a
    <bF                     @   sf  d dl mZ G dd deZdd Zdd Zdd	 Zed
d Zedd Zedd Z	edd Z
edd Zedd Zedd Zedd Zedd Zedd Zedd Zed d! Zed"d# Zedhd%d&Zed'd( Zed)d* Zed+d, Zed-d. Zed/d0 Zed1d2 Zedid4d5Zedjd7d8Zed9d: Zed;d< Zed=d> Zed?d@ Z edAdB Z!edCdD Z"edEdF Z#edkdHdIZ$edJdK Z%edLdM Z&edNdO Z'edPdQ Z(dRdS Z)d3dGl*Z*d3dGl+Z+dTdU Z,dVdW Z-edldXdYZ.edmdZd[Z/dnd\d]Z0ed^d_ Z1ed`da Z2edbdc Z3edodddeZ4edpdfdgZ5dGS )q   )xrangec                   @   s   e Zd ZdZi ZdZdd Zedd Zdd Z	d	d
 Z
dd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd ZdS ) SpecialFunctionsa  
    This class implements special functions using high-level code.

    Elementary and some other functions (e.g. gamma function, basecase
    hypergeometric series) are assumed to be predefined by the context as
    "builtins" or "low-level" functions.
    gP?c              
   C   s.  | j }|jD ] }|j| \}}|||| q| d| _| d| _| d| _| d| _| d| _| d| _	| d| _
| d| _| d	| _| d
| _| d| _| d| _| d| _| d| _| d| _| d| _| d| _i | _| jdddddddd | | j| _d S )N)   r       r   )r   r   )   r   )r      )r      )r   r	   )   r   )r   r   )   r   )r
   r   )r   r   )r   r   )r   r   )r      )r
   r   )r
   r   argconjrootpsizetaZfibZfac)phase	conjugateZnthrootZ	polygammaZhurwitzZ	fibonacci	factorial)	__class__defined_functions_wrap_specfunZ_mpqZmpq_1Zmpq_0Zmpq_1_2Zmpq_3_2Zmpq_1_4Zmpq_1_16Zmpq_3_16Zmpq_5_2Zmpq_3_4Zmpq_7_4Zmpq_5_4Zmpq_1_3Zmpq_2_3Zmpq_4_3Zmpq_1_6Zmpq_5_6Zmpq_5_3Z_misc_const_cache_aliasesupdatememoizeZzetazeroZzetazero_memoized)selfclsnamefwrap r    j/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/mpmath/functions/functions.py__init__   s@    
zSpecialFunctions.__init__c                 C   s   t | || d S N)setattr)r   r   r   r   r    r    r!   r   =   s    zSpecialFunctions._wrap_specfunc                 C   s   t d S r#   NotImplementedErrorctxnzr    r    r!   _besseljD       zSpecialFunctions._besseljc                 C   s   t d S r#   r%   r(   r*   r    r    r!   _erfE   r,   zSpecialFunctions._erfc                 C   s   t d S r#   r%   r-   r    r    r!   _erfcF   r,   zSpecialFunctions._erfcc                 C   s   t d S r#   r%   )r(   r*   ar    r    r!   _gamma_upper_intG   r,   z!SpecialFunctions._gamma_upper_intc                 C   s   t d S r#   r%   r'   r    r    r!   _expint_intH   r,   zSpecialFunctions._expint_intc                 C   s   t d S r#   r%   r(   sr    r    r!   _zetaI   r,   zSpecialFunctions._zetac                 C   s   t d S r#   r%   )r(   r4   r0   r)   ZderivativesZreflectr    r    r!   _zetasum_fastJ   r,   zSpecialFunctions._zetasum_fastc                 C   s   t d S r#   r%   r-   r    r    r!   _eiK   r,   zSpecialFunctions._eic                 C   s   t d S r#   r%   r-   r    r    r!   _e1L   r,   zSpecialFunctions._e1c                 C   s   t d S r#   r%   r-   r    r    r!   _ciM   r,   zSpecialFunctions._cic                 C   s   t d S r#   r%   r-   r    r    r!   _siN   r,   zSpecialFunctions._sic                 C   s   t d S r#   r%   r3   r    r    r!   _altzetaO   r,   zSpecialFunctions._altzetaN)__name__
__module____qualname____doc__r   ZTHETA_Q_LIMr"   classmethodr   r+   r.   r/   r1   r2   r5   r6   r7   r8   r9   r:   r;   r    r    r    r!   r      s$   +
r   c                 C   s   | dft j| j< | S )NTr   r   r<   r   r    r    r!   defun_wrappedQ   s    rC   c                 C   s   | dft j| j< | S )NFrA   rB   r    r    r!   defunU   s    rD   c                 C   s   t t| j|  | S r#   )r$   r   r<   rB   r    r    r!   defun_staticY   s    rE   c                 C   s   | j | | S r#   )onetanr-   r    r    r!   cot]   s    rH   c                 C   s   | j | | S r#   )rF   cosr-   r    r    r!   sec`   s    rJ   c                 C   s   | j | | S r#   )rF   sinr-   r    r    r!   cscc   s    rL   c                 C   s   | j | | S r#   )rF   tanhr-   r    r    r!   cothf   s    rN   c                 C   s   | j | | S r#   )rF   coshr-   r    r    r!   sechi   s    rP   c                 C   s   | j | | S r#   )rF   sinhr-   r    r    r!   cschl   s    rR   c                 C   s"   |s| j d S | | j| S d S )N      ?)piatanrF   r-   r    r    r!   acoto   s    
rV   c                 C   s   |  | j| S r#   )acosrF   r-   r    r    r!   asecv   s    rX   c                 C   s   |  | j| S r#   )asinrF   r-   r    r    r!   acscy   s    rZ   c                 C   s"   |s| j d S | | j| S d S )Ny              ?)rT   atanhrF   r-   r    r    r!   acoth|   s    
r\   c                 C   s   |  | j| S r#   )acoshrF   r-   r    r    r!   asech   s    r^   c                 C   s   |  | j| S r#   )asinhrF   r-   r    r    r!   acsch   s    r`   c                 C   sH   |  |}|r| |r|S | |r<|dkr4| jS | j S |t| S )Nr   )convertisnanZ_is_real_typerF   absr(   xr    r    r!   sign   s    

