a
    <bO                     @   s   d dl mZ ddlmZ z
ejZW n ey:   ejZY n0 edd Zdd Z	ed dd	Z
d
d Zed!ddZdd Zedd Zi fddZedd Zed"ddZed#ddZedd Zedd ZdS )$   )xrange   )defunc                 C   sT   t |}| j}d|d@  }t|d D ](}||||  7 }|||  |d  }q&|S )z
    Given a sequence `(s_k)` containing at least `n+1` items, returns the
    `n`-th forward difference,

    .. math ::

        \Delta^n = \sum_{k=0}^{\infty} (-1)^{k+n} {n \choose k} s_k.
    r   )intZzeror   )ctxsndbk r   o/Users/vegardjervell/Documents/master/model/venv/lib/python3.9/site-packages/mpmath/calculus/differentiation.py
difference   s    
r   c                    s$  | d}| dd}| dd}|d|  |d  }	| j}
z|	| _| dd u r| d	rpt| }nd}| d| | | n
| | dd}|rƈ| |9 t|d }}nt| |d d}d }|rd
 7  fdd|D }|||	fW |
| _S |
| _0 d S )Nsingularaddprec
   	direction    r   r   hrelativeg      ?c                    s   g | ]} |  qS r   r   ).0r   fr   xr   r   
<listcomp>=       zhsteps.<locals>.<listcomp>)getprecr   Zmagldexpconvertsignr   )r   r   r   r	   r   optionsr   r   r   workprecorigZ	hextramagZstepsnormvaluesr   r   r   hsteps   s8    




r'   c                    sf  d}zt }t d}W n ty.   Y n0 |rV fddD t ||S |dd}dkr|dkr|d	s S  j}z|dkrt |fi |\}	}
}| _ |	|
  }nz|dkrB  jd
7  _ |dd fdd} |dd j	 g}| 
 d j	  }ntd| W | _n| _0 |
 S )a  
    Numerically computes the derivative of `f`, `f'(x)`, or generally for
    an integer `n \ge 0`, the `n`-th derivative `f^{(n)}(x)`.
    A few basic examples are::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> diff(lambda x: x**2 + x, 1.0)
        3.0
        >>> diff(lambda x: x**2 + x, 1.0, 2)
        2.0
        >>> diff(lambda x: x**2 + x, 1.0, 3)
        0.0
        >>> nprint([diff(exp, 3, n) for n in range(5)])   # exp'(x) = exp(x)
        [20.0855, 20.0855, 20.0855, 20.0855, 20.0855]

    Even more generally, given a tuple of arguments `(x_1, \ldots, x_k)`
    and order `(n_1, \ldots, n_k)`, the partial derivative
    `f^{(n_1,\ldots,n_k)}(x_1,\ldots,x_k)` is evaluated. For example::

        >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (0,1))
        2.75
        >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (1,1))
        3.0

    **Options**

    The following optional keyword arguments are recognized:

    ``method``
        Supported methods are ``'step'`` or ``'quad'``: derivatives may be
        computed using either a finite difference with a small step
        size `h` (default), or numerical quadrature.
    ``direction``
        Direction of finite difference: can be -1 for a left
        difference, 0 for a central difference (default), or +1
        for a right difference; more generally can be any complex number.
    ``addprec``
        Extra precision for `h` used to account for the function's
        sensitivity to perturbations (default = 10).
    ``relative``
        Choose `h` relative to the magnitude of `x`, rather than an
        absolute value; useful for large or tiny `x` (default = False).
    ``h``
        As an alternative to ``addprec`` and ``relative``, manually
        select the step size `h`.
    ``singular``
        If True, evaluation exactly at the point `x` is avoided; this is
        useful for differentiating functions with removable singularities.
        Default = False.
    ``radius``
        Radius of integration contour (with ``method = 'quad'``).
        Default = 0.25. A larger radius typically is faster and more
        accurate, but it must be chosen so that `f` has no
        singularities within the radius from the evaluation point.

