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Abstract

The second virial coe�cient for the (12−6) Lennard–Jones potential and its �rst and second
temperature derivatives are explicitely derived. All coe�cients can be explicitly written as a linear
combination of four modi�ed Bessel functions which can be evaluated for every temperature with
high degree of numerical accuracy. Detailed comparisons with the classical series expansion for
the coe�cient and its temperature derivatives are made. The use of these analytical, simple and
closed formulae can be very valuable when using experimental p–V–T data to �t a Lennard–
Jones potential. c© 2001 Elsevier Science B.V. All rights reserved.

PACS: 5.20.−y; 5.70.Ce; 5.20.Jj

1. Introduction

Many books on statistical mechanics (see, for instance, Refs. [1–6]) have a chap-
ter devoted to imperfect gases, in which the virial expansion of the equation of state
in terms of density is derived. Explicit evaluation of the second virial coe�cient is
given only in simple cases such as hard spheres and square well potentials [1–5].
However, closed forms for the second virial coe�cient using di�erent potentials can
be found in the literature. Buckingham potential formula is modi�ed in terms of Whit-
taker functions [7], Lennard–Jones (2n−n) and Woolley potential in terms of parabolic
cylinder functions [8,9], Sutherland and particular Mie potentials in terms of general-
ized hypergeometric functions [10,11]. Also, extensive numerical calculation for the
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Fig. 1. Second virial coe�cient as a function of reduced temperature, as given by Eq. (3) (full-line).
Tabulated data from Ref. [2] are also plotted (open circles). The inset shows the percent error between the
values obtained using the analytical formula and the tabulated ones.

Lennard–Jones (12−6) potential [6,12,13] as well as its �rst derivatives have been
done in the past [6].
Although parabolic cylinder, hypergeometric and Whittaker functions are easily pro-

grammable, their numerical evaluation can be more involved than working interpolating
values from tabulated functions. However, a simple analytical closed form is very use-
ful, especially at low temperatures where the series expansion of the virial coe�cient
converges very slowly. Also simple formula is desirable, for instance, to study the
inversion temperatures for real gases in expansion [14].
In this letter we derive an alternative, simpler, analytical form for the second virial

coe�cient for the Lennard–Jones (12−6) potential, and, for the �rst time, derive ex-
plicit closed forms for its �rst and second temperature derivative from which the
zero-pressure Joule–Thompson coe�cient is evaluated.

2. Method

If u, the intermolecular potential between two particles, only depends on the relative
separation, r, between them the second virial coe�cient is commonly given by the
following expression [1–6] (Fig. 1):

B(T ) =−2�
∫ ∞

0
[e−u(r)=kT − 1]r2 dr : (1)
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Fig. 2. First temperature derivative of the second virial coe�cient as a function of reduced temperature, as
given by Eq. (4) (full-line). Tabulated data from Ref. [2] are also plotted (open circles). The inset shows
the percent error between the values obtained using the analytical formula and the tabulated ones.

Provided that u(r) approaches zero faster than 1=r3, necessary condition for existence
of the virial, integration by parts of Eq. (1) gives an equivalent expression

B(T ) =− 2�
3kT

∫ ∞

0

du(r)
dr

e−u(r)=kT r3 dr : (2)

Then, if u(r) is the Lennard–Jones (12−6) potential

u(r) = 4�
{(�

r

)12
−
(�
r

)6}

and making the following substitution x = r=� and T ∗ = kT=�, the expression for the
second virial coe�cient of Eq. (2) reads

B(T ∗) =−
(
2��3
3

)
4
T ∗

∫ ∞

0

{
−12

(
1
x

)12
+ 6

(
1
x

)6}
e−4=T

∗{(1=x)12−(1=x)6}x2 dx :

By de�ning B∗(T ∗)=B(T ∗)=(2��3=3), substituting, u=1=x3, and after some straightfor-
ward algebraic manipulations (see Appendix A) we obtain the following dimensionless
form for the second virial coe�cient (Figs. 2 and 3):

B∗(T ∗) =
8√
2T ∗ e

1=T∗
∫ ∞

0
(u2 − 1) e−(1=T∗)(u2−1)2 du :

In Appendix B we demonstrate that the function P(z), de�ned as

P(z) ≡
∫ ∞

0
(u2 − 1) e−2z(u2−1)2 du ;
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Fig. 3. Second temperature derivative of the second virial coe�cient as a function of reduced temperature,
as given by Eq. (5) (full-line). Tabulated data from Ref. [2] are also plotted (open circles). The inset shows
the percent error between the values obtained using the analytical formula and the tabulated ones.

is a linear combination of four modi�ed Bessel functions [15]:

P(z) = 1
8� e

−z(I−3=4(z)− I−1=4(z)− I1=4(z) + I3=4(z)) :
Then, it turns out, by replacing z=1=2T ∗, the second virial coe�cient for the Lennard–
Jones (12−6) potential has the following analytically closed expression:

B∗(T ∗) =

√
2�
2T ∗ e

1=2T∗
(
I−3=4

(
1
2T ∗

)
+ I3=4

(
1
2T ∗

)

−I1=4
(
1
2T ∗

)
− I−1=4

(
1
2T ∗

))
: (3)

It is now a trivial matter, using the recurrence formulas for the modi�ed Bessel function
(see 9.6.26 of Abramowitz and Stegun [15]), to derive the following expressions for
the temperature derivatives, and zero-pressure Joule–Thompson coe�cient (Fig. 4).