rf   r   c                 C   s2   |dkr|  |S | |}| |}| ||S Nr   )Zagm1ra   Z_agm)r(   r0   br    r    r!   agm   s
    


ri   c                 C   s,   |  |rd| S |s|d S | || S rg   )isinfrK   rd   r    r    r!   sinc   s
    
rk   c                 C   s2   |  |rd| S |s|d S | || j|  S rg   )rj   ZsinpirT   rd   r    r    r!   sincpi   s
    
rl   c                    sB   s
 j S   j k r,dd   S   fdddS )NrS   r   c                      s   t  dgS N)iterexpr    rd   r    r!   <lambda>   r,   zexpm1.<locals>.<lambda>r   )zeromagprecsum_accuratelyrd   r    rd   r!   expm1   s
    rv   c                 C   sH   |s
| j S | || j k r,|d|d   S | | jd|d| j dS )NrS   r   r   rt   )rr   rs   rt   logZfaddrd   r    r    r!   log1p   s
    ry   c           
         s   | j }| j}  | }||}|dkr,|S |sJrF dv rJ| rJ|S  | }|}|  }	|||	 | j k r|	 |	 d d  S |  fdddS )Ni)r   rn   y              ?y             r   c                      s   t   dgS rm   )ro   r    re   yr    r!   rq      r,   zpowm1.<locals>.<lambda>r   )rs   rF   Zisintlnrt   ru   )
r(   re   r{   rs   rF   wMx1ZmagyZlnxr    rz   r!   powm1   s    
r   c                 C   sx   t |}t |}||; }|s"| jS d| |kr6| j S d| |krH| jS d| d| kr`| j S | d| | | S )Nr   r   r   )intrF   jZexpjpimpf)r(   kr)   r    r    r!   _rootof1   s    r   r   c                 C   s   t |}| |}|r|d@ rVd| |d krV| |sV| |dk rV| | | S | j}z2|  jd7  _| ||d| || }W || _n|| _0 |
 S | ||S )Nr   r   r   
   )r   ra   imrer   rt   r   Z_nthroot)r(   re   r)   r   rt   vr    r    r!   r      s    
0r   Fc                    st    j  j}zP  jd7  _|r< fddtD }n fddtD }W | _n| _0 dd |D S )Nr   c                    s&   g | ]}|d kr  |qS )r   r   .0r   r(   gcdr)   r    r!   
<listcomp>   r,   zunitroots.<locals>.<listcomp>c                    s   g | ]}  |qS r    r   r   )r(   r)   r    r!   r     r,   c                 S   s   g | ]
}|
 qS r    r    )r   re   r    r    r!   r     r,   )Z_gcdrt   range)r(   r)   Z	primitivert   r   r    r   r!   	unitroots   s    r   c                 C   s*   |  |}| |}| |}| ||S r#   )ra   _re_imatan2)r(   re   r   r   r    r    r!   r     s    


