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Role of the Barker–Henderson diameter in thermodynamics
Yiping Tanga)

Honeywell Hi-Spec Solutions, 343 Dundas Street, London, Ontario N6B 1V5, Canada

~Received 4 December 2001; accepted 24 January 2002!

Sensitivity of thermodynamics to the Barker–Henderson~BH! diameter for the Lennard-Jones~LJ!
potential is discussed, which covers both its approximation in calculation and improvement in
rationality. With regarding to the approximation, pressure and internal energy for the LJ fluid, LJ
chains and LJ chain mixtures are investigated. It is found that internal energy is much more sensitive
to an approximation to the diameter than pressure for pure fluids, and both pressure and internal
energy are very sensitive to the diameter for mixtures. It is also found that the approximating
expression given by Cottermanet al.~1986! covers the widest range of temperatures. The rationality
of the BH diameter itself at very high temperatures and densities is also analyzed. Through a
functional expansion of Helmholtz free energy, we conclude that a density-dependent BH diameter
is fundamentally more appropriate. The proposed diameter yields almost the same results as the
original BH diameter at normal conditions and remedies its deficiencies at extreme ones. The
density-dependent diameter provides a convenient way to study the LJ systems undergoing gas-solid
phase transition or freezing. ©2002 American Institute of Physics.@DOI: 10.1063/1.1461360#

I. INTRODUCTION

The Lennard-Jones~LJ! fluid is studied most extensively
in modern liquid theories. There are a number of reasons for
its publicity. First, the LJ potential was theoretically justified
and the potential can satisfactorily represent the true interac-
tions among simple molecules, like Ar and CH4. Second, its
potential and radial distribution function~RDF! is smooth
functions, which are more tractable than the square-well
~SW! fluid. The SW potential and RDF exhibit some discon-
tinuities, which is detrimental to some applications. Last, so-
phisticated information about this fluid can contribute lots to
more complex molecules, such as LJ chains, through thermo-
dynamics perturbation theory~TPT!.1 Therefore, this fluid
has been treated by various thermodynamic methods in re-
cent decades. Barker and Henderson~BH! presented2 the first
successful perturbation theory for this fluid by mapping the
repulsive part with hard spheres and by introducing a
second-order correction. Weeks, Chandler, and Anderson
~WCA!3 made a first-order perturbation expansion by intro-
ducing a different split between repulsive and attractive
forces. There were also a number of studies based on integral
equations,4 but these methods are computationally much
more costly.

Recently, Tang and Lu5 proposed the method of the Hil-
bert transform to solve the OZ equation. The Hilbert trans-
form yields an analytical solution for almost all the spherical
intermolecular potentials, including the LJ potential. Tang
et al.6 have subsequently obtained an analytical RDF and
developed a new second-order perturbation theory based on
the mean spherical approximation~MSA!. The MSA theory
has been further extended to LJ mixtures,7 associating LJ
chains,8,9 and very recently associating LJ chain mixtures.10

The fully predictive theory has been proven to perform very

satisfactory across these complex fluids. The achievement is
attributed to the underlying RDF, which is well defined, re-
fined, and formulated. For instance, we have recently derived
a simple analytical expression of RDF around the molecular
size for both the LJ fluid and mixtures,8,10 greatly facilitating
the study of associating LJ chains through the TPT theory.

The common ground for the above-mentioned theories is
their perturbation expansion about a reference—usually hard
spheres or making use of hard spheres. Unlike the SW fluid
with a reference clearly defined, that of the LJ fluid is some-
how arbitrary. Only requirement is that the repulsive portion
of the LJ fluid is simulated effectively by a hard-sphere sys-
tem, which is in turn characterized by a diameter. Two dif-
ferent types of diameters, BH and WCA, have been devel-
oped according to their treatment of the range and depth of
the repulsive force. Our MSA theory6 makes use of the BH
diameter

d5E
0

s

~12e2bu(r )!dr, ~1!

due to its simplicity in splitting the repulsive and attractive
parts of the LJ potential

u~r !54«S s12

r 12 2
s6

r 6 D . ~2!

