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Abstract

The second virial coefficient for the (12—6) Lennard—Jones potential and its first and second
temperature derivatives are explicitely derived. All coefficients can be explicitly written as a linear
combination of four modified Bessel functions which can be evaluated for every temperature with
high degree of numerical accuracy. Detailed comparisons with the classical series expansion for
the coefficient and its temperature derivatives are made. The use of these analytical, simple and
closed formulae can be very valuable when using experimental p—V—T data to fit a Lennard—
Jones potential. (©) 2001 Elsevier Science B.V. All rights reserved.

PACS: 5.20.—y; 5.70.Ce; 5.20.Jj

1. Introduction

Many books on statistical mechanics (see, for instance, Refs. [1-6]) have a chap-
ter devoted to imperfect gases, in which the virial expansion of the equation of state
in terms of density is derived. Explicit evaluation of the second virial coefficient is
given only in simple cases such as hard spheres and square well potentials [1-5].
However, closed forms for the second virial coefficient using different potentials can
be found in the literature. Buckingham potential formula is modified in terms of Whit-
taker functions [7], Lennard—Jones (2n—n) and Woolley potential in terms of parabolic
cylinder functions [8,9], Sutherland and particular Mie potentials in terms of general-
ized hypergeometric functions [10,11]. Also, extensive numerical calculation for the

* Correspondence address. Departamento de Fisica, Universidad Técnica F. Santa Maria, Casilla 110-V,
Valparaiso, Chile. Fax: +56-32-797656.
E-mail address: pvargas@fis.utfsm.cl (P. Vargas).

0378-4371/01/$ - see front matter (©) 2001 Elsevier Science B.V. All rights reserved.
PII: S0378-4371(00)00362-9



P. Vargas et al. | Physica A 290 (2001) 92-100 93

B*(T%)

']0 T I\\Hlll T IIIH\! T \IIIIH‘ T T TTITIT

0.1 1 10 100 1000
i3

Fig. 1. Second virial coefficient as a function of reduced temperature, as given by Eq. (3) (full-line).
Tabulated data from Ref. [2] are also plotted (open circles). The inset shows the percent error between the
values obtained using the analytical formula and the tabulated ones.

Lennard—Jones (12—6) potential [6,12,13] as well as its first derivatives have been
done in the past [6].

Although parabolic cylinder, hypergeometric and Whittaker functions are easily pro-
grammable, their numerical evaluation can be more involved than working interpolating
values from tabulated functions. However, a simple analytical closed form is very use-
ful, especially at low temperatures where the series expansion of the virial coefficient
converges very slowly. Also simple formula is desirable, for instance, to study the
inversion temperatures for real gases in expansion [14].

In this letter we derive an alternative, simpler, analytical form for the second virial
coefficient for the Lennard—Jones (12—6) potential, and, for the first time, derive ex-
plicit closed forms for its first and second temperature derivative from which the
zero-pressure Joule-Thompson coefficient is evaluated.

2. Method
If u, the intermolecular potential between two particles, only depends on the relative
separation, r, between them the second virial coefficient is commonly given by the

following expression [1-6] (Fig. 1):

B(T)=—2n / [e AT — 112 dr (1)
0
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Fig. 2. First temperature derivative of the second virial coefficient as a function of reduced temperature, as
given by Eq. (4) (full-line). Tabulated data from Ref. [2] are also plotted (open circles). The inset shows
the percent error between the values obtained using the analytical formula and the tabulated ones.

Provided that u(r) approaches zero faster than 1/r3, necessary condition for existence
of the virial, integration by parts of Eq. (1) gives an equivalent expression

2 [°° du(r) _
B(T)= ——— u(r)/kT 3 . )
D==57 ] o ¢ rdr 2)

Then, if u(r) is the Lennard—Jones (12—6) potential

w=s{ (- (2}

and making the following substitution x = /o and T* = kT/e, the expression for the
second virial coefficient of Eq. (2) reads

3 o] 12 6
By = — (2 i/ (Y e (L) U et amr-amy 2 g
3 T Jo X X

By defining B*(T*)=B(T*)/(2ns3/3), substituting, u=1/x>, and after some straightfor-
ward algebraic manipulations (see Appendix A) we obtain the following dimensionless
form for the second virial coefficient (Figs. 2 and 3):

8 - el 0,2 2
B(T*) = QT / w2 — 1) e~ WTH@ =1 q,,
") V2T 0 ( )

In Appendix B we demonstrate that the function P(z), defined as

P(z) = / (u* — l)efzz("zfl)2 du,
0
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Fig. 3. Second temperature derivative of the second virial coefficient as a function of reduced temperature,
as given by Eq. (5) (full-line). Tabulated data from Ref. [2] are also plotted (open circles). The inset shows
the percent error between the values obtained using the analytical formula and the tabulated ones.

is a linear combination of four modified Bessel functions [15]:
P(z) = gme*(I_3a(z) — 1-1/4(z) — La(2) + L34(2)) .

