs&t | tjdS | S )z:Return `x` as an array, of either floats or complex floatsdtype)r   r   Z
issubdtyper%   Zinexactfloat_r!   r   r   r   _as_inexact   s    r'   c                 C   s(   t | t |} t|d| j}|| S )z;Return ndarray `x` as same array subclass and shape as `x0`__array_wrap__)r   Zreshapeshapegetattrr(   )r"   x0wrapr   r   r   _array_like   s    r-   c                 C   s"   t |  st t jS t| S r   )r   isfiniteallarrayinfr   vr   r   r   
_safe_norm   s    r4   z
    F : function(x) -> f
        Function whose root to find; should take and return an array-like
        object.
    xin : array_like
        Initial guess for the solution
    a  
    iter : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    verbose : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    f_tol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    f_rtol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    x_tol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    x_rtol : float, optional
        Relative minimum step size. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in the
        direction given by the Jacobian approximation. Defaults to 'armijo'.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual.

    Returns
    -------
    sol : ndarray
        An array (of similar array type as `x0`) containing the final solution.

    Raises
    ------
    NoConvergence
        When a solution was not found.

    )Zparams_basicZparams_extrac                 C   s   | j r| j t | _ d S r   )__doc__
_doc_parts)objr   r   r   _set_doc   s    r8   krylovFarmijoTc                     sh  |
du rt n|
}
t||||	||
d}t fdd} }t|tj}||}t|}t|}|	|
 || |du r|dur|d }nd|jd  }|du rd}n|d	u rd}|d
vrtdd}d}d}d}t|D ]$}||||}|r q&t||| }|j||d }t|dkr8td|rXt|||||\}}}}nd}|| }||}t|}||
 | |r||| ||d  |d  }||d  |k rt||}nt|t|||d  }|}|rtjd||
||f  tj  q|r"tt|nd}|rZ|j|||dkddd| d}t||fS t|S dS )a  
    Find a root of a function, in a way suitable for large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    jacobian : Jacobian
        A Jacobian approximation: `Jacobian` object or something that
        `asjacobian` can transform to one. Alternatively, a string specifying
        which of the builtin Jacobian approximations to use:

            krylov, broyden1, broyden2, anderson
            diagbroyden, linearmixing, excitingmixing

    %(params_extra)s
    full_output : bool
        If true, returns a dictionary `info` containing convergence
        information.
    raise_exception : bool
        If True, a `NoConvergence` exception is raise if no solution is found.

    See Also
    --------
    asjacobian, Jacobian

    Notes
    -----
    This algorithm implements the inexact Newton method, with
    backtracking or full line searches. Several Jacobian
    approximations are available, including Krylov and Quasi-Newton
    methods.

    References
    ----------
    .. [KIM] C. T. Kelley, "Iterative Methods for Linear and Nonlinear
       Equations". Society for Industrial and Applied Mathematics. (1995)
       https://archive.siam.org/books/kelley/fr16/

    N)f_tolf_rtolx_tolx_rtoliterr   c                    s   t  t|  S r   )r'   r-   flatten)zFr+   r   r   <lambda>      znonlin_solve.<locals>.<lambda>r   d   Tr:   F)Nr:   wolfezInvalid line searchg?gH.?g?gMbP?)tolr   z[Jacobian inversion yielded zero vector. This indicates a bug in the Jacobian approximation.      ?   z%d:  |F(x)| = %g; step %g
z0A solution was found at the specified tolerance.z:The maximum number of iterations allowed has been reached.)r   rJ   )ZnitZfunstatussuccessmessage)r#   TerminationConditionr'   r@   r   Z	full_liker1   r   
asjacobiansetupcopysize
ValueErrorrangecheckminr   _nonlin_line_searchupdater    sysstdoutwriteflushr   r-   	iteration) rC   r+   jacobianr?   verbosemaxiterr;   r<   r=   r>   Ztol_normZline_searchcallbackZfull_outputZraise_exception	conditionfuncr"   dxFxFx_normgammaZeta_maxZeta_tresholdetanrK   rH   sZFx_norm_newZeta_Ainfor   rB   r   nonlin_solve   s    -




rl   :0yE>{Gz?c                    s   dg|gt |d gt t   d fdd	fdd}|dkrxt|d d	|d
\}}	}
n&|dkrtd d  |d\}}	|d u rd}|   |d kr̈d }n}t |}|||fS )Nr   rJ   Tc                    sT   | d krd S |    }|}t |d }|rP| d< |d< |d< |S )Nr   rJ   )r4   )rj   storeZxtr3   p)rd   rc   tmp_Fxtmp_phitmp_sr"   r   r   phiy  s    z _nonlin_line_search.<locals>.phic                    s0   t |  d  } | | dd |  | S )Nr   F)ro   )abs)rj   ds)rt   rdiffs_normr   r   derphi  s    z#_nonlin_line_search.<locals>.derphirG   rn   )Zxtolaminr:   )rz   rI   )T)r   r   r   )rc   r"   re   rd   Zsearch_typerw   Zsminry   rj   Zphi1Zphi0rf   r   )	rd   rc   rt   rw   rx   rq   rr   rs   r"   r   rW   r  s,    

rW   c                   @   s.   e Zd ZdZdddddefddZdd ZdS )rN   z
    Termination condition for an iteration. It is terminated if