To facilitate computation in the MSA theory, we have sub-
stituted the integral~1! by the empirical expression of Souza
and Ben-Amotz~SB!11 in several papers.6–8 The formulated
theory performs very well over a wide rang of conditions.
However, when carrying out extensive investigations, some
subtle details emerge unexpectedly: The resulting internal
energy is worse than pressure, even in the valid region of the
adopted empirical expression. Such an uneven performance
is well demonstrated in Figs. 1 and 2: The prediction of
internal energy deteriorates severely atT* .4.0 while thata!Electronic mail: yiping.tang@honeywell.com
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for pressure remains reliable. A first thought is that the prob-
lem is caused by the inverse temperature expansion adopted
in our MSA theory,6 since the temperature-dependence is not
always well represented in a perturbation theory. However,
such an explanation is directly contrary to the known fact
that a perturbation theory is only worsening at lower tem-
peratures, instead of higher temperatures observed in Fig. 2.
Moreover, when the theory is extended to LJ chain mixtures,
we come up with poor results for both pressure and internal
energy. These abnormal observations force us to review the
MSA theory and its formulation. Section II reports how a
diameter approximation can affect substantially thermody-
namic calculations and possibly yields misleading results. As
a comparison, we include another approximating expression
given by Cotterman, Schwarz, and Prausnitz~CSP!13 in this
investigation.

Motivated by the sensitivity of thermodynamics to the
BH diameter found above, we extend the scope of the
present MSA theory to extreme conditions—very high tem-
peratures and densities in Sec. III. The applicability of a
theory to this region is crucial to study gas–solid transition
or freezing. It has been long known that perturbation theories
are of serious problems at these conditions. For instance, the
BH theory yields so much higher values of compressibility

factor that its validity has been harshly doubted.14 The appli-
cability of the WCA theory is even worse: The resulting
packing factor is beyond the limit of hard-sphere systems
and the theory is totally invalid. Some remedies to the WCA
theory were proposed,15–17 which however brought substan-
tial more computations. The present MSA theory is believed
to inherit the inadequacies of the BH theory, because the
hard-sphere term, which is the same in the two theories,
plays the leading role in thermodynamic calculations at these
conditions. The sensitivity found in Sec. II prompts that it
may be exactly the original BH diameter, not perturbation
theory, to be blamed for those inadequacies. Section III is
devoted to explore this possibility. Subsequently, a density–
dependent BH diameter is proposed, which remedies some
problems at extreme conditions. This work shows that ther-
modynamic calculations are very sensitive to the hard-sphere
diameter and one should treat it cautiously.

II. APPROXIMATIONS TO THE BH DIAMETER
AND THEIR VALIDITY

The integral in the BH diameter~1! is rather inconve-
nient in practical applications, because it represents some
extra numerical work andu(r )→` at the limit r 50. The
diameter is used so often that it is very tempting to approxi-
mate the original BH diameter by a simple analytical expres-
sion. Such an approximation is also technically achievable
since the diameter is only temperature-dependent. Two
widely exploited expressions are cited here:

~a! Cotterman, Schwarz, and Prausnitz~CSP!13

d5
110.2977T*

110.331 63T* 11.047 71023T* 2 s, ~3!

~b! Souza and Ben-Amotz~SB!11

d521/6F11S 1

1
T* 20.055 36T* 210.000 727 8T* 4

1.1287 D 1/2G21/6

s.

~4!

The CSP and SB expressions have been used widely in a
number of perturbation theories6,7,13,18and apparently no ab-
normalities have been reported before. Other expressions, al-
though claimed to approximate the BH diameter, are actually
tied to some particular applications. A good collection of
these diameters can be found in Silvaet al. paper19 for cal-
culating self-diffusion coefficients. Most of these diameters,
however, are incapable of reproducing the BH diameter reli-
ably.

