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1 Introduction

In this report, a hexagonally packed carbon fiber composite with an epoxy matrix will be studied. The effect
of the volume fraction the transverse modulus of the carbon fibers on the composite will be studied and
discussed. Finally, some simple micro mechanical models will be compared to the finite element analysis
(FEA) and the Halpin-Tsai model will be fit to the results from the FEA.

Finite element analysis is done in Abaqus. The materials were generated using the material properties
displayed in Table The carbon fibers are assumed to be transversely isotropic, while the epoxy matrix is
assumed to be isotropic. These assumptions imply that the following relations are valid.

E2f = ESf Eijm = Em
Vigf = Vi3f Vijm = Vm
E,
Giay = Gizy Gijm = Gm = A+
Eoy
Gogp = ———
= 2(1 + Vggf)

Elf [MP&] ng [MP&] I/12f [—] 1/23f [—] Glgf [MP&} Em [MP&] VUm [—]
233 000 15 000 0.2 0.35 9000 4100 0.37

Table 1.1: Material properties

2 Theory

2.1 The unit cell
The area of a hexagonal cell with sides of length a, as shown in Figure is given by

A= 6a—2 sin <\/§>
2 2 (2.1)

_ 3v/3a2

A
2

The area of fibers in the unit cell is given by
Ay =37} (2.2)

Thereby the volume fraction of fibers in the composite can be related to the unit cell parameter a and the
radius of the fibers by

Ay 2777“]21
Vi=—= . 2.3
The dimensions of the tetragonal unit cell can be related to the dimensions of the hexagonal cell by
s
as = 2acos (7) =aV3
? 6 (2.4)

az = a

For all simulations, the parameter a was kept constant and equal to unity, while the fiber radius and unit
cell depth was varied.
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Figure 2.1: Unit cell of a hexagonal fiber composite

2.2 Simple micro-mechanical models

When a load is applied to a UDFC in the fiber direction, hereby denoted the 1 direction, the fiber strain will
be equal to the matrix strain which will equal the composite strain. Additionally, stress on the fibers can be
assumed to be proportional to the area fraction of the fibers, which is equal to the volume fraction of the
fibers. From this, an expression relating the material moduli and volume fractions to the composite modulus
can be derived.

o1 =Vior1+Vinom
Fie1 = VfEl,fGLf + VmEmJﬁmJ (25)
FEi = VfEl)f + VmEl,m

Conversely, for a load in the transverse direction, it may be assumed that the strain is equal to the volume
weighted average of the fiber strain and matrix strain, with the stress experienced by the fiber and matrix
being equal. By these assumptions, an expression relating the material properties and volume fractions to
the composite properties in the transverse directions can be derived. Denoting ¢o = ¢35 = ¢; for properties
¢ in the transverse direction of the composite

€ = Vies + Vinem

Oft Om,t
=V, 20ty oy, T
"By " " By (2.6)

1 Vy " Vin

gt

B,

Ei  Efy By

From the expression in equations (2.5) and (2.6) and the corresponding assumptions, one can derive an
expression for the Poisson ratio of the composite,

Vig = Vfl/lzf + Vme. (27)



2.3 The Halpin-Tsai model

The Halpin-Tsai model is a semi-empirical model that is used to approximate the transverse modulus and
shear modulus of a transversely orthotropic material. The model is derived by the self-consistent field
approach and contains a fitting parameter £. The transverse modulus is approximated as

1+&mVy Esp— Ep,
Ey=FE,————, =" 2.8
2 1-— 771Vf n E27f + glEm ( )
The shear modulus G5 is approximated as
1+ ng]gi G12 ;= Gm
Gio = Gpy———, = 2.9
12 1—nVy 2 Gu’f + &Gy ( )

The parameters £ and & can be fitted to experimental data or data from a finite element analysis by
non-linear regression.

The problem with this model is that it’s a semi-empirical mode. Simulation or experimentation are therefore
required to determine the £-parameter. Additionally, the value of the parameter has little physical interpreta-
tion outside of parametrising the increased strength of the composite resulting from the interaction between
the matrix and fibers.

