a
    a;j                  	   @   s   d Z ddlmZ ddlmZ ddlZg dZG dd deZ	d+ddZ
d,ddZe
Zd-ddZd.ddZdd Zdd Zdd Zd/ddZd0d d!Zd1d"d#Zd2d&d'Zd3d)d*ZdS )4z
Functions
---------
.. autosummary::
   :toctree: generated/

    line_search_armijo
    line_search_wolfe1
    line_search_wolfe2
    scalar_search_wolfe1
    scalar_search_wolfe2

    )warn)minpack2N)LineSearchWarningline_search_wolfe1line_search_wolfe2scalar_search_wolfe1scalar_search_wolfe2line_search_armijoc                   @   s   e Zd ZdS )r   N)__name__
__module____qualname__ r   r   i/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/scipy/optimize/linesearch.pyr      s   r   r   -C6??2   :0yE>+=c                    s   |du r	}t tr<d }d |f  dn d|gdgdg 	fdd}	fdd	}t|}t|||||||	|
||d

\}}}|d d ||d fS )a  
    As `scalar_search_wolfe1` but do a line search to direction `pk`

    Parameters
    ----------
    f : callable
        Function `f(x)`
    fprime : callable
        Gradient of `f`
    xk : array_like
        Current point
    pk : array_like
        Search direction

    gfk : array_like, optional
        Gradient of `f` at point `xk`
    old_fval : float, optional
        Value of `f` at point `xk`
    old_old_fval : float, optional
        Value of `f` at point preceding `xk`

    The rest of the parameters are the same as for `scalar_search_wolfe1`.

    Returns
    -------
    stp, f_count, g_count, fval, old_fval
        As in `line_search_wolfe1`
    gval : array
        Gradient of `f` at the final point

    N   r   FTc                    s(   d  d7  < |   g R  S Nr   r   r   sargsffcpkxkr   r   phiR   s    zline_search_wolfe1.<locals>.phic                    sZ   |   gR  d< r2d  d7  < n d  t d 7  < td S r   lennpdotr   )r   fprimegcgradientgvalnewargsr   r   r   r   derphiV   s
    z"line_search_wolfe1.<locals>.derphi)c1c2amaxaminxtol)
isinstancetupler!   r"   r   )r   r#   r   r   gfkold_fvalold_old_fvalr   r)   r*   r+   r,   r-   epsr   r(   derphi0stpZfvalr   )
r   r   r   r#   r$   r%   r&   r'   r   r   r   r      s(    #


r   c
                 C   s  |du r| d}|du r |d}|durT|dkrTt dd||  | }
|
dk rXd}
nd}
|}|}tdtj}tdt}d}d	}t|D ]T}t|
|||||	|||||\}}}}|dd
 dkr|}
| |}||}q qqd}|dd dks|dd dkrd}|||fS )a,  
    Scalar function search for alpha that satisfies strong Wolfe conditions

    alpha > 0 is assumed to be a descent direction.

    Parameters
    ----------
    phi : callable phi(alpha)
        Function at point `alpha`
    derphi : callable phi'(alpha)
        Objective function derivative. Returns a scalar.
    phi0 : float, optional
        Value of phi at 0
    old_phi0 : float, optional
        Value of phi at previous point
    derphi0 : float, optional
        Value derphi at 0
    c1 : float, optional
        Parameter for Armijo condition rule.
    c2 : float, optional
        Parameter for curvature condition rule.
    amax, amin : float, optional
        Maximum and minimum step size
    xtol : float, optional
        Relative tolerance for an acceptable step.

    Returns
    -------
    alpha : float
        Step size, or None if no suitable step was found
    phi : float
        Value of `phi` at the new point `alpha`
    phi0 : float
        Value of `phi` at `alpha=0`

    Notes
    -----
    Uses routine DCSRCH from MINPACK.

