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ABSTRACT 

Elliott Jr., J.R. and Daubert, T.E., 1986. The temperature dependence of the hard sphere 
diameter. Fluid Phase Equilibria, 31:153-160. 

The temperature dependence of the equivalent hard sphere diameter is analyzed using 
statistical mechanics. The analysis shows that algebraic equations for the hard sphere 
diameter which were developed by previous workers are not consistent with the statistical 
mechanics at high temperature. An algebraic equation which is consistent with the statistical 
mechanics is developed. 

INTRODUCTION 

Several researchers in recent years have suggested making the hard sphere 
diameter temperature dependent. Nakamura et al. (1976), Fermeglia (cf. 
Skjold-Jorgensen, 1983) and DeSantis et al. (1976) suggested several differ- 
ent functional forms for the temperature dependence. Naturally, introducing 
more parameters into the equation of state enabled a better fit of the 
macroscopic properties but there was a lack of resolution to the question of 
proper functional form. It seems unlikely that the question can be resolved 
without appealing to microscopic arguments and statistical mechanics. The 
hard sphere diameter is one of the microscopic properties which char- 
acterizes the molecules. Many different models of the microscopic properties 
might describe the macroscopic properties equally well. Statistical mechani- 
cal theory permits one to discern which models are physically meaningful. 

* Author to whom correspondence should be addressed. 
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THE EQUIVALENT HARD SPHERE DIAMETER FROM PERTURBATION THEORY 

Barker and Henderson (1967) presented in their perturbation theory one 
way in which statistical mechanics could explain the temperature depen- 
dence of the hard sphere diameter. In a perturbation theory, the equation of 
state is divided into a repulsive part and an attractive part. The repulsive 
part is given by the equation of state of a suitably chosen reference fluid and 
this part is responsible for the importance of the hard sphere diameter. The 
approach of Barker and Henderson can be briefly described as follows. Two 
dummy parameters, (Y and y, are introduced into the potential function such 
that, when these parameters are equal to zero, a hard sphere potential is 
obtained and when the parameters are equal to one, the original potential is 
obtained. 

v(r)=u[dh”+(r-dhS)/a] dhs+(r-dhs)/a<p 
= 0 p-=dhS+ (r-dh”)/CyedhS 

+(p-dhs)/a! 
(1) 

= Y44 P<r 

The parameter d hs is the diameter of the hard-sphere reference fluid, so far 
unspecified; 1-1 is a parameter such that the potential is steep for Y < p and 
small for Y > p. Barker and Henderson (1967) chose p = (T, because the 
potential they used for their reference fluid was best related to this choice of 
p.. Nezbeda and Aim (1984) have discussed another choice of reference fluid 
associated with the choice of p = r,,, where rm is the distance to the 
minimum in the potential. They have referred to this choice as the hybrid 
Barker-Henderson (hBH) approach. However, they did not obtain an 
algebraic equation for the hard sphere temperature dependence based on the 
hBH approach, The hBH approach is considered in the discussion below. 

At this point, the Helmholtz free energy may be expanded in a double 
Taylor series in cr and y about the point cr = y = 0 (Barker and Henderson, 
1967). If d is chosen by the condition 

dhs = lP[l - exp{ - u( Z)/kT}dZ (2) 

then terms of order (II and ary vanish identically. Thus, if terms of order a2, 
cr2Y, &Y2, a3 and all higher order terms are neglected and (II and y are put 
equal to unity to recover, the original potential, then the Helmholtz energy of 
the reference fluid can be equated to the Helmholtz energy of an equivalent 
hard sphere fluid 

A rep = A”rf = Ah”( ,h:s) 
(3) 
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where Arep is the repulsive part of the equation of state, Aref is the 
Helmholtz energy of the reference fluid and Ah” is the Helmholtz energy of 
the hard sphere equation of state with hard sphere diameter dh”. If the 
Carnahan-Starling (1969) equation is chosen to give the equation of state of 
hard spheres, then 

(Ahs - Aid)/NkT= (4~ - 3v2)/(1 -Y)2 (4 
(5) where y = 7Tp (d hS)3/6 

and the equation of state is given by 

(6) 

Thus, in a statistical mechanical consideration of perturbation theory, one 
would expect a reasonably accurate expression for the hard sphere diameter 
to be given by eqn. (2). Unfortunately, eqn. (2) requires numerical integra- 
tion to be evaluated and is not very convenient for applications. A reasona- 
ble compromise between the algebraic equations of previous researchers and 
the statistical mechanical results of the hBH approach might be reached if 
an algebraic equation could be suggested which is consistent with eqn. (2). 

