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Sensitivity of thermodynamics to the Barker—Henderéid) diameter for the Lennard-Jonés))

potential is discussed, which covers both its approximation in calculation and improvement in
rationality. With regarding to the approximation, pressure and internal energy for the LJ fluid, LJ
chains and LJ chain mixtures are investigated. It is found that internal energy is much more sensitive
to an approximation to the diameter than pressure for pure fluids, and both pressure and internal
energy are very sensitive to the diameter for mixtures. It is also found that the approximating
expression given by Cotterma al. (1986 covers the widest range of temperatures. The rationality

of the BH diameter itself at very high temperatures and densities is also analyzed. Through a
functional expansion of Helmholtz free energy, we conclude that a density-dependent BH diameter
is fundamentally more appropriate. The proposed diameter yields almost the same results as the
original BH diameter at normal conditions and remedies its deficiencies at extreme ones. The
density-dependent diameter provides a convenient way to study the LJ systems undergoing gas-solid
phase transition or freezing. @002 American Institute of Physic§DOI: 10.1063/1.1461360

I. INTRODUCTION satisfactory across these complex fluids. The achievement is
o ) ) attributed to the underlying RDF, which is well defined, re-
~ The Lennard-JonedJ) fluid is studied most extensively fined, and formulated. For instance, we have recently derived
in modern liquid theories. There are a number of reasons fog simple analytical expression of RDF around the molecular
its publicity. First, the LJ potential was theoretically justified gj,e for both the LJ fluid and mixturé<? greatly facilitating
and the potential can satisfactorily represent the true interagpe study of associating LJ chains through the TPT theory.
tions among simple molecules, like Ar and CH4. Second, itS  The common ground for the above-mentioned theories is
potential and radial distribution functiofRDF) is smooth  their perturbation expansion about a reference—usually hard
functions, which are more tractable than the square-welkpheres or making use of hard spheres. Unlike the SW fluid
(SW) fluid. The SW potential and RDF exhibit some discon-ith a reference clearly defined, that of the LJ fluid is some-
tinuities, which is detrimental to some applications. Last, SO},q\y arbitrary. Only requirement is that the repulsive portion
phisticated information about this fluid can contribute lots togf the 1] fluid is simulated effectively by a hard-sphere sys-
more complex molecules, such as LJ chains, through thermam which is in turn characterized by a diameter. Two dif-
dynamics perturbation theorfTPT)." Therefore, this fluid ferent types of diameters, BH and WCA, have been devel-
has been treated by various thermodynamic methods in r'&ped according to their treatment of the range and depth of

cent decades. Barker and HenderéBH) presentetithe first  he repulsive force. Our MSA thedtynakes use of the BH
successful perturbation theory for this fluid by mapping thegigmeter

repulsive part with hard spheres and by introducing a
second-order correction. Weeks, Chandler, and Anderson
(WCA)® made a first-order perturbation expansion by intro-

ducing a different split between repulsive and attractive

forces. There were also a number of studies based on integr@¥e to its simplicity in splitting the repulsive and attractive
equationg, but these methods are computationally muchparts of the LJ potential

more costly.

— 71— aBum
d fo(l e ydr, 1)

12 6
Recently, Tang and proposed the method of the Hil- u(r):4s<T— 36_ ) 2
bert transform to solve the OZ equation. The Hilbert trans- r r