    A finite difference requires `n+1` function evaluations and must be
    performed at `(n+1)` times the target precision. Accordingly, `f` must
    support fast evaluation at high precision.

    With integration, a larger number of function evaluations is
    required, but not much extra precision is required. For high order
    derivatives, this method may thus be faster if f is very expensive to
    evaluate at high precision.

    **Further examples**

    The direction option is useful for computing left- or right-sided
    derivatives of nonsmooth functions::

        >>> diff(abs, 0, direction=0)
        0.0
        >>> diff(abs, 0, direction=1)
        1.0
        >>> diff(abs, 0, direction=-1)
        -1.0

    More generally, if the direction is nonzero, a right difference
    is computed where the step size is multiplied by sign(direction).
    For example, with direction=+j, the derivative from the positive
    imaginary direction will be computed::

        >>> diff(abs, 0, direction=j)
        (0.0 - 1.0j)

    With integration, the result may have a small imaginary part
    even even if the result is purely real::

        >>> diff(sqrt, 1, method='quad')    # doctest:+ELLIPSIS
        (0.5 - 4.59...e-26j)
        >>> chop(_)
        0.5

    Adding precision to obtain an accurate value::

        >>> diff(cos, 1e-30)
        0.0
        >>> diff(cos, 1e-30, h=0.0001)
        -9.99999998328279e-31
        >>> diff(cos, 1e-30, addprec=100)
        -1.0e-30

    FTc                    s   g | ]}  |qS r   )r    )r   _r   r   r   r      r   zdiff.<locals>.<listcomp>methodstepr   quadr   r   radiusg      ?c                    s&     |  }| }||  S N)Zexpj)tZreizr   r   r	   r-   r   r   r   g   s    zdiff.<locals>.gr   zunknown method: %r)list	TypeError_partial_diffr   r    r   r'   r   Zquadtspi	factorial
ValueError)r   r   r   r	   r"   partialordersr*   r   r&   r%   r#   vr2   r
   r   r1   r   diffC   s8    i
r<   c                    sp   |s
 S t |s| S dtt|D ]| r* q<q*|  fdd}d|< t |||S )Nr   c                     s*    fdd}j |  fi S )Nc                    s&    d  | f d d    S Nr   r   r/   )r   f_argsir   r   inner   s    z1_partial_diff.<locals>.fdiff_inner.<locals>.innerr<   )r?   rA   r   r   r@   r"   order)r?   r   fdiff_inner   s    z"_partial_diff.<locals>.fdiff_inner)sumrangelenr5   )r   r   xsr:   r"   rE   r   rC   r   r5      s    r5   Nc              	   k   s^  |du r| j }nt|}|dddkr^d}||d k rZ| j|||fi |V  |d7 }q,dS |d}|r| j||dddV  n|| |V  |dk rdS || j krd	\}}nd|d  }}| j}	t| ||||	fi |\}
}}t||D ]H}z$|| _| |
|||  }W |	| _n|	| _0 |
 V  ||kr dS q|t|d
 d  }}t	||}qdS )ad  
    Returns a generator that yields the sequence of derivatives

    .. math ::

        f(x), f'(x), f''(x), \ldots, f^{(k)}(x), \ldots

    With ``method='step'``, :func:`~mpmath.diffs` uses only `O(k)`
    function evaluations to generate the first `k` derivatives,
    rather than the roughly `O(k^2)` evaluations
    required if one calls :func:`~mpmath.diff` `k` separate times.

    With `n < \infty`, the generator stops as soon as the
    `n`-th derivative has been generated. If the exact number of
    needed derivatives is known in advance, this is further
    slightly more efficient.