3 Load tests

For all load tests, the unit cell described in section [2.1] was used, together with the material constants given
in Table [I.I] Specific parameters for each simulation are found in appendix [A]

3.1 Mesh size convergence
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Figure 3.1: Calculated properties as a function of inverse mesh size.

In this section we want to see for our model how the precision of the mesh influence the precision of the
results of the simulation. The mesh used for the load test simulations was gradually refined. The composite



moduli computed from the load test results converged around a mesh size of 0.02 (arb. units) as shown in
Figure 3.1

As we can see, further that an certain point, the results doesn’t change anymore. Only the simulation time
increase, not the precision. For the rest of this assignment we will use the mesh size of the convergence point
determine here. A relatively coarse mesh may have a minor influence on the results.

3.2 Variation of the model depending on FEyy

The transverse modulus of the fiber, Fy; is estimated and associated with significant uncertainty. The
theoretical variation was be computed from equation . Additionally, Eyy was varied in the finite element
model, the results are displayed in Figure As expected, the variation is more prominent at higher
volume fractions of fiber, it is clear that the analytical model under-predicts the variation. Especially for a
high volume fraction of fiber one can observe that the response of the composite transverse modulus to a

change in the transverse fiber modulus is highly non-linear, and increases rapidly as the pertubation surpasses
~ +2%.
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Figure 3.2: Relative change in the transverse modulus as a function of relative change in the transverse
modulus of the fiber. Solid lines show theoretical variation, dashed lines show results from FEA. EY indicates
the composite transverse modulus at Eapf = E2°f = 15000 MPa

3.3 Simulation results

Now we can add on the graphics the results obtain with the Abaqus simulation, load testing simulated in
Abaqus with a mesh size of 5—10 was compared to theoretical values computed as described in section. Our
result with the FEA model are displayed in Figure

As we can see, the simulation fit really well the longitudinal modulus, on the contrary of the transverse
modulus where the error is large. Therefore, another model is required if we want to use theoretical calculus.
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Figure 3.3: Comparison of composite moduli calculated by the theoretical models in section and by FEA.

The comparison shown in Figure shows that the simple micro-mechanical model is not accurate to the
real value of the transverse modulus. Another model is required.

3.4 The Halpin-Tsai model

Using these results, we can refine our theoretical model with the Halpin-Tsai semi-empirical method. Now
we want to try to find the right &; value with the results of our simulation. The fit resulting from a non-linear
least squares regression computed using ' scipy.optimize.curve_fit() is shown in Figure

We have now a model that fit with a few error the simulation. This model could be use for different engineering
application or for further calculus.

4 Conclusion

During this assignment we have worked for the first time on Abaqus and try to compare the theoretical model
against the simulation software. To conclude, theses are our main observation during this work:

The micro-mechanical model, for the longitudinal modulus, fit well to the Abaqus simulation. It seems
reasonable to think that this fact is correct for every composite sharing similar geometry. On the contrary,
the transverse modulus have a poor accuracy with the micro-mechanical model. Another model is necessary
and this is why we have tested the Halpin-Tsai model. This one allow a precision good enough for multiple
engineering case.

In the same time, the mesh precision doesn’t influence too much the accuracy of the results. Obviously,
a really rough mesh will give false results. However, as our results prove, a good parameter for the mesh
volume fraction will allow a low computation time with a good precision.
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Figure 3.4: Comparison of composite moduli calculated by the theoretical models in section and by FEA.

To further expand on this work, it would be interesting to compare our transverse modulus results with some
other model, like the Puck or the Ekval model.



A Load test parameters

Mesh Depth Displacement V¢ Ty
0.1 0.1 0.1 0.5 0.3713

0.07 0.07 0.07 0.5 0.3713
0.05 0.05 0.05 0.5 0.3713
0.03 0.03 0.03 0.5 0.3713
0.02 0.02 0.02 0.5 0.3713

Table A.1: Parameters for mesh convergence analysis. All parameters are given as relative sizes.

Mesh Depth Displacement V; Ty

0.02 0.02 0.02 0.3 0.2876
0.02 0.02 0.02 0.5 0.3713
0.02 0.02 0.02 0.7 0.4392

Table A.2: Parameters used in load testing.