To illustrate the accuracy of the approximations, the CSP
and SB profiles together with the exact BH diameter are
depicted in Fig. 3. The figure shows that, atT* ,5.0—SB’s
valid range, the two expressions yield nearly identical re-
sults. They are extremely close to the exact BH diameter and
in fact gives the exact limitd5s at T* 50.0. At very high
temperatures (T* .5.0), the differences between the SB ap-
proximation and the exact diameter emerges. The SB ap-

FIG. 1. Pressure of the LJ fluid obtained from computer simulation~sym-
bols! ~Ref. 12! and from the MSA theory~Ref. 6! using the SB diameter
~dashed lines!.

FIG. 2. Same as in Fig. 1 except for internal energy.
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proximation underestimates the diameter substantially with
increasing temperatures, while the CSP approximation is as
good as at moderate temperatures and is almost indistin-
guishable from the exact. To further analyze the impact of
these approximations, the derivatives of the two approximat-
ing expressions with respect to temperature are plotted in
Fig. 4. The figure somehow repeats the pattern found in Fig.
3, except that the valid range of the SB approximation
shrinks toT* ,4.0. At the new valid range, the SB approxi-
mation appears to be slightly better than the CSP, while out-
side the range the SB approximation deteriorates severely.
This observation indicates that the temperature derivative is
more sensitive to an approximation and deserves to pay an
extra attention.

The findings above can be utilized to interpret a number
of abnormalities found in our MSA theory, using the SB
diameter. First, the deterioration at high temperatures is re-
sulted from the poor performance of the SB expression, not-
ing that it remains good at low and moderate temperatures.
Second, since the derivative of diameter with respect to tem-
perature is more sensitive to an approximation, the resulting
internal energy could be worse than pressure. To illustrate
this, the system in Figs. 1 and 2 is recalculated using the
exact BH diameter and the results are depicted in Figs. 5 and
6. The two figures show that the two diameters yield very
close results in pressure calculations and using the exact di-
ameter improves dramatically internal energy calculations. It

is also noted that the improvement is only appreciable at
T* .4.0, which coincides with the finding in Fig. 4. To fur-
ther justify the above arguments, pressure and internal en-
ergy of 100-mer LJ chains are calculated and plotted in Figs.
7 and 8, respectively, using our MSA1SAFT theory.8 Again,
these figures suggest that the SB and BH expressions yield
almost identical results for pressure and substantial differ-
ences are found atT* 55.0 for internal energy. Figures 6 and
8 also indicate that the differences between the two expres-
sions are more conspicuous at high densities, and they are
diminished at low densities.

The observations above seem to suggest that the prob-
lems of thermodynamic calculations rise only at high tem-
peratures and only for internal energy calculations. However,
this assertion is rather premature for LJ mixtures. Using the
recently developed mixture MSA1SAFT theory,10 we calcu-
late pressure and internal energy atT* 53.5 through both SB
and BH expressions. The results are demonstrated in Figs. 9
and 10, respectively. It is evident that the predicted pressures
from the SB approximation are substantially below the exact
and MC ones, while these results of internal energy are much
higher. It is somewhat astonished to see that the performance
of the SB approximation is very poor even at a moderate
temperature and the poor performance spreads to pressure

FIG. 3. Profiles of the BH, CSP, and SB diameters, in which the CSP
diameter is very close to the BH diameter.

FIG. 4. Derivatives of the BH, CSP, and SB diameters with respect to
temperature.

FIG. 5. Pressure of the LJ fluid obtained from computer simulation~sym-
bols! ~Ref. 12! and from the MSA theory~Ref. 6! using the SB~dashed
lines! and BH ~solid lines! diameter, respectively.