An algebraic equation which is consistent with eqn. (2) can be developed 
by computing values numerically and regressing constants in an equation 
which is capable of representing the temperature range from zero to infinity. 
This broad temperature range is not typically of practical interest but the 
upper and lower limits provide convenient boundary conditions in the 
analysis of eqn. (2). Over the temperature range of practical interest (re- 
duced temperature of 0.5-3.0) the shape given by eqn. (2) is very simple and 
it is difficult to distinguish between most of the functional forms. 

It was determined that an exponential functional form was not capable of 
matching eqn. (2) over the entire temperature range. Instead, eqn. (7) is 
suggested 

F = (a(T*)2 + bT* + 1)-1’c 
m 

(7) 
where T * = k T/E 

To consider the temperature dependence of the hard sphere diameter, one 
must adopt a model of the intermolecular potential function. The Mie (n-6) 
potential was used for this investigation. This potential is given for general 
values of n by eqn. (8). The Lennard-Jones (12-6) potential is an example 
of a Mie potential with n = 12. 

u(r)=+~“/6~) l’(+/( n - 6)[ (0/r), - (~/r)~] 03) 
A simple form of eqn. (7) provided an accurate representation of numeri- 
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Fig. 1. Comparison of different correlations of the hard sphere diameter. 

tally calculated values of eqn. (2) for values of n equal to 12, 20, 30, 40, 50, 
60 and 70. This form is given by eqn. (9) 

dh” 
- = (n(0.0093n - 0.0592)@*)‘+ (n - l)T* + 1)-“(2n+1) 
rln 

Argon was selected as the substance for making comparisons between eqn. 
(2), eqn. (9) and the correlations of previous workers. The complete correla- 
tion for argon could be easily obtained for each previous correlation from 
the data in the literature references. The previous correlations considered 
were those of Fermeglia (cf. Skjold-Jorgensen, 19&3), Nakamura et al. (1976) 
and DeSantis et al. (1976). The correlations for the temperature dependence 
of the hard sphere diameter of argon are given in eqns. (lo)-(12) below. For 
eqns. (2) and (9), a value of n = 12 was used with rm = 2’j6, u = 0.3822 nm 
and c/k = 117.2 K. These are values which are commonly used for the 
potential of argon. All the correlations are compared in Fig. 1 and Table 1. 

Fermeglia (cyT Skjold-Jorgensen, 1983) 

dhs = 1_65655d,(l - 0.12 exp( -2/(3T,)); d, = (0.08943RT,/Pc)“3 (10) 



157 

TABLE 1 

Comparison of correlations for the equivalent hard sphere diameter (for argon) 

r, eqn. (2) eqn. (9) eqn. (10) eqn. (11) 

77.6879 2.25846 2.25933 2.66606 0.39312 
38.8440 2.37044 2.37497 2.66914 1.05748 
15.5376 2.51629 2.52222 2.67821 1.91477 

7.7688 2.62234 2.62525 2.69282 2.33381 
3.8844 2.72227 2.72002 2.72023 2.57656 
2.5896 2.77706 2.77211 2.74538 2.66296 
1.9422 2.81403 2.80783 2.76846 2.70724 
1.5538 2.84154 2.83491 2.78965 2.73416 
1.2948 2.86321 2.85666 2.80909 2.75226 
1.1098 2.88096 2.87479 2.82694 2.76526 
0.9711 2.89591 2.89031 2.84331 2.77505 
0.8632 2.90875 2.90385 2.85834 2.78269 
0.7769 2.91996 2.91584 2.87214 2.78881 
0.5179 2.96068 2.96083 2.92585 2.80727 
0.3884 2.98721 2.99150 2.96082 2.81654 

eqn. (12) 

- 

_ 

1.70979 
2.03812 
2.22015 
2.33928 
2.42418 
2.48805 
2.66230 
2.74147 

Nakamura et al. (1976) 

dh” = (3b/2+‘; b = lO**( - 1.3169 - 0_03319T,) (11) 

DeSantis et al. (1976) 

dhs = (3b/2~)l’~; b = 0.026(1.927 - T,)/(1.927 - 1) 02) 

The correlation of DeSantis et al. (1976) illustrates the fallacy of propos- 
ing a correlation for an equation of state constant without a careful analysis 
of proper functional form. Their equation cannot be applied above a 
reduced temperature of 1.972. Furthermore, the curvature of their equation 
is incorrect in the range of temperatures to which their equation should 

apply* 
The equations of Nakamura et al, and Fermeglia are more reasonable 

than the equation of DeSantis et al. but still have certain shortcomings. The 
equation of Nakamura et al. is too nearly constant at low temperature and 
varies too rapidly at high temperatures. The equation of Fermeglia has 
roughly the right curvature at low temperature but it indicates a finite value 
in the high temperature limit_ Equation (2) in conjunction with the (n-6) 
Mie potential indicates that the hard sphere diameter should approach zero 
it high temperature thus the Fermeglia correlation is in disagreement. If one 



