a
    a&                     @   s   d Z ddlZddlmZ ddlmZmZ ddlm	Z	m
Z
 g dZedZdd
dZdddZdddZdddZdddZdS )zFast Hankel transforms using the FFTLog algorithm.

The implementation closely follows the Fortran code of Hamilton (2000).

added: 14/11/2020 Nicolas Tessore <n.tessore@ucl.ac.uk>
    N)warn   )rfftirfft   )loggammapoch)fhtifht	fhtoffset        c           
      C   s   t | d }|dkrH|d d }t |}| t | ||  |  } t|||||d}t| |}	|dkr|	t | || | |  9 }	|	S )a  Compute the fast Hankel transform.

    Computes the discrete Hankel transform of a logarithmically spaced periodic
    sequence using the FFTLog algorithm [1]_, [2]_.

    Parameters
    ----------
    a : array_like (..., n)
        Real periodic input array, uniformly logarithmically spaced.  For
        multidimensional input, the transform is performed over the last axis.
    dln : float
        Uniform logarithmic spacing of the input array.
    mu : float
        Order of the Hankel transform, any positive or negative real number.
    offset : float, optional
        Offset of the uniform logarithmic spacing of the output array.
    bias : float, optional
        Exponent of power law bias, any positive or negative real number.

    Returns
    -------
    A : array_like (..., n)
        The transformed output array, which is real, periodic, uniformly
        logarithmically spaced, and of the same shape as the input array.

    See Also
    --------
    ifht : The inverse of `fht`.
    fhtoffset : Return an optimal offset for `fht`.

    Notes
    -----
    This function computes a discrete version of the Hankel transform

    .. math::

        A(k) = \int_{0}^{\infty} \! a(r) \, J_\mu(kr) \, k \, dr \;,

    where :math:`J_\mu` is the Bessel function of order :math:`\mu`.  The index
    :math:`\mu` may be any real number, positive or negative.

    The input array `a` is a periodic sequence of length :math:`n`, uniformly
    logarithmically spaced with spacing `dln`,

    .. math::

        a_j = a(r_j) \;, \quad
        r_j = r_c \exp[(j-j_c) \, \mathtt{dln}]

    centred about the point :math:`r_c`.  Note that the central index
    :math:`j_c = (n+1)/2` is half-integral if :math:`n` is even, so that
    :math:`r_c` falls between two input elements.  Similarly, the output
    array `A` is a periodic sequence of length :math:`n`, also uniformly
    logarithmically spaced with spacing `dln`

    .. math::

       A_j = A(k_j) \;, \quad
       k_j = k_c \exp[(j-j_c) \, \mathtt{dln}]

    centred about the point :math:`k_c`.

    The centre points :math:`r_c` and :math:`k_c` of the periodic intervals may
    be chosen arbitrarily, but it would be usual to choose the product
    :math:`k_c r_c = k_j r_{n-1-j} = k_{n-1-j} r_j` to be unity.  This can be
    changed using the `offset` parameter, which controls the logarithmic offset
    :math:`\log(k_c) = \mathtt{offset} - \log(r_c)` of the output array.
    Choosing an optimal value for `offset` may reduce ringing of the discrete
    Hankel transform.

    If the `bias` parameter is nonzero, this function computes a discrete
    version of the biased Hankel transform

    .. math::

        A(k) = \int_{0}^{\infty} \! a_q(r) \, (kr)^q \, J_\mu(kr) \, k \, dr

    where :math:`q` is the value of `bias`, and a power law bias
    :math:`a_q(r) = a(r) \, (kr)^{-q}` is applied to the input sequence.
    Biasing the transform can help approximate the continuous transform of
    :math:`a(r)` if there is a value :math:`q` such that :math:`a_q(r)` is
    close to a periodic sequence, in which case the resulting :math:`A(k)` will
    be close to the continuous transform.

    References
    ----------
    .. [1] Talman J. D., 1978, J. Comp. Phys., 29, 35
    .. [2] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)

    r   r   r   offsetbiasnpshapeZarangeexpfhtcoeff_fhtq)
adlnmur   r   nj_cjuA r   a/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/scipy/fft/_fftlog.pyr	      s    ]

 r	   c           
      C   s   t | d }|dkrJ|d d }t |}| t ||| | |   } t|||||d}t| |dd}	|dkr|	t | ||  |  }	|	S )a  Compute the inverse fast Hankel transform.