B∗1 (T
∗) ≡ T ∗ dB

∗(T ∗)
dT ∗ ;

B∗1 (T
∗) =− 1

8T ∗
√
2�e1=2T

∗
(
I3=4

(
1
2T ∗

)
+ I−3=4

(
1
2T ∗

)

−3I1=4
(
1
2T ∗

)
−3I−1=4

(
1
2T ∗

))
;

B∗2 (T
∗)≡ T ∗2 d

2B∗(T ∗)
dT ∗2 = T ∗ dB

∗
1 (T

∗)
dT ∗ − B∗1 (T ∗) ; (4)
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Fig. 4. B∗1 (T
∗) − B∗(T∗) (reduced zero-pressure Joule–Thompson coe�cient) as a function of reduced

temperature, as given by Eq. (1) and Eq. (2) (full-line). Tabulated data from Ref. [2] are also plotted (open
circles). The inset shows the percent error between the values obtained using the analytical formula and the
tabulated ones.

B∗2 (T
∗) =

�
16
√
2T ∗2 e

1=2T∗
[
(−4 + 5T ∗)

(
I3=4

(
1
2T ∗

)
+ I−3=4

(
1
2T ∗

))

−(4 + 21T ∗)
(
I−1=4

(
1
2T ∗

)
+ I1=4

(
1
2T ∗

))]
: (5)

Zeros for the di�erent thermodynamical functions are in T ∗ = 3:417 928 023;
25:152 573 456, 48:289 836 984 and 6:430 798 472 for B∗; B∗1 ; B

∗
2 , and B∗1 − B∗,

respectively.

3. Results

Figs. 1–4 illustrate the tabulated second virial coe�cients and zero-pressure Joule–
Thompson coe�cient as given by Hirschfelder et al. [6] in their Table I-B (open cir-
cles), together with the analytical expressions given in Eqs. (3)–(5) (full line curves).
For a given reduced temperature T ∗, the percent error in the case of the second virial
coe�cient is de�ned as 100 × [exact(B∗) − tabulated(B∗)]=exact(B∗). Same de�nition
applies for the other functions and they are shown as insets in each �gure. We see that
the overall behavior coincides almost perfectly in all temperature ranges. Maximum
di�erences are found in the derivatives which are nevertheless less than 0:004%. These
results clearly demonstrate the high quality of the numerical work performed almost
50 years ago.
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4. Conclusion

Second virial coe�cient for the Lennard–Jones (12−6) potential, as well as its �rst
and second temperature derivatives have been derived for the �rst time from simple and
closed formulas. We expect the expression as given in Eqs. (1)–(3) will be of great
help in �tting a Lennard–Jones (12−6) potential from experimental data. Nowadays
they can be easily evaluated in every temperature range with high-numerical accu-
racy using the modi�ed Bessel functions which come precompiled in the majority of
numerical library packages or scienti�c softwares.
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Appendix A

According to the text de�nition, we have

B∗(T ∗) =− 4
T ∗

∫ ∞

0

{
−12

(
1
x

)12
+ 6

(
1
x

)6}
e−(4=T

∗){(1=x)12−(1=x)6}x2 dx :

By making the substitution u= 1=x3 we obtain

B∗(T ∗) =
8
T ∗

∫ ∞

0
(2u2 − 1) e−4=T∗(u4−u2) du ;

and now, making u= x=
√
2 we �nally get the desired expression:

B∗(T ∗) =
8√
2T ∗ e

1=T∗
∫ ∞

0
(u2 − 1) e−1=T∗(u2−1)2 du :

Appendix B

We recall the integral representation of the modi�ed Bessel function I� (see formula
9.6.20 of Abramowitz and Stegun [15]).