    - |F| < f_rtol*|F_0|, AND
    - |F| < f_tol

    AND

    - |dx| < x_rtol*|x|, AND
    - |dx| < x_tol

    Nc                 C   sx   |d u rt t jjd }|d u r(t j}|d u r6t j}|d u rDt j}|| _|| _|| _|| _|| _	|| _
d | _d| _d S )NgUUUUUU?r   )r   finfor&   epsr1   r=   r>   r;   r<   r   r?   f0_normr]   )selfr;   r<   r=   r>   r?   r   r   r   r   __init__  s     zTerminationCondition.__init__c                 C   s   |  j d7  _ | |}| |}| |}| jd u r<|| _|dkrHdS | jd urbd| j | jk S t|| jko|| j | jko|| jko|| j |kS )Nr   r   rJ   )	r]   r   r}   r?   intr;   r<   r=   r>   )r~   fr"   rd   Zf_normZx_normdx_normr   r   r   rU     s     





zTerminationCondition.check)r   r   r   r5   r#   r   rU   r   r   r   r   rN     s
   
rN   c                   @   s:   e Zd ZdZdd Zdd ZdddZd	d
 Zdd ZdS )Jacobiana  
    Common interface for Jacobians or Jacobian approximations.

    The optional methods come useful when implementing trust region
    etc., algorithms that often require evaluating transposes of the
    Jacobian.

    Methods
    -------
    solve
        Returns J^-1 * v
    update
        Updates Jacobian to point `x` (where the function has residual `Fx`)

    matvec : optional
        Returns J * v
    rmatvec : optional
        Returns A^H * v
    rsolve : optional
        Returns A^-H * v
    matmat : optional
        Returns A * V, where V is a dense matrix with dimensions (N,K).
    todense : optional
        Form the dense Jacobian matrix. Necessary for dense trust region
        algorithms, and useful for testing.

    Attributes
    ----------
    shape
        Matrix dimensions (M, N)
    dtype
        Data type of the matrix.
    func : callable, optional
        Function the Jacobian corresponds to

    c                    sb   g d}|  D ]4\}}||vr,td| |d urt |||  qt dr^ fdd _d S )N)	r   rX   matvecrmatvecrsolveZmatmattodenser)   r%   zUnknown keyword argument %sr   c                      s      S r   )r   r   r~   r   r   rD     rE   z#Jacobian.__init__.<locals>.<lambda>)itemsrS   setattrhasattr	__array__)r~   kwnamesnamevaluer   r   r   r     s    
zJacobian.__init__c                 C   s   t | S r   )InverseJacobianr   r   r   r   aspreconditioner  s    zJacobian.aspreconditionerr   c                 C   s   t d S r   NotImplementedErrorr~   r3   rH   r   r   r   r     s    zJacobian.solvec                 C   s   d S r   r   r~   r"   rC   r   r   r   rX     s    zJacobian.updatec                 C   s:   || _ |j|jf| _|j| _| jjtju r6| || d S r   )rc   rR   r)   r%   	__class__rP   r   rX   r~   r"   rC   rc   r   r   r   rP     s
    zJacobian.setupN)r   )	r   r   r   r5   r   r   r   rX   rP   r   r   r   r   r     s   %
r   c                   @   s,   e Zd Zdd Zedd Zedd ZdS )r   c                 C   s>   || _ |j| _|j| _t|dr(|j| _t|dr:|j| _d S )NrP   r   )r^   r   r   rX   r   rP   r   r   )r~   r^   r   r   r   r   $  s    

zInverseJacobian.__init__c                 C   s   | j jS r   )r^   r)   r   r   r   r   r)   -  s    zInverseJacobian.shapec                 C   s   | j jS r   )r^   r%   r   r   r   r   r%   1  s    zInverseJacobian.dtypeN)r   r   r   r   propertyr)   r%   r   r   r   r   r   #  s
   	