V;=0.3 V; =05 V=07
Eof Es Eof E Eof Ea

15450 6322 | 14700 7810 | 15075 10073
14550 6253 | 15450 7946 | 15150 10101
15225 6305 | 14550 7782 | 14850 9987
14775 6271 | 15225 7906 | 15300 10157
14775 7824 | 15450 10323
14700 9930
14550 9765

Table A.3: Es¢ values used in pertubation tests, and corresponding computed Ea2 values. Mesh, displacement
and fiber radius were equivalent to those found in Table



B Python code

All plots presented were generated by the code presented in this section. The excel files referenced in the
code contain the data displayed in section [A]

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import pandas as pd

4 import scipy.optimize as opt

5 import matplotlib.cm as cm

6 import matplotlib. ticker as mtick

7

s def plot_moduli():

9 E1f = 233000

10 E2f = 15000

11 Em = 4100

12

13 V_f = np.linspace(0, 1, 100)

14 Vin=1-—-V_Af

15

16 El =V_fx* Elf + V.m * Em

17 Et = 1/(VA/E2f + V_m/Em)

18

19 data = pd.read_excel(’ properties . xlsx )

20 fracs = np.array(data[ fracs’]. tolist ()) * le—2

21

22 fig, ax = plt.subplots (2,1, figsize =(8,6), sharex=True)

23

24 twin = ax[1]

25 ax = ax|[0]

26 ax.plot(V_f, E1, label=r'$E_1$ Theoretical’, color="blue’)

27 ax.scatter (fracs ,data[’E11’], marker="x’, color="black’, label=r'SE_{11}$ Load test’)
28 twin.plot (V_f, Et, label=r’$E_t$ Theoretical’, color="red’)

29

30 ax.plot(V_f, [E1lf for f in V_f], color=’black’, linestyle ="—-")

31 ax.plot(V_f, [Em for f in V_f], color="black’, linestyle ="——")

32

33 twin. scatter (fracs, data[’ E22’], marker="x’, color="black’, label=r’"$E_{22}$ Load test’)
34 twin. scatter (fracs, data[ E33’], marker="+’, color="black’, label=r’"$E_{33}$ Load test’)
35 twin.plot (V_f, [E2f for f in V_f], color="black’, linestyle ="—-")

36 twin.plot (V_f, [Em for f in V_f], color="black’, linestyle ="——")

37

38 ax.legend()

39 twin.legend()

40 twin. set_xlabel (r’$V_{$ [ -], fontsize =14)

41 ax. set_ylabel (r’$E_1$ [MPal’, fontsize=14)

42 twin. set_ylabel (r’$E_t$ [MPal’, fontsize=14)

43

44 plt . suptitle (’Composite moduli’)

45 plt. savefig (’ theoretical_ moduli’, dpi=600)

46 plt .show()

47

48 def mesh_convergence():

49 data = pd.read_excel(’mesh.xlsx")

50 sizes = np.array(data['mesh’]. to_list ())

51

52 fig, axs = plt.subplots (2,1, figsize =(8,6), sharex=True)

53 legl, = axs[0].plot(1/sizes, data[’E11’], color="blue’, label=r'$E_{11}$’)

54 axs [0]. plot(1/sizes, [data[’E11’]. tolist ()[—1] for s in sizes ], color=’black’, linestyle ="——")
55

56 leg2, = axs[1].plot(1/sizes, data[’E22’], color="red’, label=r’$E_{22}§’)

57 leg3, = axs[1].plot(1 / sizes, data[’E33’], color=’green’, linestyle =":", label=r’'$E_{33}%)
58 axs [1]. plot(1 / sizes, [data[ E22’]. tolist ()[—1] for s in sizes |, color=’black’, linestyle ="—-")
59