FIG. 6. Same as in Fig. 5 except for internal energy.
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calculations. However, a subtle analysis of the LJ chain mix-
tures reveals that although the reduced temperature with re-
spect to«11 is moderate (53.5), its value is extremely high
(510.5) if it is reduced with respect to«22. The latter re-
duced temperature is actually used to calculate the diameter
of component 2, which is far beyond the valid range of the
SB approximation found in Figs. 3 and 4. Such a poor diam-
eter gives rise to distorted profiles for pressure and internal
energy. When the exact diameter is employed, the SAFT
theory is in much closer agreement with the MC data. There-
fore, the diameters of LJ mixtures should be selected more
cautiously.

From the calculations above for the LJ fluid, chains and
chain mixtures, we can conclude that the SB approximation
to the BH diameter is improper in a number of cases. The
exact BH diameter has to be adopted to prevent misleading
results. In these testing cases, we find that the CSP expres-
sion reproduces the BH results very closely, although they
are not depicted in those figures for brevity. The expression
has been proven earlier to represent very well the BH diam-
eter and its derivative over a wider range of temperatures
than the other does. Therefore, at this point, the CSP expres-
sion is recommended for practical calculations.

III. DENSITY-DEPENDENT BH DIAMETER

In the BH theory, the LJ potential~2! is split into the
repulsive and attractive parts as follows:

urep~r !5H 4«S s12

r 12 2
s6

r 6 D , r ,s

0, r .s,

~5!

uatt~r !5H 0, r ,s

4«S s12

r 12 2
s6

r 6 D , r .s.
~6!

Note that the split occurs atr 5s, in contrast to atr 5A6 2s
for the WCA theory. The reference system in the BH theory,
a pseudo fluid, consists of molecules interacting through the
potential~5!, while the contribution from the attractive part
is a perturbation about the reference. Since both the free
energy and RDF of the reference system is not analytically
attainable, the reference system is mapped into hard spheres,
whose diameter remains to be determined. Note that such a
reference system is more tractable than its soft counterpart in
the WCA theory. In order to determine the diameter, Barker
and Henderson2 carried out an expansion of the Helmholtz

FIG. 7. Pressure of LJ chains with 100 mers obtained from computer simu-
lation ~symbols! ~Ref. 20! and from the MSA1SAFT ~Ref. 8!, using the SB
~dashed lines! and BH ~solid lines! diameter, respectively.

FIG. 8. Same as in Fig. 7 except for internal energy.

FIG. 9. Pressure of binary LJ chain mixtures obtained from computer simu-
lation ~symbols! ~Ref. 21! and from the MSA1SAFT ~Ref. 10!, using the
SB ~dashed lines! and BH ~solid lines! diameter, respectively. These mix-
tures consist of an identical chain length of 4, identical segment size, and a
ratio of «11 /«2251/3 for energy parameters.

FIG. 10. Same as in Fig. 9 except for internal energy.
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free energy with respect toa andg, representing the steep-
ness and depth of their modified potential function, respec-
tively. The first-order term in the expansion turned out to be

a5a022prg0~d!d2S d2E
0

s

~12e2bu(r )!dr D 1¯ , ~7!

where the subscript 0 denotes the system of hard spheres,d
the hard-sphere diameter,g(r ) the RDF. Other terms in Eq.
~7! are omitted due to their irrelevance to the present discus-
sion. A simple choice for the diameter is to force that the
first-order term vanishes, leading to the BH diameter~1!. The
diameter can be alternatively derived by a scheme through a
functional expansion with respect to the Mayer function22,23

The scheme appears to be more general than the original
derivation and it reveals the detailed omissions implied in
using the BH diameter. Making a perturbation expansion of
the Helmholtz free energy of the pseudo fluid about a hard-
sphere system with the diameterd, to first order, yields

arep5a01E S ]a

] f ~r ! D
0

~ f rep~r !2 f 0~r !!dr

5a02
1

2
rE y0~r !~e2burep(r )2e2bu0(r )!dr , ~8!

where f (r ) is the Mayer function,y(r ) the cavity function.
There are a number of relations among these functions,
namely

]a

] f ~r !
52

1

2
ry~r !, ~9!

y~r !5ebu(r )g~r !, ~10!

f ~r !5e2bu(r )21. ~11!