r   c              
      s  t jjjt tr S t r2t tr2  S t t	j
r jdkrPtdt	t	   jd  jd kr|tdt fdd fdd fd	d fd
d j jdS t j r jd  jd krtdt fdd fdd fdd fdd j jdS t drzt drzt drztt dt d jt dt dt d j jdS t rG  fdddt}| S t trttttttttd   S tddS )zE
    Convert given object to one suitable for use as a Jacobian.
    rJ   zarray must have rank <= 2r   r   zarray must be squarec                    s
   t  | S r   )r	   r2   Jr   r   rD   F  rE   zasjacobian.<locals>.<lambda>c                    s   t   j| S r   )r	   conjTr2   r   r   r   rD   G  rE   c                    s
   t  | S r   )r   r2   r   r   r   rD   H  rE   c                    s   t   j| S r   )r   r   r   r2   r   r   r   rD   I  rE   )r   r   r   r   r%   r)   zmatrix must be squarec                    s    |  S r   r   r2   r   r   r   rD   N  rE   c                    s      j|  S r   r   r   r2   r   r   r   rD   O  rE   c                    s
    | S r   r   r2   r   spsolver   r   rD   P  rE   c                    s      j| S r   r   r2   r   r   r   rD   Q  rE   r)   r%   r   r   r   r   rX   rP   )r   r   r   r   rX   rP   r%   r)   c                       sL   e Zd Zdd Zd fdd	Z fddZd fdd		Z fd
dZdS )zasjacobian.<locals>.Jacc                 S   s
   || _ d S r   r!   r   r   r   r   rX   _  s    zasjacobian.<locals>.Jac.updater   c                    sB    | j }t|tjr t||S tj|r6||S tdd S NzUnknown matrix type)	r"   
isinstancer   ndarrayr   scipysparse
isspmatrixrS   r~   r3   rH   mr   r   r   r   b  s    


zasjacobian.<locals>.Jac.solvec                    s@    | j }t|tjr t||S tj|r4|| S tdd S r   )	r"   r   r   r   r	   r   r   r   rS   r~   r3   r   r   r   r   r   k  s    

zasjacobian.<locals>.Jac.matvecc                    sN    | j }t|tjr&t| j|S tj	|rB| j|S t
dd S r   )r"   r   r   r   r   r   r   r   r   r   rS   r   r   r   r   r   t  s    
zasjacobian.<locals>.Jac.rsolvec                    sL    | j }t|tjr&t| j|S tj	|r@| j| S t
dd S r   )r"   r   r   r   r	   r   r   r   r   r   rS   r   r   r   r   r   }  s    
zasjacobian.<locals>.Jac.rmatvecN)r   )r   )r   r   r   rX   r   r   r   r   r   r   r   r   Jac^  s
   			r   )r   r   r   r   r   r   r9   z#Cannot convert object to a JacobianN) r   r   linalgr   r   r   inspectisclass
issubclassr   r   ndimrS   Z
atleast_2dr   r)   r%   r   r   r*   r   callablestrdictBroydenFirstBroydenSecondAndersonDiagBroydenLinearMixingExcitingMixingKrylovJacobian	TypeError)r   r   r   r   r   rO   6  sf    






$

'rO   c                   @   s$   e Zd Zdd Zdd Zdd ZdS )GenericBroydenc                 C   s`   t | ||| || _|| _t| dr\| jd u r\t|}|rVdtt|d | | _nd| _d S )Nalpha      ?r   rI   )r   rP   last_flast_xr   r   r   r    )r~   r+   f0rc   Znormf0r   r   r   rP     s    zGenericBroyden.setupc                 C   s   t d S r   r   r~   r"   r   rd   dfr   df_normr   r   r   _update  s    zGenericBroyden._updatec              	   C   s@   || j  }|| j }| ||||t|t| || _ || _d S r   )r   r   r   r   )r~   r"   r   r   rd   r   r   r   rX     s
    

zGenericBroyden.updateN)r   r   r   rP   r   rX   r   r   r   r   r     s   r   c                   @   s   e Zd ZdZdd Zedd Zedd Zdd	 Zd
d Z	dddZ
dddZdd Zdd Zdd Zdd Zdd Zd ddZdS )!LowRankMatrixz
    A matrix represented as

    .. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger

    However, if the rank of the matrix reaches the dimension of the vectors,
    full matrix representation will be used thereon.