form yields an analytical solution for almost all the spherical 1y tacilitate computation in the MSA theory, we have sub-
intermolecular potentials, including the LJ potential. Tanggitted the integrall) by the empirical expression of Souza
et al® have subsequently obtained an analytical RDF and,q Ben-Amot2SB)! in several paper&:® The formulated
developed a new second-order perturbation theory based QReory performs very well over a wide rang of conditions.
the mean spherical approximatiohlSA). 'IF'he MSA theory  owever, when carrying out extensive investigations, some
has b%%” further extended to LJ mixtufeassociating Jrléj subtle details emerge unexpectedly: The resulting internal
chains,” and very recently associating LJ chain mixtufes. gnergy is worse than pressure, even in the valid region of the
The fully predictive theory has been proven to perform very,qonted empirical expression. Such an uneven performance
is well demonstrated in Figs. 1 and 2: The prediction of
¥Electronic mail: yiping.tang@honeywell.com internal energy deteriorates severelyTat>4.0 while that
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1000 60 factor that its validity has been harshly doubté@he appli-
A cability of the WCA theory is even worse: The resulting
£ packing factor is beyond the limit of hard-sphere systems
3000 | ‘ and the theory is totally invalid. Some remedies to the WCA

o M theory were proposed; 1’ which however brought substan-

tial more computations. The present MSA theory is believed
to inherit the inadequacies of the BH theory, because the
hard-sphere term, which is the same in the two theories,
plays the leading role in thermodynamic calculations at these
conditions. The sensitivity found in Sec. Il prompts that it
may be exactly the original BH diameter, not perturbation
0.00 P , ‘ , theory, to be blamed for those inadequacies. Section Il is
0.00 020 040 . 060 080 1.00 devoted to explore this possibility. Subsequently, a density—
dependent BH diameter is proposed, which remedies some
FIG. 1. Pressure of the LJ fluid obtained from Computer simula@wn- prob'ems at extreme conditions. This work shows that ther-
E’g;ss)hgeﬂ'nig and from the MSA theoryRef. § using the SB diameter ., 4y namic calculations are very sensitive to the hard-sphere
diameter and one should treat it cautiously.

& 20.00

10.00 -
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‘_Xegg1332218555533333552:'

for pressure remains reliable. A first thought is that the prob+t|. APPROXIMATIONS TO THE BH DIAMETER
lem is caused by the inverse temperature expansion adopt@édD THEIR VALIDITY

in our MSA theory since the temperature-dependence is not . . . . .
always well represented in a perturbation theory. However, . '[h_e mtegtr_al Im thel_ B't_.l dlambete(ﬂ) IS _rtather mcor;ve-
such an explanation is directly contrary to the known factr"etn N prac |c|a aplf |cadj|ons, wecz;uiﬁe : riprfzen_ri some
that a perturbation theory is only worsening at lower tem-EXra numerical work an (r)—ce at the limitr=0. The

peratures, instead of higher temperatures observed in Fig. g!ameter Is used so often that i is very tempting to approxi-

Moreover, when the theory is extended to LJ chain mixtures',ﬁr_]ate the original BH diameter by a simple analytical expres-

we come up with poor results for both pressure and internat " Such an approximation is also technically achievable

energy. These abnormal observations force us to review thahce the d.lameter IS .only temperature-fjependent. Two
MSA theory and its formulation. Section Il reports how aW'dEIy exploited expressions are cited here:

diameter approximation can affect substantially thermody{a) Cotterman, Schwarz, and Prausni€SP*®

namic calculations and possibly yields misleading results. As 14+0.2977*

a comparison, we include another approximating expression  d= m %20, (©)
given by Cotterman, Schwarz, and Praust@sP*? in this 1+0.331637 +1.047710°T
investigation.

Motivated by the sensitivity of thermodynamics to the (b)  Souza and Ben-Amot&SB)™*
BH diameter found above, we extend the scope of the d=21/8
present MSA theory to extreme conditions—very high tem-
peratures and densities in Sec. Ill. The applicability of a

1+(1

. S . . - *_ 0. *240. * 4\ 1/2]-1/6
theory to this region is crucial to study gas—solid transition + T ~0.0553@""+0.000 727 & ) o
or freezing. It has been long known that perturbation theories 1.1287
are of serious problems at these conditions. For instance, the (4)