    Options are the same as for :func:`~mpmath.diff`.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 15
        >>> nprint(list(diffs(cos, 1, 5)))
        [0.540302, -0.841471, -0.540302, 0.841471, 0.540302, -0.841471]
        >>> for i, d in zip(range(6), diffs(cos, 1)):
        ...     print("%s %s" % (i, d))
        ...
        0 0.54030230586814
        1 -0.841470984807897
        2 -0.54030230586814
        3 0.841470984807897
        4 0.54030230586814
        5 -0.841470984807897

    Nr*   r+   r   r   r   T)r   )r   r   gffffff?)
infr   r   r<   r    r   r'   r   r   min)r   r   r   r	   r"   r   r   ABZcallprecyr%   r#   r
   r   r   r   diffs   s<    &



rO   c                    s   t g   fdd}|S )Nc                    s.   t t | d D ]} t q |  S r=   )r   rH   appendnext)r   r@   datagenr   r   r   ,  s    ziterable_to_function.<locals>.f)iter)rT   r   r   rR   r   iterable_to_function)  s    rV   c           
      c   s   t |}|dkr&|d D ]
}|V  qnt| |d|d  }t| ||d d }d}|||d }d}td|d D ]4}	|||	 d  |	 }|||||	  ||	 7 }q|V  |d7 }q^dS )aV  
    Given a list of `N` iterables or generators yielding
    `f_k(x), f'_k(x), f''_k(x), \ldots` for `k = 1, \ldots, N`,
    generate `g(x), g'(x), g''(x), \ldots` where
    `g(x) = f_1(x) f_2(x) \cdots f_N(x)`.

    At high precision and for large orders, this is typically more efficient
    than numerical differentiation if the derivatives of each `f_k(x)`
    admit direct computation.

    Note: This function does not increase the working precision internally,
    so guard digits may have to be added externally for full accuracy.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> f = lambda x: exp(x)*cos(x)*sin(x)
        >>> u = diffs(f, 1)
        >>> v = mp.diffs_prod([diffs(exp,1), diffs(cos,1), diffs(sin,1)])
        >>> next(u); next(v)
        1.23586333600241
        1.23586333600241
        >>> next(u); next(v)
        0.104658952245596
        0.104658952245596
        >>> next(u); next(v)
        -5.96999877552086
        -5.96999877552086
        >>> next(u); next(v)
        -12.4632923122697
        -12.4632923122697

    r   r   Nr   )rH   rV   
diffs_prodr   )
r   ZfactorsNcur;   r	   r   ar   r   r   r   rW   2  s    $
rW   c           
      C   s6  | |v r||  S |s ddi|d< t | d }tdd t|D }i }t|D ]D\}}|d d f|dd  }||v r||  |7  < qN|||< qNt|D ]\}}t|sqt|D ]l\}}|r|d| |d ||d  d f ||d d  }	|	|v r||	  || 7  < q|| ||	< qq||| < ||  S )z
    nth differentiation polynomial for exp (Faa di Bruno's formula).

    TODO: most exponents are zero, so maybe a sparse representation
    would be better.
    r   r   r   c                 s   s   | ]\}}|d  |fV  qdS )r\   Nr   )r   rY   r;   r   r   r   	<genexpr>t  r   zdpoly.<locals>.<genexpr>Nr   )dpolydict	iteritemsrF   	enumerate)
r	   _cacheRZRapowerscountZpowers1r   pZpowers2r   r   r   r^   h  s.    
4
r^   c                 #   s|   t | |  d}|V  d}| d}tt|D ],\}}|||  fddt|D  7 }q6|| V  |d7 }q dS )a  
    Given an iterable or generator yielding `f(x), f'(x), f''(x), \ldots`
    generate `g(x), g'(x), g''(x), \ldots` where `g(x) = \exp(f(x))`.

    At high precision and for large orders, this is typically more efficient
    than numerical differentiation if the derivatives of `f(x)`
    admit direct computation.

    Note: This function does not increase the working precision internally,
    so guard digits may have to be added externally for full accuracy.