    c                 C   s(   || _ g | _g | _|| _|| _d | _d S r   )r   csrv   ri   r%   	collapsed)r~   r   ri   r%   r   r   r   r     s    zLowRankMatrix.__init__c                 C   s\   t g d|d d | g \}}}||  }t||D ]"\}}	||	| }
||||j|
}q4|S )N)axpyscaldotcr   )r   ziprR   )r3   r   r   rv   r   r   r   wcdar   r   r   _matvec  s    

zLowRankMatrix._matvecc                 C   s
  t |dkr| | S tddg|dd | g \}}|d }|tjt ||jd }t|D ]4\}}	t|D ]"\}
}|||
f  ||	|7  < qlq\tjt ||jd}t|D ]\}
}	||	| ||
< q|| }t||}| | }t||D ]\}}||||j	| }q|S )Evaluate w = M^-1 vr   r   r   Nr   r$   )
lenr   r   identityr%   	enumeratezerosr   r   rR   )r3   r   r   rv   r   r   Zc0Air   jr   qr   Zqcr   r   r   _solve  s"     
zLowRankMatrix._solvec                 C   s.   | j durt| j |S t|| j| j| jS )zEvaluate w = M vN)r   r   r	   r   r   r   r   rv   r~   r3   r   r   r   r     s    
zLowRankMatrix.matvecc                 C   s:   | j durt| j j |S t|t| j| j| j	S )zEvaluate w = M^H vN)
r   r   r	   r   r   r   r   r   rv   r   r   r   r   r   r     s    
zLowRankMatrix.rmatvecr   c                 C   s,   | j durt| j |S t|| j| j| jS )r   N)r   r   r   r   r   r   rv   r   r   r   r   r     s    
zLowRankMatrix.solvec                 C   s8   | j durt| j j |S t|t| j| j| j	S )zEvaluate w = M^-H vN)
r   r   r   r   r   r   r   r   rv   r   r   r   r   r   r     s    
zLowRankMatrix.rsolvec                 C   sp   | j d ur<|  j |d d d f |d d d f   7  _ d S | j| | j| t| j|jkrl|   d S r   )r   r   r   appendrv   r   rR   collapse)r~   r   r   r   r   r   r     s    
.zLowRankMatrix.appendc                 C   sl   | j d ur| j S | jtj| j| jd }t| j| jD ]0\}}||d d d f |d d d f 	  7 }q6|S )Nr$   )
r   r   r   r   ri   r%   r   r   rv   r   )r~   Gmr   r   r   r   r   r     s    
*zLowRankMatrix.__array__c                 C   s"   t | | _d| _d| _d| _dS )z0Collapse the low-rank matrix to a full-rank one.N)r   r0   r   r   rv   r   r   r   r   r   r     s    zLowRankMatrix.collapsec                 C   sD   | j durdS |dksJ t| j|kr@| jdd= | jdd= dS )zH
        Reduce the rank of the matrix by dropping all vectors.
        Nr   r   r   r   rv   r~   Zrankr   r   r   restart_reduce  s    
zLowRankMatrix.restart_reducec                 C   s>   | j durdS |dksJ t| j|kr:| jd= | jd= qdS )zK
        Reduce the rank of the matrix by dropping oldest vectors.
        Nr   r   r   r   r   r   simple_reduce'  s    
zLowRankMatrix.simple_reduceNc                 C   s8  | j durdS |}|dur |}n|d }| jrBt|t| jd }tdt||d }t| j}||k rldS t| jj}t| jj}t	|dd\}}t
||j }t|ddd	\}	}
}t
|t|}t
||j }t|D ]8}|dd|f  | j|< |dd|f  | j|< q| j|d= | j|d= dS )
a  
        Reduce the rank of the matrix by retaining some SVD components.

        This corresponds to the "Broyden Rank Reduction Inverse"
        algorithm described in [1]_.

        Note that the SVD decomposition can be done by solving only a
        problem whose size is the effective rank of this matrix, which
        is viable even for large problems.

        Parameters
        ----------
        max_rank : int
            Maximum rank of this matrix after reduction.
        to_retain : int, optional
            Number of SVD components to retain when reduction is done
            (ie. rank > max_rank). Default is ``max_rank - 2``.

        References
        ----------
        .. [1] B.A. van der Rotten, PhD thesis,
           "A limited memory Broyden method to solve high-dimensional
           systems of nonlinear equations". Mathematisch Instituut,
           Universiteit Leiden, The Netherlands (2003).

           https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

        NrJ   r   r   Zeconomic)modeFT)Zfull_matricesZ
compute_uv)r   r   rV   r   r    r   r0   r   rv   r   r	   r   r   r   rT   rQ   )r~   max_rankZ	to_retainrp   r   r   CDRUSZWHkr   r   r   
svd_reduce2  s0    

zLowRankMatrix.svd_reduce)r   )r   )N)r   r   r   r5   r   staticmethodr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r     s    

	


	r   a  
    alpha : float, optional
        Initial guess for the Jacobian is ``(-1/alpha)``.
    reduction_method : str or tuple, optional
        Method used in ensuring that the rank of the Broyden matrix
        stays low. Can either be a string giving the name of the method,
        or a tuple of the form ``(method, param1, param2, ...)``
        that gives the name of the method and values for additional parameters.