    Computes the discrete inverse Hankel transform of a logarithmically spaced
    periodic sequence. This is the inverse operation to `fht`.

    Parameters
    ----------
    A : array_like (..., n)
        Real periodic input array, uniformly logarithmically spaced.  For
        multidimensional input, the transform is performed over the last axis.
    dln : float
        Uniform logarithmic spacing of the input array.
    mu : float
        Order of the Hankel transform, any positive or negative real number.
    offset : float, optional
        Offset of the uniform logarithmic spacing of the output array.
    bias : float, optional
        Exponent of power law bias, any positive or negative real number.

    Returns
    -------
    a : array_like (..., n)
        The transformed output array, which is real, periodic, uniformly
        logarithmically spaced, and of the same shape as the input array.

    See Also
    --------
    fht : Definition of the fast Hankel transform.
    fhtoffset : Return an optimal offset for `ifht`.

    Notes
    -----
    This function computes a discrete version of the Hankel transform

    .. math::

        a(r) = \int_{0}^{\infty} \! A(k) \, J_\mu(kr) \, r \, dk \;,

    where :math:`J_\mu` is the Bessel function of order :math:`\mu`.  The index
    :math:`\mu` may be any real number, positive or negative.

    See `fht` for further details.

    r   r   r   r   r   T)inverser   )
r   r   r   r   r   r   r   r   r   r   r   r   r    r
      s    /
r
   c                 C   sV  || }}|d | d }|d | d }t dt j| d  | |  | d d }	t j| d d td}
t j| d d td}|	|
jdd< ||
jdd< t|
|d ||
jdd< t|
|
d |	dt|  9 }	|
 j|j8  _|
 jt| 7  _|
 j|j7  _|
 j|	7  _t j	|
|
d d|
jd< t 
|
d sRd| t|||  |
d< |
S )z?Compute the coefficient array for a fast Hankel transform.
    r   r   r   )ZdtypeN)outr   )r   Zlinspacepiemptycompleximagrealr   LN_2r   isfiniter   )r   r   r   r   r   lnkrqxpxmyr   vr   r   r    r      s*    
(
r   c                 C   s   || }}|d | d }|d | d }t jd|   }t|d|  }	t|d|  }
t| |  |	j|
j t j  }||t | |   S )a  Return optimal offset for a fast Hankel transform.

    Returns an offset close to `initial` that fulfils the low-ringing
    condition of [1]_ for the fast Hankel transform `fht` with logarithmic
    spacing `dln`, order `mu` and bias `bias`.

    Parameters
    ----------
    dln : float
        Uniform logarithmic spacing of the transform.
    mu : float
        Order of the Hankel transform, any positive or negative real number.
    initial : float, optional
        Initial value for the offset. Returns the closest value that fulfils
        the low-ringing condition.
    bias : float, optional
        Exponent of power law bias, any positive or negative real number.

    Returns
    -------
    offset : float
        Optimal offset of the uniform logarithmic spacing of the transform that
        fulfils a low-ringing condition.

    See also
    --------
    fht : Definition of the fast Hankel transform.

    References
    ----------
    .. [1] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)

    r   r   y              ?)r   r#   r   r(   r&   round)r   r   initialr   r*   r+   r,   r-   r.   ZzpZzmargr   r   r    r      s    #
r   Fc                 C   s   t | d }t |d r:|s:td | }d|d< n*|d dkrd|rdtd | }t j|d< t| dd}|s~||9 }n||  }t||dd}|ddddf }|S )zUCompute the biased fast Hankel transform.

    This is the basic FFTLog routine.
    r   r   z.singular transform; consider changing the biasz6singular inverse transform; consider changing the bias)Zaxis.N)	r   r   isinfr   copyinfr   Zconjr   )r   r   r!   r   r   r   r   r    r   '  s     


r   )r   r   )r   r   )r   r   )r   r   )F)__doc__Znumpyr   warningsr   Z_basicr   r   Zspecialr   r   __all__logr(   r	   r
   r   r   r   r   r   r   r    <module>   s   

t
F
(
.