    N        r         ?)\( @)   )   s   STARTd   r9   s   FG   s   ERROR   s   WARN)minr!   ZzerosZintcfloatranger   Zdcsrch)r   r(   phi0old_phi0r4   r)   r*   r+   r,   r-   alpha1phi1Zderphi1ZisaveZdsavetaskmaxiterir5   r   r   r   r   g   s:    ,

$r   
   c                    s  dgdgdgdg 
fdd}t 	trR 	
fddn	 
fdd|du rg R  }t|
}dur
fdd	}nd}t||||||	|
||d

\}}}}|du rtdt nd }|d d |||fS )al  Find alpha that satisfies strong Wolfe conditions.

    Parameters
    ----------
    f : callable f(x,*args)
        Objective function.
    myfprime : callable f'(x,*args)
        Objective function gradient.
    xk : ndarray
        Starting point.
    pk : ndarray
        Search direction.
    gfk : ndarray, optional
        Gradient value for x=xk (xk being the current parameter
        estimate). Will be recomputed if omitted.
    old_fval : float, optional
        Function value for x=xk. Will be recomputed if omitted.
    old_old_fval : float, optional
        Function value for the point preceding x=xk.
    args : tuple, optional
        Additional arguments passed to objective function.
    c1 : float, optional
        Parameter for Armijo condition rule.
    c2 : float, optional
        Parameter for curvature condition rule.
    amax : float, optional
        Maximum step size
    extra_condition : callable, optional
        A callable of the form ``extra_condition(alpha, x, f, g)``
        returning a boolean. Arguments are the proposed step ``alpha``
        and the corresponding ``x``, ``f`` and ``g`` values. The line search
        accepts the value of ``alpha`` only if this
        callable returns ``True``. If the callable returns ``False``
        for the step length, the algorithm will continue with
        new iterates. The callable is only called for iterates
        satisfying the strong Wolfe conditions.
    maxiter : int, optional
        Maximum number of iterations to perform.

    Returns
    -------
    alpha : float or None
        Alpha for which ``x_new = x0 + alpha * pk``,
        or None if the line search algorithm did not converge.
    fc : int
        Number of function evaluations made.
    gc : int
        Number of gradient evaluations made.
    new_fval : float or None
        New function value ``f(x_new)=f(x0+alpha*pk)``,
        or None if the line search algorithm did not converge.
    old_fval : float
        Old function value ``f(x0)``.
    new_slope : float or None
        The local slope along the search direction at the
        new value ``<myfprime(x_new), pk>``,
        or None if the line search algorithm did not converge.


    Notes
    -----
    Uses the line search algorithm to enforce strong Wolfe
    conditions. See Wright and Nocedal, 'Numerical Optimization',
    1999, pp. 59-61.

    Examples
    --------
    >>> from scipy.optimize import line_search

    A objective function and its gradient are defined.

    >>> def obj_func(x):
    ...     return (x[0])**2+(x[1])**2
    >>> def obj_grad(x):
    ...     return [2*x[0], 2*x[1]]

    We can find alpha that satisfies strong Wolfe conditions.

    >>> start_point = np.array([1.8, 1.7])
    >>> search_gradient = np.array([-1.0, -1.0])
    >>> line_search(obj_func, obj_grad, start_point, search_gradient)
    (1.0, 2, 1, 1.1300000000000001, 6.13, [1.6, 1.4])