        Methods available:

            - ``restart``: drop all matrix columns. Has no extra parameters.
            - ``simple``: drop oldest matrix column. Has no extra parameters.
            - ``svd``: keep only the most significant SVD components.
              Takes an extra parameter, ``to_retain``, which determines the
              number of SVD components to retain when rank reduction is done.
              Default is ``max_rank - 2``.

    max_rank : int, optional
        Maximum rank for the Broyden matrix.
        Default is infinity (i.e., no rank reduction).
    Zbroyden_paramsc                   @   sV   e Zd ZdZdddZdd Zdd	 ZdddZdd ZdddZ	dd Z
dd ZdS )r   a  
    Find a root of a function, using Broyden's first Jacobian approximation.

    This method is also known as \"Broyden's good method\".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='broyden1'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df)

    which corresponds to Broyden's first Jacobian update

    .. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx


    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       \"A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations\". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).

       https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.broyden1(fun, [0, 0])
    >>> sol
    array([0.84116396, 0.15883641])

    Nrestartc                    s   t  |_d _|d u r$tj}|_t|tr:d n|dd   |d }|d f   |dkrv fdd_	n@|dkr fdd_	n&|d	kr fd
d_	nt
d| d S )Nr   r   r   r   c                      s   j j  S r   )r   r   r   Zreduce_paramsr~   r   r   rD     rE   z'BroydenFirst.__init__.<locals>.<lambda>simplec                      s   j j  S r   )r   r   r   r   r   r   rD     rE   r   c                      s   j j  S r   )r   r   r   r   r   r   rD     rE   z"Unknown rank reduction method '%s')r   r   r   r   r   r1   r   r   r   _reducerS   )r~   r   Zreduction_methodr   r   r   r   r     s(    

zBroydenFirst.__init__c                 C   s.   t | ||| t| j | jd | j| _d S )Nr   )r   rP   r   r   r)   r%   r   r   r   r   r   rP     s    zBroydenFirst.setupc                 C   s
   t | jS r   )r   r   r   r   r   r   r     s    zBroydenFirst.todenser   c                 C   s:   | j |}t| s.| | j| j| j | j |S r   )	r   r   r   r.   r/   rP   r   r   rc   )r~   r   rH   rr   r   r   r     s    zBroydenFirst.solvec                 C   s   | j |S r   )r   r   r~   r   r   r   r   r     s    zBroydenFirst.matvecc                 C   s   | j |S r   )r   r   r~   r   rH   r   r   r   r     s    zBroydenFirst.rsolvec                 C   s   | j |S r   )r   r   r   r   r   r   r     s    zBroydenFirst.rmatvecc           
      C   sD   |    | j|}|| j| }|t|| }	| j||	 d S r   )r   r   r   r   r
   r   
r~   r"   r   rd   r   r   r   r3   r   r   r   r   r   r     s
    zBroydenFirst._update)Nr   N)r   )r   )r   r   r   r5   r   rP   r   r   r   r   r   r   r   r   r   r   r     s   5


r   c                   @   s   e Zd ZdZdd ZdS )r   aL  
    Find a root of a function, using Broyden's second Jacobian approximation.

    This method is also known as "Broyden's bad method".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='broyden2'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) df^\dagger / ( df^\dagger df)

    corresponding to Broyden's second method.

    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       "A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).

       https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.broyden2(fun, [0, 0])
    >>> sol
    array([0.84116365, 0.15883529])

    c           
      C   s:   |    |}|| j| }||d  }	| j||	 d S NrJ   )r   r   r   r   r   r   r   r   r   0  s
    zBroydenSecond._updateN)r   r   r   r5   r   r   r   r   r   r     s   2r   c                   @   s4   e Zd ZdZdddZddd	Zd
d Zdd ZdS )r   a  
    Find a root of a function, using (extended) Anderson mixing.

    The Jacobian is formed by for a 'best' solution in the space
    spanned by last `M` vectors. As a result, only a MxM matrix
    inversions and MxN multiplications are required. [Ey]_

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    M : float, optional
        Number of previous vectors to retain. Defaults to 5.
    w0 : float, optional
        Regularization parameter for numerical stability.
        Compared to unity, good values of the order of 0.01.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='anderson'`` in particular.