BH theory yields so much higher values of compressibility

The CSP and SB expressions have been used widely in a
number of perturbation theorfe§'38and apparently no ab-
normalities have been reported before. Other expressions, al-

though claimed to approximate the BH diameter, are actually
3?:;_-'3.‘;;3.._4_. tied to some particular applications. A good collection of
o2 RN ™50 these diameters can be found in Sikal. papet® for cal-
S & N o o culating self-diffusion coefficients. Most of these diameters,
040 | : R L mso  however, are incapable of reproducing the BH diameter reli-
. ""n AA~ A ably.
060 | a7 To illustrate the accuracy of the approximations, the CSP
= and SB profiles together with the exact BH diameter are
080 e - & T depicted in Fig. 3. The figure shows that, T#t<5.0—SB’s
e valid range, the two expressions yield nearly identical re-
o ‘ ‘ , ' sults. They are extremely close to the exact BH diameter and
0.00 0.20 040 . 060 0.80 1.00 in fact gives the exact limitd= o at T* =0.0. At very high

temperaturesT* >5.0), the differences between the SB ap-
FIG. 2. Same as in Fig. 1 except for internal energy. proximation and the exact diameter emerges. The SB ap-
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FIG. 3. Profiles of the BH, CSP, and SB diameters, in which the CSP P

diameter is very close to the BH diameter.

FIG. 5. Pressure of the LJ fluid obtained from computer simulatym-
bols) (Ref. 12 and from the MSA theoryRef. 6 using the SB(dashed

proximation underestimates the diameter substantially witf§"®s and BH(solid lineg diameter, respectively.

increasing temperatures, while the CSP approximation is as

good as at moderate temperatures and is almost indistin-

guishable from the exact. To further analyze the impact ofs also noted that the improvement is only appreciable at
these approximations, the derivatives of the two approximatT* >4.0, which coincides with the finding in Fig. 4. To fur-
ing expressions with respect to temperature are plotted ither justify the above arguments, pressure and internal en-
Fig. 4. The figure somehow repeats the pattern found in Figergy of 100-mer LJ chains are calculated and plotted in Figs.
3, except that the valid range of the SB approximation7 and 8, respectively, using our MS/SAFT theon Again,
shrinks toT* <4.0. At the new valid range, the SB approxi- these figures suggest that the SB and BH expressions yield
mation appears to be slightly better than the CSP, while outalmost identical results for pressure and substantial differ-
side the range the SB approximation deteriorates severelgnces are found at* =5.0 for internal energy. Figures 6 and
This observation indicates that the temperature derivative i8 also indicate that the differences between the two expres-
more sensitive to an approximation and deserves to pay agsions are more conspicuous at high densities, and they are
extra attention. diminished at low densities.

The findings above can be utilized to interpret a number  The observations above seem to suggest that the prob-
of abnormalities found in our MSA theory, using the SB lems of thermodynamic calculations rise only at high tem-
diameter. First, the deterioration at high temperatures is reperatures and only for internal energy calculations. However,
sulted from the poor performance of the SB expression, notthis assertion is rather premature for LJ mixtures. Using the
ing that it remains good at low and moderate temperaturesecently developed mixture MSASAFT theory'° we calcu-
Second, since the derivative of diameter with respect to temlate pressure and internal energyrat= 3.5 through both SB
perature is more sensitive to an approximation, the resultingnd BH expressions. The results are demonstrated in Figs. 9
internal energy could be worse than pressure. To illustratand 10, respectively. It is evident that the predicted pressures
this, the system in Figs. 1 and 2 is recalculated using thérom the SB approximation are substantially below the exact
exact BH diameter and the results are depicted in Figs. 5 anaind MC ones, while these results of internal energy are much
6. The two figures show that the two diameters yield veryhigher. It is somewhat astonished to see that the performance
close results in pressure calculations and using the exact dif the SB approximation is very poor even at a moderate
ameter improves dramatically internal energy calculations. Itemperature and the poor performance spreads to pressure

0.0000
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-0.0010
Dd/DT’ T"=5.0
0.0015

0.0020

T'=4.0
-0.0025

-0.0030
000 200 6.00 T= 2.00 12.00 15.00 -1.00

0.00 0.20 0.40 o 0.60 0.80 1.00

FIG. 4. Derivatives of the BH, CSP, and SB diameters with respect to
temperature. FIG. 6. Same as in Fig. 5 except for internal energy.