Then, it turns out, by replacing z=1/2T*, the second virial coefficient for the Lennard—
Jones (12—6) potential has the following analytically closed expression:

* * \/_TC * 1 1
BT )— e (1 3/4 (2T*) + Iy <2T*)

1 1
—I4 (2T*> I 14 <2T*)> . (3)

It is now a trivial matter, using the recurrence formulas for the modified Bessel function
(see 9.6.26 of Abramowitz and Stegun [15]), to derive the following expressions for
the temperature derivatives, and zero-pressure Joule-Thompson coefficient (Fig. 4).
dB*(T™)

B(T")=T~
1( ) dT* b

1 " 1 1
T*)Y= —— /2 12T I I -
1 (T7) a7 V2me a\ e | T3 | 5

1 1
—37 I
314 <2T*> =314 <2T*)> )

2 px* * * *

By(T")= dr= dr*
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Fig. 4. B{(T*) — B*(T™) (reduced zero-pressure Joule-Thompson coefficient) as a function of reduced
temperature, as given by Eq. (1) and Eq. (2) (full-line). Tabulated data from Ref. [2] are also plotted (open
circles). The inset shows the percent error between the values obtained using the analytical formula and the
tabulated ones.

By(T")

T 1/27* * 1 1
= —4 + 5T I — 1 —
NN {( + )(3/4 <2T*) +1 34 (2T*>>

—(4+21T7) (11/4 (2;) T I (;))] . 5)

Zeros for the different thermodynamical functions are in 7% = 3.417928023,
25.152573456, 48.289836984 and 6.430798472 for B*, Bj, B;, and B} — B*,
respectively.

3. Results

Figs. 1-4 illustrate the tabulated second virial coefficients and zero-pressure Joule—
Thompson coefficient as given by Hirschfelder et al. [6] in their Table I-B (open cir-
cles), together with the analytical expressions given in Eqs. (3)—(5) (full line curves).
For a given reduced temperature 7", the percent error in the case of the second virial
coefficient is defined as 100 x [exact(B*) — tabulated(B*)]/exact(B*). Same definition
applies for the other functions and they are shown as insets in each figure. We see that
the overall behavior coincides almost perfectly in all temperature ranges. Maximum
differences are found in the derivatives which are nevertheless less than 0.004%. These
results clearly demonstrate the high quality of the numerical work performed almost
50 years ago.
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4. Conclusion

Second virial coefficient for the Lennard—Jones (12—6) potential, as well as its first
and second temperature derivatives have been derived for the first time from simple and
closed formulas. We expect the expression as given in Egs. (1)—(3) will be of great
help in fitting a Lennard—Jones (12—6) potential from experimental data. Nowadays
they can be easily evaluated in every temperature range with high-numerical accu-
racy using the modified Bessel functions which come precompiled in the majority of
numerical library packages or scientific softwares.
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Appendix A

According to the text definition, we have

4 [~ " Y —@&/TH{(1/x)"?=(1/x)°}, .2
B*(T*):__/ —12(-) +6/(- e~ WTOAX =X} 2 g
T Jo x X

By making the substitution u = 1/x> we obtain
8 [ .
BY(T*) = T_/ QP — 1) e T =D gy |
0

and now, making u = x/v/2 we finally get the desired expression:
8 * o *0 2 2
BY(T*)= ——¢e!/T / W —1)e V@ =1"qy
(=™ [ 6=

Appendix B

We recall the integral representation of the modified Bessel function 7, (see formula
9.6.20 of Abramowitz and Stegun [15]).

1 [ sinmy [ _ _
I, =— " 'cos vt dt — g Zooshi=v gy
T Jo T 0

Then it follows that

oo 1 T
/ e~ M sinh vedt = ——— (I, +1_,) — — / e cos vt dt (6)
0 2sin v sinmy J,

which we will use for the demonstration.



98 P. Vargas et al. | Physica A 290 (2001) 92-100

We have to evaluate analytically P(z) defined as
P(z) = / (W —1)e 2= qy |
0
By substituting x = u? it follows that

L[ w=1) 51y
P(z)= = - .
(2) 2 /0 i e du

Let us first separate P(z) as a summation of two terms. The interval splitting [0, 2]
and [2, 0c] will be clear later in the demonstration:

1 2 (u—1 1 [ (u—1
P(Z): EA (u\/ﬁ )672z(u71)2 du + 5/2 (u\/ﬁ )672z(u71)2 du

=Pi(z) + P2(2).