    References
    ----------
    .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.anderson(fun, [0, 0])
    >>> sol
    array([0.84116588, 0.15883789])

    Nrn      c                 C   s2   t |  || _|| _g | _g | _d | _|| _d S r   )r   r   r   Mrd   r   rg   w0)r~   r   r   r   r   r   r   r     s    
zAnderson.__init__r   c           	      C   s   | j  | }t| j}|dkr"|S tj||jd}t|D ]}t| j| |||< q:zt	| j
|}W n. ty   | jd d = | jd d = | Y S 0 t|D ]*}||| | j| | j | j|    7 }q|S Nr   r$   )r   r   rd   r   emptyr%   rT   r
   r   r   r   r   )	r~   r   rH   rd   ri   df_fr   rg   r   r   r   r   r     s     

(zAnderson.solvec              	   C   s,  | | j  }t| j}|dkr"|S tj||jd}t|D ]}t| j| |||< q:tj||f|jd}t|D ]x}t|D ]j}t| j| | j| |||f< ||kr|| j	dkr||||f  t| j| | j| | j	d  | j  8  < q|qpt
||}	t|D ]*}
||	|
 | j|
 | j|
 | j    7 }q|S )Nr   r$   rJ   )r   r   rd   r   r   r%   rT   r
   r   r   r   )r~   r   rd   ri   r   r   br   r   rg   r   r   r   r   r     s"    
:
(zAnderson.matvecc                 C   s   | j dkrd S | j| | j| t| j| j krP| jd | jd q&t| j}tj||f|jd}t	|D ]R}	t	|	|D ]B}
|	|
kr| j
d }nd}d| t| j|	 | j|
  ||	|
f< qqv|t|dj 7 }|| _d S )Nr   r$   rJ   r   )r   rd   r   r   r   popr   r   r%   rT   r   r
   Ztriur   r   r   )r~   r"   r   rd   r   r   r   ri   r   r   r   wdr   r   r   r     s"    

*zAnderson._update)Nrn   r   )r   )r   r   r   r5   r   r   r   r   r   r   r   r   r   =  s
   F
	
r   c                   @   sV   e Zd ZdZdddZdd Zddd	Zd
d ZdddZdd Z	dd Z
dd ZdS )r   a-  
    Find a root of a function, using diagonal Broyden Jacobian approximation.

    The Jacobian approximation is derived from previous iterations, by
    retaining only the diagonal of Broyden matrices.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='diagbroyden'`` in particular.

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.diagbroyden(fun, [0, 0])
    >>> sol
    array([0.84116403, 0.15883384])

    Nc                 C   s   t |  || _d S r   r   r   r   r~   r   r   r   r   r     s    
zDiagBroyden.__init__c                 C   s6   t | ||| tj| jd fd| j | jd| _d S )Nr   r   r$   )r   rP   r   fullr)   r   r%   r   r   r   r   r   rP     s    zDiagBroyden.setupr   c                 C   s   | | j  S r   r   r   r   r   r   r   
  s    zDiagBroyden.solvec                 C   s   | | j  S r   r  r   r   r   r   r     s    zDiagBroyden.matvecc                 C   s   | | j   S r   r   r   r   r   r   r   r     s    zDiagBroyden.rsolvec                 C   s   | | j   S r   r  r   r   r   r   r     s    zDiagBroyden.rmatvecc                 C   s   t | j S r   )r   diagr   r   r   r   r   r     s    zDiagBroyden.todensec                 C   s(   |  j || j |  | |d  8  _ d S r   r  r   r   r   r   r     s    zDiagBroyden._update)N)r   )r   r   r   r   r5   r   rP   r   r   r   r   r   r   r   r   r   r   r     s   (


r   c                   @   sN   e Zd ZdZdddZdddZdd	 Zdd
dZdd Zdd Z	dd Z
dS )r   a  
    Find a root of a function, using a scalar Jacobian approximation.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        The Jacobian approximation is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='linearmixing'`` in particular.

    Nc                 C   s   t |  || _d S r   r   r   r   r   r   r   4  s    
zLinearMixing.__init__r   c                 C   s   | | j  S r   r   r   r   r   r   r   8  s    zLinearMixing.solvec                 C   s   | | j  S r   r  r   r   r   r   r   ;  s    zLinearMixing.matvecc                 C   s   | t | j S r   r   r   r   r   r   r   r   r   >  s    zLinearMixing.rsolvec                 C   s   | t | j S r   r  r   r   r   r   r   A  s    zLinearMixing.rmatvecc                 C   s   t t | jd d| j S )Nr   )r   r  r  r)   r   r   r   r   r   r   D  s    zLinearMixing.todensec                 C   s   d S r   r   r   r   r   r   r   G  s    zLinearMixing._update)N)r   )r   )r   r   r   r5   r   r   r   r   r   r   r   r   r   r   r   r     s   


r   c                   @   sV   e Zd ZdZdddZdd Zdd	d
Zdd ZdddZdd Z	dd Z
dd ZdS )r   a  
    Find a root of a function, using a tuned diagonal Jacobian approximation.