J. Chem. Phys., Vol. 116, No. 15, 15 April 2002 Barker—Henderson diameter 6697

T*=5.0

T*=4.0

L s =30

4.00

0.00
0.00 0.20 0.40

FIG. 9. Pressure of binary LJ chain mixtures obtained from computer simu-
FIG. 7. Pressure of LJ chains with 100 mers obtained from computer simulation (symbolg (Ref. 21 and from the MSA- SAFT (Ref. 10, using the
lation (symbol$ (Ref. 20 and from the MSA- SAFT (Ref. 8, using the SB SB (dashed lingsand BH (solid lineg diameter, respectively. These mix-
(dashed linesand BH (solid lineg diameter, respectively. tures consist of an identical chain length of 4, identical segment size, and a
ratio of £44/e,,=1/3 for energy parameters.

calculations. However, a subtle analysis of the LJ chain mixq;; pENSITY-DEPENDENT BH DIAMETER
tures reveals that although the reduced temperature with re-

spect toe,; is moderate € 3.5), its value is extremely high In the BH theory, the LJ potentiaR) is split into the
(=10.5) if it is reduced with respect te,,. The latter re- repulsive and attractive parts as follows:

duced temperature is actually used to calculate the diameter o2 o8

of component 2, which is far beyond the valid range of the g<?— —6), r<o

SB approximation found in Figs. 3 and 4. Such a poor diam-  Urefr)= r r ®)
eter gives rise to distorted profiles for pressure and internal 0, r>o,

energy. When the exact diameter is employed, the SAFT

theory is in much closer agreement with the MC data. There- 0, r<o

fore, the diameters of LJ mixtures should be selected more y_(r)= a2 b (6)
cautiously. e\ T2 8 ) r=o.

From the calculations above for the LJ fluid, chains and
chain mixtures, we can conclude that the SB approximatiofNote that the split occurs at=o, in contrast to at =%2c
to the BH diameter is improper in a number of cases. Thdor the WCA theory. The reference system in the BH theory,
exact BH diameter has to be adopted to prevent misleading pseudo fluid, consists of molecules interacting through the
results. In these testing cases, we find that the CSP expregotential(5), while the contribution from the attractive part
sion reproduces the BH results very closely, although theys a perturbation about the reference. Since both the free
are not depicted in those figures for brevity. The expressiognergy and RDF of the reference system is not analytically
has been proven earlier to represent very well the BH diamattainable, the reference system is mapped into hard spheres,
eter and its derivative over a wider range of temperaturegvhose diameter remains to be determined. Note that such a
than the other does. Therefore, at this point, the CSP expregeference system is more tractable than its soft counterpart in
sion is recommended for practical calculations. the WCA theory. In order to determine the diameter, Barker

and Hendersdncarried out an expansion of the Helmholtz

%=0.25

x=0.50

x;=0.75

-1.50
0.00

0.80

FIG. 8. Same as in Fig. 7 except for internal energy. FIG. 10. Same as in Fig. 9 except for internal energy.
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free energy with respect te and v, representing the steep- or