r   c                 C   s   t | |S r#   )rc   ra   rd   r    r    r!   fabs  s    r   c                 C   s   |  |}t|dr|jS |S )Nreal)ra   hasattrr   rd   r    r    r!   r     s    

r   c                 C   s    |  |}t|dr|jS | jS )Nimag)ra   r   r   rr   rd   r    r    r!   r     s    

r   c                 C   s0   |  |}z
| W S  ty*   | Y S 0 d S r#   )ra   r   AttributeErrorrd   r    r    r!   r      s
    

r   c                 C   s   |  || |fS r#   )r   r   r-   r    r    r!   polar(  s    r   c                 C   s   || j | |  S r#   )ZmpcZcos_sin)r(   rphir    r    r!   rect,  s    r   Nc                 C   s8   |d u r|  |S | jd }| j ||d| j ||d S )N   rw   )r|   rt   )r(   re   rh   wpr    r    r!   rx   0  s    

rx   c                 C   s   |  |dS )Nr   )rx   rd   r    r    r!   log107  s    r   c                 C   s   |  ||  | S r#   )ra   )r(   re   r{   r    r    r!   fmod;  s    r   c                 C   s
   || j  S r#   Zdegreerd   r    r    r!   degrees?  s    r   c                 C   s
   || j  S r#   r   rd   r    r    r!   radiansC  s    r   c                 C   sv   |s|s|S | j | S || jkrD|dkr,|S |d| | j | j  S || j krl| d| d | j | j  S | |S )Nr   r   r   )ZninfinfrT   r   r|   )r(   r*   r   r    r    r!   _lambertw_specialG  s    


r   c                 C   s  d}t | dr8t| j}| j}|r.d|dk  }t|}nt| }d}d}|sPd}t||} |dkrd|  k rzdk rn nd|  k rdk rn n|r|d	krd
d| d   S |dkrdd| d   S |dk rdd| d   S |dk rdd| d   S |dk r2|dkr"dd| d   S dd| d   S d}|sJ||krJ|} |dk rtdd | | d!   d"| |   S |d!k r| S d#d$|   S |s|dkrt|}t|}nt| }t|}n|dkrd}|s ||  k rdk r n n|} |dkrP|d%k rPd&|  k r,dk rPn n dd | | d!   d"| |   S |sd|  krndk rn nt| }|t|  S |dkr|s|dk rt| d' }nt| d( }t|}|| ||  ||d)  d)|d)    S )*Nr   r   rn   g        g      g      @g      g      @      ?yx&1?p=
ף?yh|?5?ʡEƿy      ?      @g      ?y)\(?&1?y      ?L7A`y      ?      ?yx&1?p=
ףyh|?5?ʡE?y      ?      g      пy)\(?&1ʿy      ?L7A`?y      ?      g      y'1ZԿq=
ףp?yM`"r   y'1ZԿq=
ףpyM`"?g2,6V׿gɿg4@rS   g}tp?g?g333333?g?g333333y        -DT!	@y        -DT!@r   )r   floatr   r   complexmathrx   cmath)r*   r   Z	imag_signre   r{   r   L1L2r    r    r!   _lambertw_approx_hybridZ  s`    




6


 
"0 "
r   c                    s    }d|  k r dk r>n nd|  k r<dk r>n n|dk rtd dk r|dks|d	kr| dks|dkr dk r  fd
d}  | }  j|7  _ d j d  }  j|8  _ d	 dd d d	d}|dkr&| } j}	t	t
d|D ]Ɖvr fddt	dD |< d d  d |d  d   d  | d  d  d   <  |  }
|	|
7 }	  |
| k r|	df  S d7 q:  j|d 7  _|	dfS |dks0|d	kr>t|dfS |dkrx|d	k rbd  dfS  } |}nz|d	krЈ sd   k rdk rn n   }| |  dfS  d j |  } |}|| ||  ||d  d|d    dfS )z
    Return rough approximation for W_k(z) from an asymptotic series,
    sufficiently accurate for the Halley iteration to converge to
    the correct value.
    ii  ii  r   g,6V?g?r   rn   c                      s     dgS rm   )rp   r    r-   r    r!   rq     r,   z"_lambertw_series.<locals>.<lambda>r   r   c                 3   s&   | ]}|  d  |   V  qdS )r   Nr    )r   r   )lur    r!   	<genexpr>  r,   z#_lambertw_series.<locals>.<genexpr>r   TFg,6V׿y               @)rs   rc   r   ru   rt   sqrter   rr   r   maxfsumr   r|   r   rT   )r(   r*   r   tolZmagzdeltaZcancellationpr0   r4   Ztermr   r   r    )r(   r   r   r*   r!   _lambertw_series  sT    
8