    The Jacobian matrix is diagonal and is tuned on each iteration.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='excitingmixing'`` in particular.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial Jacobian approximation is (-1/alpha).
    alphamax : float, optional
        The entries of the diagonal Jacobian are kept in the range
        ``[alpha, alphamax]``.
    %(params_extra)s
    NrI   c                 C   s    t |  || _|| _d | _d S r   )r   r   r   alphamaxbeta)r~   r   r	  r   r   r   r   f  s    
zExcitingMixing.__init__c                 C   s2   t | ||| tj| jd f| j| jd| _d S r   )r   rP   r   r  r)   r   r%   r
  r   r   r   r   rP   l  s    zExcitingMixing.setupr   c                 C   s   | | j  S r   r
  r   r   r   r   r   p  s    zExcitingMixing.solvec                 C   s   | | j  S r   r  r   r   r   r   r   s  s    zExcitingMixing.matvecc                 C   s   | | j   S r   r
  r   r   r   r   r   r   v  s    zExcitingMixing.rsolvec                 C   s   | | j   S r   r  r   r   r   r   r   y  s    zExcitingMixing.rmatvecc                 C   s   t d| j S )Nr  )r   r  r
  r   r   r   r   r   |  s    zExcitingMixing.todensec                 C   sL   || j  dk}| j|  | j7  < | j| j| < tj| jd| j| jd d S )Nr   )out)r   r
  r   r   Zclipr	  )r~   r"   r   rd   r   r   r   incrr   r   r   r     s    zExcitingMixing._update)NrI   )r   )r   r  r   r   r   r   r   K  s   


r   c                   @   sD   e Zd ZdZdddZdd	 Zd
d ZdddZdd Zdd Z	dS )r   a  
    Find a root of a function, using Krylov approximation for inverse Jacobian.

    This method is suitable for solving large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    rdiff : float, optional
        Relative step size to use in numerical differentiation.
    method : {'lgmres', 'gmres', 'bicgstab', 'cgs', 'minres'} or function
        Krylov method to use to approximate the Jacobian.
        Can be a string, or a function implementing the same interface as
        the iterative solvers in `scipy.sparse.linalg`.

        The default is `scipy.sparse.linalg.lgmres`.
    inner_maxiter : int, optional
        Parameter to pass to the "inner" Krylov solver: maximum number of
        iterations. Iteration will stop after maxiter steps even if the
        specified tolerance has not been achieved.
    inner_M : LinearOperator or InverseJacobian
        Preconditioner for the inner Krylov iteration.
        Note that you can use also inverse Jacobians as (adaptive)
        preconditioners. For example,

        >>> from scipy.optimize.nonlin import BroydenFirst, KrylovJacobian
        >>> from scipy.optimize.nonlin import InverseJacobian
        >>> jac = BroydenFirst()
        >>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))

        If the preconditioner has a method named 'update', it will be called
        as ``update(x, f)`` after each nonlinear step, with ``x`` giving
        the current point, and ``f`` the current function value.
    outer_k : int, optional
        Size of the subspace kept across LGMRES nonlinear iterations.
        See `scipy.sparse.linalg.lgmres` for details.
    inner_kwargs : kwargs
        Keyword parameters for the "inner" Krylov solver
        (defined with `method`). Parameter names must start with
        the `inner_` prefix which will be stripped before passing on
        the inner method. See, e.g., `scipy.sparse.linalg.gmres` for details.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='krylov'`` in particular.
    scipy.sparse.linalg.gmres
    scipy.sparse.linalg.lgmres

    Notes
    -----
    This function implements a Newton-Krylov solver. The basic idea is
    to compute the inverse of the Jacobian with an iterative Krylov
    method. These methods require only evaluating the Jacobian-vector
    products, which are conveniently approximated by a finite difference:

    .. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega

    Due to the use of iterative matrix inverses, these methods can
    deal with large nonlinear problems.

    SciPy's `scipy.sparse.linalg` module offers a selection of Krylov
    solvers to choose from. The default here is `lgmres`, which is a
    variant of restarted GMRES iteration that reuses some of the
    information obtained in the previous Newton steps to invert
    Jacobians in subsequent steps.

    For a review on Newton-Krylov methods, see for example [1]_,
    and for the LGMRES sparse inverse method, see [2]_.