ness and depth of their modified potential function, respec-

tively. The first-order term in the expansion turned out to be o o

f yo(r)e*/’“rerﬂr)rzdrzf yo(r)r2dr, (15)
0 d

a=a0—27rpgo(d)d2(d—fa(1—eB”(’))dr + (D
0

which implicitly determines the hard-sphere diameteOne
where the subscript 0 denotes the system of hard spheres,important outcome fron{15) is that the resulted diameter
the hard-sphere diametey(r) the RDF. Other terms in Eq. depends on both density and temperature, in contrast to the
(7) are omitted due to their irrelevance to the present discusoriginal BH diameter, a sole function of temperature. It ap-
sion. A simple choice for the diameter is to force that thepears that the density dependence is derivable ffnby
first-order term vanishes, leading to the BH diamélgrThe  taking into account higher-order terms. However, at the time
diameter can be alternatively derived by a scheme through &f Barker and Henderson’s work, computation is very expen-
functional expansion with respect to the Mayer functidii  sjve and using the BH diameter is a good compromise for
The scheme appears to be more general than the originabmputation efficiency. For simplicity in the later discussion,
derivation and it reveals the detailed omissions implied ind calculated fron{15) is referred to as the density-dependant
using the BH diameter. Making a perturbation expansion oBH diameter. Interestingly, the new diameter is derived in a
the Helmholtz free energy of the pseudo fluid about a hardsijmilar manner to that in the WCA theory for calculating the

sphere system with the diamety to first order, yields cavity function of the reference system. Despite of differ-
sa ences in the range and depth of the repulsive force, both

Qrep™ a0+j (&f_(r) (fregr) —fo(r))dr theories require the free energy of the pseudo fluid to be

0 identical, to first order, to that of hard spheres. It may be

1 rephrased that the two systems have the closest compressibil-
=ag— —pf Yo(r) (e~ Pured") — e~ Auo(r)) gy (8) ity or the closest structure factdf? In fact, there have been
2 attempté??* to adopt the BH-type diameter in the WCA
wheref(r) is the Mayer functiony(r) the cavity function. theory to facilitate calculation at normal conditions. This
There are a number of relations among these functiongvork is obviously proceeding in a reverse way.
namely There are a number of questions surrounding the derived
density-dependent BH diameter: What is the relation be-

a_a: _ Epy(r) (9) tween the new diameter and the original one? Are there any
af(r) 2 ' substantial differences possibly from the new diameter, and
y(r)=efulg(r) (10 when should we use it? These questions motivate us to make

' detailed calculations, seeing its impact on thermodynamics at
f(ry=e PuN—1, (11)  various conditions.

To perform the solution of Eq15) for d, we exploit the

Equation(8) can be reduced to PY cavity function, namely

(o
Qrep= a0~ 27p fo Yo(r) (e PuredD) — e~ Auo()yr2qy,

—Co(r), r<d
(12) yO(r)_ go(r), r>d (16)
The integral in Eq(12) can be worked out more explicitly
by the following argument: The integrand is peakedrat and
= o and, therefore, in the integratiopy(r) can be approxi- ) . )
mated by its value at contaagy(d). Then Eq.(12) is re- co(r) = — n(1+29)°(r|° 6n(1+72)"r
duced to 0 2(1—-»)* \d (1-n* d
4 _ 1+27)?
arep:aO_ZWPgo(d)dz(d_f (1-e Bu(r))dr): (13 —(_—77)4, (17)
0 (1-m)
which is exactly the same as in E{) for deriving the BH
diameter. _1+p/2d 1-57-59°r—d
The argument above suggests an important fact: The BH Gol(1)= (1-n)r (1-7)® r
diameter is so selected as to make the first-order correction to 36124 21/20% (1 —d)2
the free energy approximately vanished. In other words, the RN - (r—d) (18)

free energy of the hard spheres should match as closely as (1-m)* rd ’
possible with the reference system. One better matching is
obviously to force the first-order correction vanish exactly,whereco(r) is the PY direct correlation functichandgo(r)
ie. the PY RDF aroundl developed recentl‘i/A simple iterative
calculation of (15) would yield the new diameter, and the
prfoyo(r)(e,ﬁurep(r)_efﬁuo(r))rzdrzo (14) '(:rigi?al BH diameter may serve as an initial guess for the
0 iteration.
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FIG. 11. Profiles of the original BH diametésolid line) and density-  FIG. 12. Compressibility factor of the LJ fluid obtained from computer

dependent BH diametefslashed lingsat p* =0.0, 0.4, 0.8, and 1.0 from  simulation(symbolg (Ref. 17 and from the MSA theoryRef. § at extreme
top to bottom, respectively. conditions. The solid lines are calculated through the original BH diameter,
and the dashed lines through the density-dependent BH diameter.