Equation~8! can be reduced to

arep5a022prE
0

s

y0~r !~e2burep(r )2e2bu0(r )!r 2dr.

~12!

The integral in Eq.~12! can be worked out more explicitly
by the following argument: The integrand is peaked atr
5s and, therefore, in the integration,y0(r ) can be approxi-
mated by its value at contact,g0(d). Then Eq.~12! is re-
duced to

arep5a022prg0~d!d2S d2E
0

s

~12e2bu(r )!dr D , ~13!

which is exactly the same as in Eq.~7! for deriving the BH
diameter.

The argument above suggests an important fact: The BH
diameter is so selected as to make the first-order correction to
the free energy approximately vanished. In other words, the
free energy of the hard spheres should match as closely as
possible with the reference system. One better matching is
obviously to force the first-order correction vanish exactly,
i.e.,

2prE
0

s

y0~r !~e2burep(r )2e2bu0(r )!r 2dr50 ~14!

or

E
0

s

y0~r !e2burep(r )r 2dr5E
d

s

y0~r !r 2dr, ~15!

which implicitly determines the hard-sphere diameterd. One
important outcome from~15! is that the resulted diameter
depends on both density and temperature, in contrast to the
original BH diameter, a sole function of temperature. It ap-
pears that the density dependence is derivable from~7! by
taking into account higher-order terms. However, at the time
of Barker and Henderson’s work, computation is very expen-
sive and using the BH diameter is a good compromise for
computation efficiency. For simplicity in the later discussion,
d calculated from~15! is referred to as the density-dependant
BH diameter. Interestingly, the new diameter is derived in a
similar manner to that in the WCA theory for calculating the
cavity function of the reference system. Despite of differ-
ences in the range and depth of the repulsive force, both
theories require the free energy of the pseudo fluid to be
identical, to first order, to that of hard spheres. It may be
rephrased that the two systems have the closest compressibil-
ity or the closest structure factor.3,22 In fact, there have been
attempts22,24 to adopt the BH-type diameter in the WCA
theory to facilitate calculation at normal conditions. This
work is obviously proceeding in a reverse way.

There are a number of questions surrounding the derived
density-dependent BH diameter: What is the relation be-
tween the new diameter and the original one? Are there any
substantial differences possibly from the new diameter, and
when should we use it? These questions motivate us to make
detailed calculations, seeing its impact on thermodynamics at
various conditions.

To perform the solution of Eq.~15! for d, we exploit the
PY cavity function, namely

y0~r !5H 2c0~r !, r ,d

g0~r !, r .d
~16!

and

c0~r !52
h~112h!2

2~12h!4 S r

dD 3

1
6h~11h/2!2

~12h!4

r

d

2
~112h!2

~12h!4 , ~17!

g0~r !5
11h/2

~12h!2

d

r
1

125h25h2

~12h!3

r 2d

r

1
23h16h2121/2h3

~12h!4

~r 2d!2

rd
, ~18!