    r   Nc                    s(   d  d7  < |   g R  S r   r   alphar   r   r   r     s    zline_search_wolfe2.<locals>.phic                    sh   d  t d 7  < d }d }|f  }||   g|R  d< | d< td S r   r   )rJ   r3   r#   r'   )r   r   r   r&   
gval_alphamyfprimer   r   r   r   r(   "  s    z"line_search_wolfe2.<locals>.derphic                    sD   d  d7  < |   g R  d< | d< t d S r   )r!   r"   rI   )r   r#   r$   r&   rK   r   r   r   r   r(   -  s    c                    s2   d | kr |  |   }| ||d S )Nr   r   )rJ   r   x)r(   extra_conditionr&   rK   r   r   r   r   extra_condition2:  s    z,line_search_wolfe2.<locals>.extra_condition2)rF   *The line search algorithm did not converge)r.   r/   r!   r"   r   r   r   )r   rL   r   r   r0   r1   r2   r   r)   r*   r+   rN   rF   r   r4   rO   
alpha_starphi_starderphi_starr   )r   r(   rN   r   r   r#   r$   r&   rK   rL   r   r   r   r      s.    W
	r   c
                 C   s  |du r| d}|du r |d}d}
|durL|dkrLt dd||  | }nd}|dk r\d}|durnt ||}| |}|}|}|du rdd }t|	D ]P}|dks|dur|
|krd}|}|}d}|dkrd}nd	d
|  }t|t  q |dk}|||| |  ks||krF|rFt|
||||| ||||||\}}} q ||}t|| | kr|||r|}|}|} q |dkrt||
|||| ||||||\}}} q d| }|durt ||}|}
|}|}| |}|}q|}|}d}tdt ||||fS )a  Find alpha that satisfies strong Wolfe conditions.

    alpha > 0 is assumed to be a descent direction.

    Parameters
    ----------
    phi : callable phi(alpha)
        Objective scalar function.
    derphi : callable phi'(alpha)
        Objective function derivative. Returns a scalar.
    phi0 : float, optional
        Value of phi at 0.
    old_phi0 : float, optional
        Value of phi at previous point.
    derphi0 : float, optional
        Value of derphi at 0
    c1 : float, optional
        Parameter for Armijo condition rule.
    c2 : float, optional
        Parameter for curvature condition rule.
    amax : float, optional
        Maximum step size.
    extra_condition : callable, optional
        A callable of the form ``extra_condition(alpha, phi_value)``
        returning a boolean. The line search accepts the value
        of ``alpha`` only if this callable returns ``True``.
        If the callable returns ``False`` for the step length,
        the algorithm will continue with new iterates.
        The callable is only called for iterates satisfying
        the strong Wolfe conditions.
    maxiter : int, optional
        Maximum number of iterations to perform.

    Returns
    -------
    alpha_star : float or None
        Best alpha, or None if the line search algorithm did not converge.
    phi_star : float
        phi at alpha_star.
    phi0 : float
        phi at 0.
    derphi_star : float or None
        derphi at alpha_star, or None if the line search algorithm
        did not converge.

    Notes
    -----
    Uses the line search algorithm to enforce strong Wolfe
    conditions. See Wright and Nocedal, 'Numerical Optimization',
    1999, pp. 59-61.

    Nr6   r   r7   r8   c                 S   s   dS )NTr   )rJ   r   r   r   r   <lambda>      z&scalar_search_wolfe2.<locals>.<lambda>z7Rounding errors prevent the line search from convergingz4The line search algorithm could not find a solution zless than or equal to amax: %sr9   rP   )r>   r@   r   r   _zoomabs)r   r(   rA   rB   r4   r)   r*   r+   rN   rF   alpha0rC   phi_a1phi_a0Z	derphi_a0rG   rQ   rR   rS   msgZnot_first_iterationZ	derphi_a1alpha2r   r   r   r   R  s    9







r   c              
   C   sL  t jdddd z|}||  }||  }	||	 d ||	  }
t d}|	d |d< |d  |d< |	d  |d< |d |d	< t |t || ||  || ||	  g \}}||
 }||
 }|| d| |  }| | t | d|   }W n" ty   Y W d
   d
S 0 W d
   n1 s.0    Y  t |sHd
S |S )z
    Finds the minimizer for a cubic polynomial that goes through the
    points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.

    If no minimizer can be found, return None.

    raisedivideZoverinvalidr9   )r9   r9   )r   r   )r   r      )r   r   )r   r   N)	r!   errstateemptyr"   ZasarrayflattensqrtArithmeticErrorisfinite)afafpabfbcr   CdbdcZdenomZd1ABradicalxminr   r   r   	_cubicmin  s.    