In Fig. 11, the density-dependent diameters at four denstates, where thermodynamics is extremely sensitive to the
sities—0.0, 0.4, 0.8, and 1.0 are plotted against the originayjameter.
BH diameter. It is found that up t8* =15.0, there are ap- From both the functional expansion of the Helmholtz
parently close agreements among those diameters. F_or ifree energy in Eq(12) and the calculations shown in Figs.
stance, at the temperatuli¢ =15.0 where the largest dis- 12 and 13, we firmly conclude that a density-dependent di-
crepancies are observed, the four density-dependent angheter is fundamentally more appropriate to map the refer-
original BH diameters are given by 0.8841, 0.8828, 0.8808gnce system by hard spheres, and to extend the MSA theory
0.8794, and 0.8808, respectively, with deviations withinyy extreme conditions. The traditional BH diameter is only
0.4%. It is also seen that the BH diameter curve falls insidggjigple atp<1.0 and beyond the region a new diameter may
those density-dependent lines, matching most closely withe optained from(15). Within the framework of the MSA
that of p=0.8. Therefore, the BH diameter can be viewed asheory, the present method has a number of attractive fea-
a median of those density-dependent ones. This can be usgges: |t is computationally very simple, in which only extra
to explain _V\_/hy the original BH diamete_r is satisfa(_:tory_ iN work is to solve Eq(15). RDF of this LJ fluid can be ana-
usual conditions. However, this assumption may be invalid alytically obtained, although its accuracy in the high-density
extreme conditions, since with increasing temperatures a”ﬂagion remains to be investigated. In contrast to a WCA-type
Qensities the discrepanpies from the BH diameter are_becon@heory with poor performance at low densities, the MSA was
ing more and more evident. For example, in the neighborpreyiously known to perform consistently well from low
hood of the freezing line, the deviation between the two di-gensities to high densitiés The consistency is important for
ameter is 1.2% af* =20.0 andp=1.765, and rises t0 2.2% {escribing vapor-liquid phase transition. This work presents
at T*=100.0 andp=2.50. The resulting discrepancies for 4 continuous and consistent extension of the MSA theory to
compressibility are more astonishingly 31% and 100%, reyery high and freezing densities. Analogously, this extension

specf[iyely. It appears th_at thermodynamics is much MOrgs very beneficial for describing gas-solid/liquid-solid phase
sensitive to the chosen diameter at those extreme conditions.

To further illustrate this, compressibility and internal energy
determined through the two diameters and the MSA theory
are plotted against simulation datan Figs. 12 and 13 for
three sets of temperatures. It is seen that the original BF
diameter works well at low to high densities, but deteriorates 4001
severely at very high densities even that the temperature i
moderately high. The proposed density-dependent BH diam 300
eter is a good improvement: It yields very close results to
those from the original diameter at low to high densities and
amends the latter’s deficiencies at very high densities fol
T*=5 and T*=20. It appears that an over-amending is
somehow made &t* =100. The over-amending is probably 000 |
brought by the adopted PY cavity function, which is inaccu-

rate at the extreme condition. Another possible reason is the  -1.00 . 1 . .

the proposed diametéi5) is only the first-order correction o.00 080 10 180 200 250
to the free energy, and higher-order corrections may be nec-

essary for obtaining a reliable diameter at those extreme FIG. 13. Same as in Fig. 12 except for internal energy.

5.00 4

T*=20

2.00 4
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