    **Examples**

    The derivatives of the gamma function can be computed using
    logarithmic differentiation::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>>
        >>> def diffs_loggamma(x):
        ...     yield loggamma(x)
        ...     i = 0
        ...     while 1:
        ...         yield psi(i,x)
        ...         i += 1
        ...
        >>> u = diffs_exp(diffs_loggamma(3))
        >>> v = diffs(gamma, 3)
        >>> next(u); next(v)
        2.0
        2.0
        >>> next(u); next(v)
        1.84556867019693
        1.84556867019693
        >>> next(u); next(v)
        2.49292999190269
        2.49292999190269
        >>> next(u); next(v)
        3.44996501352367
        3.44996501352367

    r   r   c                 3   s&   | ]\}}|r |d  | V  qdS )r   Nr   )r   r   rf   fnr   r   r]     r   zdiffs_exp.<locals>.<genexpr>N)rV   expZmpfr`   r^   Zfprodra   )r   ZfdiffsZf0r@   r   rd   rY   r   rg   r   	diffs_exp  s    ,
&
rj   r   c                    sX   t t  |d d}|| d  fdd} ||| ||  S )a	  
    Calculates the Riemann-Liouville differintegral, or fractional
    derivative, defined by

    .. math ::

        \,_{x_0}{\mathbb{D}}^n_xf(x) = \frac{1}{\Gamma(m-n)} \frac{d^m}{dx^m}
        \int_{x_0}^{x}(x-t)^{m-n-1}f(t)dt

    where `f` is a given (presumably well-behaved) function,
    `x` is the evaluation point, `n` is the order, and `x_0` is
    the reference point of integration (`m` is an arbitrary
    parameter selected automatically).

    With `n = 1`, this is just the standard derivative `f'(x)`; with `n = 2`,
    the second derivative `f''(x)`, etc. With `n = -1`, it gives
    `\int_{x_0}^x f(t) dt`, with `n = -2`
    it gives `\int_{x_0}^x \left( \int_{x_0}^t f(u) du \right) dt`, etc.

    As `n` is permitted to be any number, this operator generalizes
    iterated differentiation and iterated integration to a single
    operator with a continuous order parameter.

    **Examples**

    There is an exact formula for the fractional derivative of a
    monomial `x^p`, which may be used as a reference. For example,
    the following gives a half-derivative (order 0.5)::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> x = mpf(3); p = 2; n = 0.5
        >>> differint(lambda t: t**p, x, n)
        7.81764019044672
        >>> gamma(p+1)/gamma(p-n+1) * x**(p-n)
        7.81764019044672

    Another useful test function is the exponential function, whose
    integration / differentiation formula easy generalizes
    to arbitrary order. Here we first compute a third derivative,
    and then a triply nested integral. (The reference point `x_0`
    is set to `-\infty` to avoid nonzero endpoint terms.)::

        >>> differint(lambda x: exp(pi*x), -1.5, 3)
        0.278538406900792
        >>> exp(pi*-1.5) * pi**3
        0.278538406900792
        >>> differint(lambda x: exp(pi*x), 3.5, -3, -inf)
        1922.50563031149
        >>> exp(pi*3.5) / pi**3
        1922.50563031149

    However, for noninteger `n`, the differentiation formula for the
    exponential function must be modified to give the same result as the
    Riemann-Liouville differintegral::

        >>> x = mpf(3.5)
        >>> c = pi
        >>> n = 1+2*j
        >>> differint(lambda x: exp(c*x), x, n)
        (-123295.005390743 + 140955.117867654j)
        >>> x**(-n) * exp(c)**x * (x*c)**n * gammainc(-n, 0, x*c) / gamma(-n)
        (-123295.005390743 + 140955.117867654j)


    r   c                    s     fdd gS )Nc                    s   |    |  S r.   r   r>   )r   rr   r   r   <lambda>  r   z-differint.<locals>.<lambda>.<locals>.<lambda>)r,   r   r   r   rk   x0rm   r   rl     r   zdifferint.<locals>.<lambda>)maxr   ceilrer<   gamma)r   r   r   r	   ro   mr2   r   rn   r   	differint  s    Dru   c                    s"   dkrS  fdd}|S )a3  
    Given a function `f`, returns a function `g(x)` that evaluates the nth
    derivative `f^{(n)}(x)`::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> cos2 = diffun(sin)
        >>> sin2 = diffun(sin, 4)
        >>> cos(1.3), cos2(1.3)
        (0.267498828624587, 0.267498828624587)
        >>> sin(1.3), sin2(1.3)
        (0.963558185417193, 0.963558185417193)