$T


8
r   c                 C   s  |  |}t|}| |s(t| ||S | j}|  jd| |p@d 7  _| j}|d }t| |||\}}|s| d}tdD ]p}	| 	|}
||
 }|| }||||
 || | || |     }| || | || kr|} qq|}q|	dkr| 
d|  || _|
 S )Nr   r   r
   r   d   z1Lambert W iteration failed to converge for z = %s)ra   r   Zisnormalr   rt   rs   r   r   r   rp   warn)r(   r*   r   rt   r   r   r}   doneZtwoiewZwewZwewzZwnr    r    r!   lambertw  s0    



(
r   c                 C   s   |  |}|s(| |r|S t|dS | |sP| |sP| |sP| |rX|| S |dkrd|S |dkrx||d  S |dkr| |S t| ||d| | S )Nr   r   r   T)ra   rb   typerj   rl   _polyexprp   )r(   r)   re   r    r    r!   bell  s    

(r   c                    s     fdd} j |ddS )Nc                  3   s@   r  V  } d}| |  V  |d7 }|  | } qd S rg   )rl   )tr   r(   extrar)   re   r    r!   _terms  s    z_polyexp.<locals>._termsr   )Z
check_step)ru   )r(   r)   re   r   r   r    r   r!   r     s    	r   c                 C   s   |  |s(|  |s(| |s(| |r0|| S |dkr@|| S |dkrR| |S |dkrh| || S |dkr| || |d  S t| ||S )Nr   r   r   )rj   rb   rv   rp   r   )r(   r4   r*   r    r    r!   polyexp  s    (r   c                 C   s   t |}|dk rtd| j}|dkr*|S |dkr:|| S |dkrJ|| S d}d}d}d}td|d D ]l}|| sh| || }	| || }
|
r||
|	 9 }qh|	dkr||9 }|d7 }qh|	dkrh||9 }|d7 }qh|r||kr|d9 }n||9 }|| }|S )Nr   zn cannot be negativer   r   rn   )r   
ValueErrorrF   r   Zmoebiusr   )r(   r)   r*   r   Za_prodZb_prodZ	num_zerosZ	num_polesdr}   rh   r    r    r!   
cyclotomic  s@    


r   c                 C   s  t |}|dk r| jS |d dkr@||d @ dkr:| j
 S | jS dD ]N}|| sD|| d }}|dkrt||\}}|r^| j  S q^| |  S qD| |r| |S |dkrtd}t |d|  d }|dk r| jS || |kr| |r| |S |d7 }qdS )	a  
    Evaluates the von Mangoldt function `\Lambda(n) = \log p`
    if `n = p^k` a power of a prime, and `\Lambda(n) = 0` otherwise.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> [mangoldt(n) for n in range(-2,3)]
        [0.0, 0.0, 0.0, 0.0, 0.6931471805599453094172321]
        >>> mangoldt(6)
        0.0
        >>> mangoldt(7)
        1.945910149055313305105353
        >>> mangoldt(8)
        0.6931471805599453094172321
        >>> fsum(mangoldt(n) for n in range(101))
        94.04531122935739224600493
        >>> fsum(mangoldt(n) for n in range(10001))
        10013.39669326311478372032

    r   r   r   )
r   r
   r                        l       73Me'r   rS   N)r   rr   Zln2divmodr|   Zisprimer&   )r(   r)   r   qr   r   r    r    r!   mangoldt;  s6    



r   c                 C   s.   |  t|t|}|r t|S | |S d S r#   )Z
_stirling1r   r   r(   r)   r   exactr   r    r    r!   	stirling1w  s    r   c                 C   s.   |  t|t|}|r t|S | |S d S r#   )Z
_stirling2r   r   r   r    r    r!   	stirling2  s    r   )r   )r   )F)N)r   )r   )F)F)F)6Zlibmp.backendr   objectr   rC   rD   rE   rH   rJ   rL   rN   rP   rR   rV   rX   rZ   r\   r^   r`   rf   ri   rk   rl   rv   ry   r   r   r   r   r   r   r   r   r   r   r   rx   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r    r    r!   <module>   s   N















	













?6

	
*
;