I� =
1
�

∫ �

0
ez cos tcos �t dt − sin ��

�

∫ ∞

0
e−z cosh t−�t dt :

Then it follows that∫ ∞

0
e−z cosh tsinh �t dt =

�
2 sin �� (I� + I−�)−

1
sin ��

∫ �

0
ez cos tcos �t dt (6)

which we will use for the demonstration.
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We have to evaluate analytically P(z) de�ned as

P(z) ≡
∫ ∞

0
(u2 − 1) e−2z(u2−1)2 du :

By substituting x = u2 it follows that

P(z) =
1
2

∫ ∞

0

(u− 1)√
u

e−2z(u−1)
2
du :

Let us �rst separate P(z) as a summation of two terms. The interval splitting [0; 2]
and [2;∞] will be clear later in the demonstration:

P(z) =
1
2

∫ 2

0

(u− 1)√
u

e−2z(u−1)
2
du+

1
2

∫ ∞

2

(u− 1)√
u

e−2z(u−1)
2
du

= P1(z) + P2(z) :

In the last term, we do the following transformation, which is valid for u¿ 2:

(u− 1)2 = 1
2
+
1
2
cosh t = cosh2

t
2
;

u= 1 + cosh
t
2
(u¿ 2) ;

2(u− 1) du= 1
2 dt sinh t :

Then,

P2(z) =
1
2

∫ ∞

2

(u− 1)√
u

e−2z(u−1)
2
du=

1

8
√
2
e−z
∫ ∞

0

sinh t
cosh t=4

e−z cosh t dt ;

=
1

2
√
2
e−z
∫ ∞

0
sinh

t
4
cosh

t
2
e−z cosh t dt

=
1

4
√
2
e−z
∫ ∞

0

(
sinh

3t
4

− sinh t
4

)
e−z cosh t dt :

Now, doing the following transformation in the �rst term, P1(z); valid for 0¡u¡ 2,

(u− 1)2 = 1
2
+
1
2
cos t = cos2

t
2
;

u= 1 + cos
t
2
(0¡u¡ 2) ;

2(u− 1)du=− 1
2 dt sin t ;

Then

P1(z) =−1
8

∫ 0

2�

sin t√
1 + cos t=2

e−2z((1=2)+(1=2) cos t) dt =
e−z

8
√
2

∫ 2�

0

sin t
cos t=4

e−z cos t dt ;

=
e−z

2
√
2

∫ 2�

0
sin

t
4
cos

t
2
e−z cos t dt =

e−z

4
√
2

∫ 2�

0

(
sin
3t
4

− sin t
4

)
e−z cos t dt :
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These expressions lead to the following expression for P(z):

P(z) =
e−z

4
√
2

(∫ 2�

0

(
sin
3t
4

− sin t
4

)
e−z cos t dt

+
∫ ∞

0

(
sinh

3t
4

− sinh t
4

)
e−z cosh t dt

)
:

From the derived expression for the modi�ed Bessel functions of Eq. (6), using as
particular cases �= 3

4 , and
1
4 we get∫ ∞

0
e−z cosh tsinh

3t
4
dt =

1
2
�
√
2(I3=4 + I−3=4)−

√
2
∫ �

0
ez cos tcos

3t
4
dt ;

∫ ∞

0
e−z cosh tsinh

t
4
dt =

1
2
�
√
2(I1=4 + I−1=4)−

√
2
∫ �

0
ez cos tcos

t
4
dt :

Therefore by replacing them in the P(z) expression, we have

P(z) =
e−z

4
√
2

(∫ 2�

0

(
sin
3t
4

− sin t
4

)
e−z cos t dt +

1
2
�
√
2(I3=4 + I−3=4)

−
√
2
∫ �

0
ez cos tcos

3t
4
dt − 1

2
�
√
2(I1=4 + I−1=4) +

√
2
∫ �

0
ez cos tcos

t
4
dt
)

=
e−z

4
√
2

(
Q(z) +

1
2
�
√
2(I3=4(z) + I−3=4(z))− 1

2
�
√
2(I1=4(z) + I−1=4(z))

)
:

To see that Q = 0, let us write

Q =
∫ 2�

0

(
sin
3t
4

− sin t
4

)
e−z cos t dt −

√
2
∫ �

0
ez cos t

(
cos

3
4
t − cos t

4

)
dt :

and substituting t = x + � in the �rst integral and then expanding the trigonometrical
functions, we have

Q=
∫ �

−�

(
sin
(
3t
4

)
cos

3�
4
+ cos

(
3t
4

)
sin
3�
4

− sin
( t
4

)
cos

�
4
− cos

( t
4

)
sin
�
4

)
ez cos t dt

−
√
2
∫ �

0
ez cos t

(
cos

3t
4

− cos t
4

)
dt :

Odd functions give zero in the integrals from [−�; �], then by transforming the integrals
of the even functions in the [− �; �] interval by twice the same integrals in the [0; �]
interval, we get

Q=
√
2
∫ �

0

(
cos

3t
4

− cos t
4

)
ez cos t dt

−
√
2
∫ �

0
ez cos t

(
cos

3
4
t − cos 1

4
t
)
dt = 0 :
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Thus, we have proved that

P(z) =
� e−z
8
((I3=4(z) + I−3=4(z))− (I1=4(z) + I−1=4(z))) :
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