 4ru   c           
   	   C   s   t jddddr z@|}|}|| d  }|| ||  ||  }| |d|   }	W n  tyr   Y W d   dS 0 W d   n1 s0    Y  t |	sdS |	S )z
    Finds the minimizer for a quadratic polynomial that goes through
    the points (a,fa), (b,fb) with derivative at a of fpa.

    r]   r^   r7          @N)r!   rb   rf   rg   )
rh   ri   rj   rk   rl   Drn   ro   rr   rt   r   r   r   _quadmin  s    2
rx   c                 C   s  d}d}d}d}|}d}||  }|dk r4||  }}n
| | }}|dkrb|| }t | ||||||}|dks|du s||| ks||| k r|| }t| ||||}|du s||| ks||| k r| d|  }||}|||	| |  ks||kr|}|}|}|}np||}t||
 | kr>|||r>|}|}|}q|||   dkrb|}|}| }|}n|}| }|} |}|}|d7 }||krd}d}d}qq|||fS )a  Zoom stage of approximate linesearch satisfying strong Wolfe conditions.
    
    Part of the optimization algorithm in `scalar_search_wolfe2`.
    
    Notes
    -----
    Implements Algorithm 3.6 (zoom) in Wright and Nocedal,
    'Numerical Optimization', 1999, pp. 61.

    rH   r   g?皙?N      ?r   )ru   rx   rW   )Za_loZa_hiZphi_loZphi_hiZ	derphi_lor   r(   rA   r4   r)   r*   rN   rF   rG   Zdelta1Zdelta2Zphi_recZa_recZdalpharh   rk   ZcchkZa_jZqchkZphi_ajZ	derphi_ajZa_starZval_starZvalprime_starr   r   r   rV     sb    	

(  rV   r   c                    sj   t dg fdd}|du r6|d}	n|}	t |}
t||	|
||d\}}|d |fS )a  Minimize over alpha, the function ``f(xk+alpha pk)``.

    Parameters
    ----------
    f : callable
        Function to be minimized.
    xk : array_like
        Current point.
    pk : array_like
        Search direction.
    gfk : array_like
        Gradient of `f` at point `xk`.
    old_fval : float
        Value of `f` at point `xk`.
    args : tuple, optional
        Optional arguments.
    c1 : float, optional
        Value to control stopping criterion.
    alpha0 : scalar, optional
        Value of `alpha` at start of the optimization.

    Returns
    -------
    alpha
    f_count
    f_val_at_alpha

    Notes
    -----
    Uses the interpolation algorithm (Armijo backtracking) as suggested by
    Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57

    r   c                    s(   d  d7  < |   g R  S r   r   )rC   r   r   r   r     s    zline_search_armijo.<locals>.phiNr6   )r)   rX   )r!   Z
atleast_1dr"   scalar_search_armijo)r   r   r   r0   r1   r   r)   rX   r   rA   r4   rJ   rD   r   r   r   r	   u  s    "



r	   c           	   
   C   s0   t | |||||||d}|d |d d|d fS )z8
    Compatibility wrapper for `line_search_armijo`
    )r   r)   rX   r   r   r9   )r	   )	r   r   r   r0   r1   r   r)   rX   rr   r   r   line_search_BFGS  s    r}   c                 C   s  | |}|||| |  kr$||fS | |d  d || ||   }| |}|||| |  krj||fS ||kr|d |d  ||  }	|d || ||   |d || ||    }
|
|	 }
|d  || ||   |d || ||    }||	 }| t t|d d|
 |   d|
  }| |}|||| |  krP||fS || |d kstd||  dk r||d }|}|}|}|}qjd|fS )a(  Minimize over alpha, the function ``phi(alpha)``.

    Uses the interpolation algorithm (Armijo backtracking) as suggested by
    Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57

    alpha > 0 is assumed to be a descent direction.