    The function `f` must support arbitrary precision evaluation.
    See :func:`~mpmath.diff` for additional details and supported
    keyword options.
    r   c                    s    j | fi S r.   rB   rm   r   r   r	   r"   r   r   r2     s    zdiffun.<locals>.gr   )r   r   r	   r"   r2   r   rv   r   diffun	  s    rw   c                    sN   t  j|||fi |}|ddr8 fdd|D S  fdd|D S dS )a  
    Produces a degree-`n` Taylor polynomial around the point `x` of the
    given function `f`. The coefficients are returned as a list.

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> nprint(chop(taylor(sin, 0, 5)))
        [0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333]

    The coefficients are computed using high-order numerical
    differentiation. The function must be possible to evaluate
    to arbitrary precision. See :func:`~mpmath.diff` for additional details
    and supported keyword options.

    Note that to evaluate the Taylor polynomial as an approximation
    of `f`, e.g. with :func:`~mpmath.polyval`, the coefficients must be reversed,
    and the point of the Taylor expansion must be subtracted from
    the argument:

        >>> p = taylor(exp, 2.0, 10)
        >>> polyval(p[::-1], 2.5 - 2.0)
        12.1824939606092
        >>> exp(2.5)
        12.1824939607035

    chopTc                    s$   g | ]\}}  | | qS r   )rx   r7   r   r@   r
   r)   r   r   r   @  r   ztaylor.<locals>.<listcomp>c                    s   g | ]\}}|  | qS r   )r7   ry   r)   r   r   r   B  r   N)ra   rO   r   )r   r   r   r	   r"   rT   r   r)   r   taylor"  s    rz   c                 C   sH  t ||| d k rtd|dkrT|dkr<| jg| jgfS |d|d  | jgfS | |}t|D ]8}tt||| d D ]}||| |  |||f< qqf| ||d || d   }| ||}| jgt| }	dg|d  }
t|d D ]H}|| }tdt||d D ]}||	| |||   7 }q||
|< q|
|	fS )a  
    Computes a Pade approximation of degree `(L, M)` to a function.
    Given at least `L+M+1` Taylor coefficients `a` approximating
    a function `A(x)`, :func:`~mpmath.pade` returns coefficients of
    polynomials `P, Q` satisfying

    .. math ::

        P = \sum_{k=0}^L p_k x^k

        Q = \sum_{k=0}^M q_k x^k

        Q_0 = 1

        A(x) Q(x) = P(x) + O(x^{L+M+1})

    `P(x)/Q(x)` can provide a good approximation to an analytic function
    beyond the radius of convergence of its Taylor series (example
    from G.A. Baker 'Essentials of Pade Approximants' Academic Press,
    Ch.1A)::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> one = mpf(1)
        >>> def f(x):
        ...     return sqrt((one + 2*x)/(one + x))
        ...
        >>> a = taylor(f, 0, 6)
        >>> p, q = pade(a, 3, 3)
        >>> x = 10
        >>> polyval(p[::-1], x)/polyval(q[::-1], x)
        1.38169105566806
        >>> f(x)
        1.38169855941551

    r   z%L+M+1 Coefficients should be providedr   N)rH   r8   ZoneZmatrixrG   rK   Zlu_solver3   )r   r[   LMrL   jr@   r;   r   qrf   r   r   r   r   padeD  s(    (
 
r   )r   )N)r   r   )r   )Zlibmp.backendr   Zcalculusr   r_   r`   AttributeErroritemsr   r'   r<   r5   rO   rV   rW   r^   rj   ru   rw   rz   r   r   r   r   r   <module>   s8   

$ I	
5!
6H
!