In the last term, we do the following transformation, which is valid for u > 2:

1 1
(u—17%== + Ecoshtfcosh2 7>

t
u:1+cosh§(u>2),

2u—1)du= %dtsinht .
Then,

I [ (u—-1) e—2—17 g / sinht .
P [ z(u— Z cos| tdt ,
2(2) 2 /2 Vu g\f cosh t/4

1 e t t
=——¢’* sinh — cosh — e 7 ¢h 4y
2V2 /0 4 2

1 o 3t t
=——¢e*° sinh — — sinh — | e =2/ dr
42 /0 ( 4 4)

Now, doing the following transformation in the first term, P;(z), valid for 0 < u < 2,

1 t
(u—1)7>= 7+§cost—coszi

t
u:1+cos§(0<u<2),

2u— 1)du=—5 dtsmt
Then
0 ~sint e 2 Sint
P1 (Z) —2z((1/2)+(1/2) cos t) dr = / e ? cost ds ,
2 \/1 + cost/2 8v2 Jo cost/4

—z 2n —z 2n
€ . t t —z Cost € / ( . 3t . t ) —Zz COoSt
= — sin — cos = € dt = sin— —sin— | e de.
22 /0 4772 a2 ) 4 4
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These expressions lead to the following expression for P(z):

e? n 3t t
P(z)= 2 / (sin T sin 4_1) e Eesl gy
& 3t t
+ /O (sinh T sinh 4) e“"Sh’dt) )

From the derived expression for the modified Bessel functions of Eq. (6), using as

particular cases v = 4, and we get

/ e~ O iginh > T Ldr = STV 2(a + 1-34) = \/5/ ¢ **eos - dr,
0 0

4

[ee] t 1 T t
/ e 7N isinh — dt = ~nvV2(lja +1_14) — \fZ/ e*“*cos —dr .
0 4 2 0 4

Therefore by replacing them in the P(z) expression, we have

—Zz

P(z2) © /h <sin 3t sin t) e Fes dr + ln\ﬁ(l +1_314)
Z)=—= ~ —sin- Z -~
4v2 \ Jo 4 4 2 3/4 3/4

T . 3t 1 T t
—\/5/ e“o”coszdt— 5“\/5([1/4 +1_1/4)+\/§/ e“"“cos4dt)
0 0

= \f (Q(z)+ STV 2(134(2) + 134(2)) — fnf (11/4(z)+1_]/4(z)))

To see that Q =0, let us write

moo3 T 3 t
Q:/O (smz —st) e_”"”dt—\/i/o e ot (coszt—cosz> de.

and substituting ¢ = x + © in the first integral and then expanding the trigonometrical
functions, we have

0= " sin X cos 7311 + cos 3 sin —37[
). 4 4 4 4
o Qt z g _ 1 : E zcost

sin (4) cos4 cos (4> s1n4) e dr

T . 3¢ t
—\/5/0 gF cos! (cos4 —cos4> dr .

Odd functions give zero in the integrals from [—m, rt], then by transforming the integrals
of the even functions in the [ — m, 7] interval by twice the same integrals in the [0, 7]
interval, we get

r 3¢ t
Q:\/i/ (cosz COSZ> e st g
0
T 3 1
—\/i/ g7 oost <cos—t—cos—t) dt=0
A 4 4
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Thus, we have proved that
me ”
8

P(z)= ((3ya(z) +1-314(2)) — (T1)a(z) + 1-1/4(2))) -

References

1] M.C. McQuarrie, Statistical Thermodynamics, Harper & Row, New York, 1976.
2] R.P. Feynman, Statistical Mechanics, a Set of Lectures, Benjamin, New York, 1972.
3] S. Ma, Statistical Mechanics, World Scientific, Singapore, 1985.
4] C.V. Heer, Statistical Mechanics, Kinetic Theory and Stochastic Processes, Academic Press, New York,
1972.
[5] M. Plischke, B. Bergensen, Equilibrium Statistical Physics, 2nd Edition, World Scientific, Singapore,
1994.
[6] J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York,
1954.
[7] S.F. Ragab, A.A. Helmy, T.L. Hassanein, M.A. El-Naggar, J. Low-Temp. Phys. 111 (1998) 447.
[8] H. Guérin, J. Phys. B 26 (1993) L693.
[9] AJ.M. Garrett, J. Phys. A 13 (1980) 379.
[10] D. Levi, M. de Llano, J. Chem. Phys. 63 (1975) 4561.
[11] E. Ley-Koo, M. de Llano, J. Chem. Phys. 65 (1976) 3802.
[12] L.F. Epstein, G.M. Roe, J. Chem. Phys. 19 (1951) 1320.
[13] J.A. Barker, P.J. Leonard, A. Pompe, J. Chem. Phys. 44 (1966) 4206.
[14] D. Huang, Physica A 256 (1998) 30.
[15] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, U.S. National Bureau of
Standards, 1964; Dover, New York, 1965.

[
[
[
[