    References
    ----------
    .. [1] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004).
           :doi:`10.1016/j.jcp.2003.08.010`
    .. [2] A.H. Baker and E.R. Jessup and T. Manteuffel,
           SIAM J. Matrix Anal. Appl. 26, 962 (2005).
           :doi:`10.1137/S0895479803422014`

    Examples
    --------
    The following functions define a system of nonlinear equations

    >>> def fun(x):
    ...     return [x[0] + 0.5 * x[1] - 1.0,
    ...             0.5 * (x[1] - x[0]) ** 2]

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.newton_krylov(fun, [0, 0])
    >>> sol
    array([0.66731771, 0.66536458])

    Nlgmres   
   c           	      K   sJ  || _ || _ttjjjtjjjtjjjtjjj	tjjj
d||| _t|| j d| _| jtjjju r|| jd< d| jd< | jdd n~| jtjjju r| jdd n^| jtjjju r|| jd< d| jd< | jd	g  | jd
d | jdd | jdd | D ]4\}}|ds0td| || j|dd  < qd S )N)bicgstabgmresr  cgsminres)r`   r   Zrestrtr   r`   Zatolr   outer_kZouter_vZprepend_outer_vTZstore_outer_AvFZinner_zUnknown parameter %s   )preconditionerrw   r   r   r   r   r  r  r  r  r  getmethod	method_kw
setdefaultZgcrotmkr   
startswithrS   )	r~   rw   r  Zinner_maxiterZinner_Mr  r   keyr   r   r   r   r     s:    



zKrylovJacobian.__init__c                 C   s<   t | j }t | j }| jtd| td| | _d S )Nr   )ru   r+   r    r   rw   omega)r~   ZmxZmfr   r   r   _update_diff_step  s    z KrylovJacobian._update_diff_stepc                 C   sl   t |}|dkrd| S | j| }| | j||  | j | }tt|shtt|rhtd|S )Nr   z$Function returned non-finite results)	r   r  rc   r+   r   r   r/   r.   rS   )r~   r3   nvZscr   r   r   r   r     s    
 zKrylovJacobian.matvecr   c                 C   sL   d| j v r(| j| j|fi | j \}}n | j| j|fd|i| j \}}|S )NrH   )r  r  op)r~   rhsrH   Zsolrk   r   r   r   r   $  s    
 zKrylovJacobian.solvec                 C   s<   || _ || _|   | jd ur8t| jdr8| j|| d S )NrX   )r+   r   r   r  r   rX   )r~   r"   r   r   r   r   rX   +  s    
zKrylovJacobian.updatec                 C   s|   t | ||| || _|| _tjj| | _| j	d u rJt
|jjd | _	|   | jd urxt| jdrx| j||| d S )Nr   rP   )r   rP   r+   r   r   r   r   Zaslinearoperatorr"  rw   r   r{   r%   r|   r   r  r   )r~   r"   r   rc   r   r   r   rP   5  s    

zKrylovJacobian.setup)Nr  r  Nr  )r   )
r   r   r   r5   r   r   r   r   rX   rP   r   r   r   r   r     s   `  
*


r   c                 C   s   t |j}|\}}}}}}}	tt|t| d |}
ddd |
D }|rXd| }ddd |
D }|rx|d }|rtd| d}|t| ||j|d }i }|	t
  t|| ||  }|j|_t| |S )	a  
    Construct a solver wrapper with given name and Jacobian approx.

    It inspects the keyword arguments of ``jac.__init__``, and allows to
    use the same arguments in the wrapper function, in addition to the
    keyword arguments of `nonlin_solve`

    Nz, c                 S   s   g | ]\}}d ||f qS )z%s=%rr   .0r   r3   r   r   r   
<listcomp>V  rE   z#_nonlin_wrapper.<locals>.<listcomp>c                 S   s   g | ]\}}d ||f qS )z%s=%sr   r$  r   r   r   r&  Y  rE   zUnexpected signature %sa  
def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None,
             f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
             tol_norm=None, line_search='armijo', callback=None, **kw):
    jac = %(jac)s(%(kwkw)s **kw)
    return nonlin_solve(F, xin, jac, iter, verbose, maxiter,
                        f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search,
                        callback)
)r   r   jacZkwkw)_getfullargspecr   listr   r   joinrS   r   r   rX   globalsexecr5   r8   )r   r'  	signatureargsvarargsvarkwdefaults
kwonlyargs
kwdefaults_kwargsZkw_strZkwkw_strwrappernsrc   r   r   r   _nonlin_wrapperJ  s,    	


r8  r   r   r   r   r   r   r   )r9   NFNNNNNNr:   NFT)r:   rm   rn   );r5   rY   Znumpyr   Zscipy.linalgr   r   r   r   r   r   r   r	   r
   Zscipy.sparse.linalgr   Zscipy.sparser   r   Zscipy._lib._utilr   r(  Z
linesearchr   r   __all__	Exceptionr   r#   r'   r-   r4   r   stripr6   r8   rl   rW   rN   r   r   rO   r   r   r   r   r   r   r   r   r   r8  r   r   r   r   r   r   r   r   r   r   r   <module>   sp   m 	
4    
   
-@D` Eq@ D.? A,