60 axs [0]. set_ylabel (r’$E_1$ [MPa|’, fontsize=14)
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axs [1]. set_ylabel (r’$E_t$ [MPal’, fontsize=14)

axs [1]. set_xlabel (r’ (mesh size)$"{—1}$ [arb. units]’, fontsize=14)
axs [0]. legend(handles = [legl, leg2, leg3], fontsize =14)

plt . savefig (’convergence’, dpi=600)

plt .show()

halplin_tsai_Et (Vf, ksi):

E2f = 15000

Em = 4100

eta = (E2f — Em) / (E2f + ksi * Em)

E2 = Em * (1 + ksi x eta x Vf) / (1 — eta x V)

return E2

halplin_tsai-G (Vf, ksi):

G2f = 9000
Em = 4100
nu.m = 0.37

Gm = Em/(2 * (1 4+ nu-m))
eta = (G2f — Gm) / (G2f + ksi * Gm)

G2 = Gm * (1 + ksi x eta *x Vf) / (1 — eta * Vf)

return G2

def fit_halplin_tsai ():

de

—

data = pd.read_excel(’properties . xlsx )
xdata = np.array(data[’ fracs’|. tolist ()) * le—2
ydata = np.array(data[’E22’]. to_list ())
y2data = np.array(data['E33’]. to_list ())

xdata = np.concatenate((xdata, xdata))

ydata = np.concatenate((ydata, y2data))

coeff = opt.curve_fit ( halplin_tsai_Et , xdata, ydata, p0=[0.5])
Vf = np.linspace(0, 1, 100)

Vm =1 — Vf
E2f = 15000
Em = 4100

Et-model = 1/(V{/E2f + Vm/Em)

plt. scatter (xdata, ydata, marker = 'x’, color=’black’, label="Load test’)

plt.plot (Vf, halplin_tsai Et (Vf, coeff [0]), label=r'Halplin—Tsai, $\xi = $'+str(round(coeff [0][0],3) ))
plt. plot (Vf, Et_model, label=r’$E_t$ from eq. (2.6)")

plt. hlines ([E2f, Em], 0, 1, colors=’black’, linestyles ="——’)

plt .legend(loc="center left ’)

plt.ylabel(r’$E_t$ [MPa]’)

plt.xlabel(r’$V_{$ [—]")

plt. savefig (7 halplin_tsai ’, dpi=600)

plt .show()

pertubations():

cmap = cm.get_cmap('plasma’)

fig, ax = plt.subplots( figsize =(9, 6.5))
plt .sca(ax)

data = pd.read_excel(’pertubation.xlsx’)
color_scaler = lambda V: 0.9¥V/(0.4) — 0.3/0.4

Vflist = np.array ([0.3,0.5,0.7])
p-list = np.linspace(—450, 450, 100)
E12f.0 = 15000

E2f = E12£.0 + p.list

iii



150

Em = 4100
for Vfin Vf.list :

data_E2f = np.array(data[ E2F_’+str(int(V{x100))]. to list ())
data_Et = np.array(data['Et_'+str(int (V{x100))]. tolist ()

data_dE2f = (data_E2f — data_E2f[0])/data-E2f[0]
data_dEt = (data_Et — data_Et[0])/data_Et[0]

data_dE2f.sort ()
data_dEt.sort()

Vm =1— Vf
Et.0 = 1/(Vf/E12£.0 + Vm/Em)
Et = 1/(V{/E2f + Vm/Em)

dEt = (Et — Et.0)/Et.0
dE2f = p_list/E12f.0

plt . plot (dE2f, dEt, color=cmap(color_scaler(Vf)), label=Vf)
plt . plot (data_dE2f, data_-dEt, color=cmap(color_scaler(Vf)), linestyle =

plt . grid ()

plt . xlabel(r’$\frac{\Delta E_{2f} }{E_{2f}"\circ}$ [—]’, fontsize =15)
plt. ylabel(r’$\frac{\Delta E_{t} }{E_{t}"\circ}$ [—]’, fontsize=15)

plt .legend( title =r’$V_{$")

ax.xaxis.set_major_formatter(mtick.PercentFormatter(1, decimals=1))
ax.yaxis.set_major_formatter(mtick. PercentFormatter(1, decimals=1))

plt . savefig (' pertubations’, dpi=600)
plt .show()
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