    Returns
    -------
    alpha
    phi1

    r9   rv   ra   g      @r   gQ?N)r!   re   rW   )r   rA   r4   r)   rX   r,   rZ   rC   rY   Zfactorrh   rk   r\   Zphi_a2r   r   r   r{     s8    "
,$r{   ry   rz   c                 C   s  |d }t |}	d}
d}d}||
|  }| |\}}||	| ||
d  |  krX|
}q|
d | |d|
 d |   }|||  }| |\}}||	| ||d  |  kr| }q|d | |d| d |   }t|||
 ||
 }
t||| || }q||||fS )a@  
    Nonmonotone backtracking line search as described in [1]_

    Parameters
    ----------
    f : callable
        Function returning a tuple ``(f, F)`` where ``f`` is the value
        of a merit function and ``F`` the residual.
    x_k : ndarray
        Initial position.
    d : ndarray
        Search direction.
    prev_fs : float
        List of previous merit function values. Should have ``len(prev_fs) <= M``
        where ``M`` is the nonmonotonicity window parameter.
    eta : float
        Allowed merit function increase, see [1]_
    gamma, tau_min, tau_max : float, optional
        Search parameters, see [1]_

    Returns
    -------
    alpha : float
        Step length
    xp : ndarray
        Next position
    fp : float
        Merit function value at next position
    Fp : ndarray
        Residual at next position

    References
    ----------
    [1] "Spectral residual method without gradient information for solving
        large-scale nonlinear systems of equations." W. La Cruz,
        J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).

    r   r9   )maxr!   clip)r   x_kdZprev_fsetagammatau_mintau_maxf_kZf_baralpha_palpha_mrJ   xpfpFpalpha_tpalpha_tmr   r   r   _nonmonotone_line_search_cruz  s(    (  r   333333?c                 C   s(  d}d}d}|||  }| |\}}||| ||d  |  krF|}q|d | |d| d |   }|||  }| |\}}||| ||d  |  kr| }q|d | |d| d |   }t ||| |	| }t ||| |	| }q|
| d }|
| ||  | | }|}||||||fS )a  
    Nonmonotone line search from [1]

    Parameters
    ----------
    f : callable
        Function returning a tuple ``(f, F)`` where ``f`` is the value
        of a merit function and ``F`` the residual.
    x_k : ndarray
        Initial position.
    d : ndarray
        Search direction.
    f_k : float
        Initial merit function value.
    C, Q : float
        Control parameters. On the first iteration, give values
        Q=1.0, C=f_k
    eta : float
        Allowed merit function increase, see [1]_
    nu, gamma, tau_min, tau_max : float, optional
        Search parameters, see [1]_

    Returns
    -------
    alpha : float
        Step length
    xp : ndarray
        Next position
    fp : float
        Merit function value at next position
    Fp : ndarray
        Residual at next position
    C : float
        New value for the control parameter C
    Q : float
        New value for the control parameter Q

    References
    ----------
    .. [1] W. Cheng & D.-H. Li, ''A derivative-free nonmonotone line
           search and its application to the spectral residual
           method'', IMA J. Numer. Anal. 29, 814 (2009).

    r   r9   )r!   r   )r   r   r   r   rn   Qr   r   r   r   nur   r   rJ   r   r   r   r   r   ZQ_nextr   r   r   _nonmonotone_line_search_cheng8  s*    /  r   )	NNNr   r   r   r   r   r   )NNNr   r   r   r   r   )	NNNr   r   r   NNrH   )NNNr   r   NNrH   )r   r   r   )r   r   r   )r   r   r   )r   ry   rz   )r   ry   rz   r   )__doc__warningsr   Zscipy.optimizer   Znumpyr!   __all__RuntimeWarningr   r   r   Zline_searchr   r   ru   rx   rV   r	   r}   r{   r   r   r   r   r   r   <module>   sJ       
H   
S   
     
 "[
4
	
? 
I  