158 

would like to assume that molecules possess some hard inner core, then that 
assumption should be expressed in the choice of potential model. Equation 
(2) could then be applied to the alternative potential model. For example, 
consider the Kihara potential model which has a hard core. Equation (9) 
could easily be applied to the (n-6) outer shell of the Kihara potential and 
the hard core thickness simply added. The Nakamura et al. correlation could 
be similarly adapted but it would suffer the same problems as before. The 
Fermeglia Correlation, on the other hand, indicates a much higher ratio of 
hard core thickness to soft shell thickness than is typical of applications of 
the Kihara potential. Thus the approach developed here can be generalized 
to other potential models and still present advantages over previous correla- 
tions. 

TEST OF THE NEW CORRELATION AT HIGH TEMPERATURE 

At high temperatures, it is possible to obtain the temperature dependence 
of the hard sphere diameter by a different approach from that of Barker and 
Henderson (1967). The kinetic energy of the molecules varies with tempera- 
ture. As the temperature rises, the kinetic energy of the molecules rises and 
they are enabled to penetrate each other’s soft repulsiveness more and more. 
Although it requires considerable energy to penetrate the Mie potential, the 
energy is not infinite as in, say, a square-well potential. Thus, the Mie 
potential is relatively soft. This softness is responsible for the temperature 
dependence of the equivalent hard sphere diameter in the first place. 
Another effect of high temperature is that the attractive part of the potential 
contributes little to the thermodynamics of the fluid. Thus it is possible to 
relate the Lennard-Jones (12-6) fluid (for instance) to the hard sphere fluid. 
An approximate relationship can be established through the virial coeffi- 
cients. 

For the Lennard-Jones fluid 

B2 = (2r03/3)B2* 

B3 = (2xa3/3)*B3* 

For the hard sphere fluid 

B2 = 4[ 71.( ~I~“)~/61 

B3 = lO[ 7@hs)3/6]2 

Substitution yields 

03) 

04) 

05) 

06) 

from B2; dhs/a = (B2*)1’3 (17) 
from B3; dhs/a = (i.6~3*)‘/~ (18) 
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TABLE 2 

Equivalent hard sphere diameters for the Lennard-Jones potential 

TX B2* B3* P/a 

20 0.5270 0.2464 
50 0.5090 0.1853 

100 0.4644 0.1425 
500 0.3420 0.07106 

from B2 

0.8077 
0.7984 
0.7744 
0.6993 

from B3 

0.8563 
0.8166 
0.7817 
0.6960 

from eqn. (9) 

0.8752 
0.8244 
0.7855 
0.6958 

Where B2* and B3* are the reduced second and third virial coefficients 
calculated using the Lennard-Jones potential. Comparison of eqn. (9) with 
the results from the virial coefficients is given in Table 2. As the temperature 
increases, the agreement between the various estimates improves. Thus, eqn. 
(9) appears to be accurate at high temperatures. Note that the agreement is 
not very accurate at temperatures below T* = 100. This means that ex- 
tremely high temperatures are necessary before attractive effects are actually 
negligible. 

CONCLUSIONS 

The temperature dependence of the equivalent hard sphere diameter is 
best analyzed by using statistical mechanics. The hybrid Barker-Henderson 
(hBH) approach represents one such analysis and it was considered here 
along with the virial coefficients at high temperature. A comparison showed 
that algebraic equations for the hard sphere diameter which were developed 
by previous workers are not consistent with these analyses. An algebraic 
equation which is consistent with the statistical mechanics was developed for 
practical calculations. Most of the correlations agree fairly well over the 
temperature range where most calculations are performed. On the other 
hand, a constant value of the hard sphere diameter could perform nearly as 
well over this temperature range. It is recommended that the equivalent hard 
sphere diameter be represented by eqn. (2) or eqn. (9) for most general 
applications. 

LIST OF SYMBOLS 

A Helmholtz free energy 
B2 second virial coefficient 
B3 third virial coefficient 
dhs equivalent hard sphere diameter 



k Boltzmann’s constant 
n exponent of the repulsive part of the potential function 
NA Avogadro’s number 
rKn intermolecular distance at the minimum in the potential 
T absolute tempe,rature 
T* reduced temperature kT/c 

T, reduced temperature T/T, 
u(r) the potential function 

Greek symbols 

Y parameter in the modified potential function of Barker and Henderson 
E energetic parameter in the potential fraction 
P, parameter in the modified potential function of Barker and Henderson 
B intermolecular distance where the potential is equal to zero 
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