wherec0(r ) is the PY direct correlation function,4 andg0(r )
the PY RDF aroundd developed recently.8 A simple iterative
calculation of ~15! would yield the new diameter, and the
original BH diameter may serve as an initial guess for the
iteration.
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In Fig. 11, the density-dependent diameters at four den-
sities20.0, 0.4, 0.8, and 1.0 are plotted against the original
BH diameter. It is found that up toT* 515.0, there are ap-
parently close agreements among those diameters. For in-
stance, at the temperatureT* 515.0 where the largest dis-
crepancies are observed, the four density-dependent and
original BH diameters are given by 0.8841, 0.8828, 0.8808,
0.8794, and 0.8808, respectively, with deviations within
0.4%. It is also seen that the BH diameter curve falls inside
those density-dependent lines, matching most closely with
that ofr50.8. Therefore, the BH diameter can be viewed as
a median of those density-dependent ones. This can be used
to explain why the original BH diameter is satisfactory in
usual conditions. However, this assumption may be invalid at
extreme conditions, since with increasing temperatures and
densities the discrepancies from the BH diameter are becom-
ing more and more evident. For example, in the neighbor-
hood of the freezing line, the deviation between the two di-
ameter is 1.2% atT* 520.0 andr51.765, and rises to 2.2%
at T* 5100.0 andr52.50. The resulting discrepancies for
compressibility are more astonishingly 31% and 100%, re-
spectively. It appears that thermodynamics is much more
sensitive to the chosen diameter at those extreme conditions.
To further illustrate this, compressibility and internal energy
determined through the two diameters and the MSA theory
are plotted against simulation data17 in Figs. 12 and 13 for
three sets of temperatures. It is seen that the original BH
diameter works well at low to high densities, but deteriorates
severely at very high densities even that the temperature is
moderately high. The proposed density-dependent BH diam-
eter is a good improvement: It yields very close results to
those from the original diameter at low to high densities and
amends the latter’s deficiencies at very high densities for
T* 55 and T* 520. It appears that an over-amending is
somehow made atT* 5100. The over-amending is probably
brought by the adopted PY cavity function, which is inaccu-
rate at the extreme condition. Another possible reason is that
the proposed diameter~15! is only the first-order correction
to the free energy, and higher-order corrections may be nec-
essary for obtaining a reliable diameter at those extreme

states, where thermodynamics is extremely sensitive to the
diameter.

From both the functional expansion of the Helmholtz
free energy in Eq.~12! and the calculations shown in Figs.
12 and 13, we firmly conclude that a density-dependent di-
ameter is fundamentally more appropriate to map the refer-
ence system by hard spheres, and to extend the MSA theory
to extreme conditions. The traditional BH diameter is only
reliable atr,1.0 and beyond the region a new diameter may
be obtained from~15!. Within the framework of the MSA
theory, the present method has a number of attractive fea-
tures: It is computationally very simple, in which only extra
work is to solve Eq.~15!. RDF of this LJ fluid can be ana-
lytically obtained, although its accuracy in the high-density
region remains to be investigated. In contrast to a WCA-type
theory with poor performance at low densities, the MSA was
previously known to perform consistently well from low
densities to high densities.25 The consistency is important for
describing vapor–liquid phase transition. This work presents
a continuous and consistent extension of the MSA theory to
very high and freezing densities. Analogously, this extension
is very beneficial for describing gas-solid/liquid-solid phase

FIG. 11. Profiles of the original BH diameter~solid line! and density-
dependent BH diameters~dashed lines! at r* 50.0, 0.4, 0.8, and 1.0 from
top to bottom, respectively.

FIG. 12. Compressibility factor of the LJ fluid obtained from computer
simulation~symbols! ~Ref. 17! and from the MSA theory~Ref. 6! at extreme
conditions. The solid lines are calculated through the original BH diameter,
and the dashed lines through the density-dependent BH diameter.

FIG. 13. Same as in Fig. 12 except for internal energy.
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transition. To date, the density functional theory is the most
efficient to study the phase transition. A reliable piece of
information about the free energy and structure of the corre-
sponding uniform fluid is the prerequisite to implement the
theory.26

IV. CONCLUSION

The effect of the BH diameter on thermodynamics of LJ
systems is examined. It is found that the internal energy cal-
culation is more sensitive to the diameter than is pressure
and the sensitivity is more manifest for mixtures. Among the
two approximations to the BH diameter examined, the CSP
expression is found to match perfectly with the original BH
diameter in the range up toT* 515.0, while the SB expres-
sion is valid only atT* ,5.0 for pressure andT* ,4.0 for
internal energy.

Through a functional expansion of Helmholtz free en-
ergy, a density-dependent BH diameter is proposed. The new
diameter is found to be very close to the BH one at normal
conditions and to yield much improved results at very high
to extreme high densities, at a small cost of extra computa-
tion. The original BH diameter is applicable atr,1.0 and its
density-dependent extension is fundamentally more appro-
priate for thermodynamic calculations.
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