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A comprehensive thermodynamic theory of the Soret effect
in a multicomponent gas, liquid, or solid

L. J. T. M. Kempers®
Schaepmanplein 26, 2314 EH Leiden, The Netherlands

(Received 11 October 2000; accepted 9 July 2001

A comprehensive theory for the Soret effdelso called thermal diffusionis presented which
incorporates both the thermodynamic contribution from selective attraction/repulsion and the kinetic
contribution from selective collision interaction between the components. The new theory is an
extension of a theory presented earlier in which the thermodynamic contribution only was modeled.
The single assumption of the theory is that the Soret effect in the steady state is the macroscopic
state accomplished by a maximum number of microstates with respect to the ideal gas state. As a
result, the Soret effect in a multicomponent mixture can be calculated by using input from an
equation-of-state of the mixture and kinetic gas theory without the use of matching parameters. The
theory is not limited to systems with a small temperature difference and/or a small concentration
difference. The methodology of the new theory can be used to model other cross-effects in
irreversible thermodynamics. A test of the theory against the measured Soret effect in 18 mixtures
shows agreement within a factor of 2 over four decades. Closer agreement cannot be expected since
it appears that the calculation of the Soret effect is extremely sensitive to the accuracy of input from
the equation-of-state. The present equations-of-state, even those that are calibrated for use in the
chemical and petroleum industry, require modification for the calculation of the Soret effect, because
of a higher demand in accuracy. In addition, it is also important to examine which frame of reference
(center-of-volume or center-of-masapplies to a particular measurement or practical application,
because the frame of reference determines which mathematical expression for the Soret effect must
be used. ©2001 American Institute of Physicg§DOI: 10.1063/1.1398315

I. INTRODUCTION In 1989 we published a thermodynamic theory of the
Soret effect for multicomponent liquidsn which a common

) physical principle from statistical thermodynamics, i.e., “a
tendency of a mixture of two or more components {0 Sepamacroscopic state is accomplished by a maximum number of
rate as a result of a spatial temperature difference. It is one cHossibIe microstates,” is applied to the steady nonequilib-
the well-known cross-effects in irreversible thermodynamics,;,m state. Two other assumptions were made: mechanical
This general theory assumes thg component and heat. ﬂux'éauilibrium and a negligible Soret effect in an ideal gas. The
between the hot and the cold region to be a linear function Ofgg it was a set of equations that provides a numeric predic-
the concentration differences and the temperature differencg,, of the thermal diffusion factors of a multicomponent

In steady state, in which the component fluxes have vanishegh iq 1o arrive at numeric predictions, the set of equations

and only a heat flux remains, the Soret effect is quantified byjag not require input from measured data but needs imple-

the equatiort mentation in a phase behavior computer package only. It
does not contain matching parameters. For a binary mixture,
the explicit expression for the thermal diffusion factor is ac-
cording to that theory:

h, h
wherex; is the mole fraction of componenf the absolute e v_z_ U—i
temperatureN the number of components, ang; the ther- am1= , (2)
mal diffusion factor of componeritand the subject of this v1X1+U2X l%
paper. The thermal diffusion factor is sm#&#0.3) in the 281

case of dilute gases, but can be lafgel0) in liquids and

The Soret effect(also called thermal diffusionis the

AT
AXi:_Xi(l_Xi)aTiT (i=1,...N), (@)

" < wherev;,h;,u; are, respectively, the molar volume, molar
gases at near-critical conditigqsuch as the natural state of enthalpy, and chemical potential of componerthe above
some underground oil reservoirsr in polymer solutions and gy yression was validated with experimental data of three
colloids. For dilute gases, kinetic gas theory enables calculaytres in our 1989 paper. The qualitative observations of
tion of ar; . However, the thermal diffusion factor in liquids, ramers and Broedzfi.e., in a mixture of hydrocarbons, the
solids, polymers, etc., is still the subject of research. sequence from the hot to the cold region is: light normal
paraffins, heavy normal paraffins, branched paraffins,
“Deceased March 15, 2001. naphtenes, monocyclic aromatics, bicyclic aromatire all
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predicted by our theory. Our theory was also confirmed by  Another shortcoming lies in the available test data that
the qualitative measurements of Costpse and Riviee? are used for validation of expressigh) and of other
Faissal and Montglconsidered the theory for the calculation models:
of the variation of oil composition with depth in underground (5) The calculated thermal diffusion factor for the available
reservoirs, in which the compositional variation is caused by ~ test data is very sensitive to input data from the
gravity and the temperature gradient in the earth’s crust. —equation-of-state while the accuracy of these data is in-
Faissatet al® made some fundamental observations regard- ~ Sufficient.
ing our theory. Recently, Shapiro and Stehlpyesented a
first attempt to generalize our thermodynamic approach.
To our knowledge there are three other models
expressions in the literature for the thermal diffusion factor,
apart from kinetic gas theory. All of these models are limited
to binary mixtures. There is the expression of Ha&sehich

There is thus a need for a comprehensive theory that
/takes the kinetic contribution into accouf®) does not need
input of thetotal molar enthalpy(3) combines Haase’s ex-
pression and our previous theory in one, &dis based on

a single assumption. In Sec. Il of this paper, we will present
; > : such a comprehensive approach, which is a subtle variation
IS based on thermodynamics and is equal to @gbut (2) of the old theory. Several special cases of the comprehensive
with the molar volumes replaced by molar masses @0d  heory are given in Sec. lil. The new theory is tested against
with an extra term for the so-called kinetic contribution. We experimental data in Sec. IV. Finally, in Sec. V we discuss
will discuss the validity of Haase’s expression in this papersensitivity to input data calculated with the equation-of-state,
[see end of Sec. Il and expressidr)]. The second modelis proper selection of test data, and extension of the compre-
the kinetic model of Dougherty and Drickantewhich con- hensive theory to other cross-effects.

nects the heat of transport with the activation energy. The

model has a low predictive power because it contains a fitf|. A COMPREHENSIVE THERMODYNAMIC THEORY
ting parametef.The third model was developed recently by
Shukla and Firoozabadi along the kinetic approach of
Dougherty and Drickamer. Their model contains a propor
tionality factor r with a physical meaning. It can be shown
that their expression for the thermal diffusion factor differs a

Equation(1) from the theory of irreversible thermody-
namics is based on a linear relationship between fluxes and
thermodynamic forces. This relationship originates from the
hypothesis of local equilibrium and applies to systems close
factor 7 from expressior(2): a3"=aX/7. Despite their cal- to equilibrium, hence systems with small differences in the

. . intensive variables such as temperature and composition. In
culation of_a value of 4 forr, they user as a r_natchlng our theory, however, there is no restriction to small differ-
parametgr in the range 1-4, heqce the predlc_tlve POWET 18 ces and hence to a linear relationship. We usd Banly
low. In this paper we will not consider models with a match—fOr the purpose of the definition of the thermal diffusion

ing parameter. factor a1 . Becauseexplicit expressions for the thermal dif-

Despite its success in comparing measurements in varfygion factor can be derived only for systems with small
ous mixtures, there are still four shortcomings in our purelyyifferences, however, most final results of the theory pre-

thermodynamic theory and expressidn: sented in this paper are applicable to systems with small

(1) The theory quantifies the thermodynamic contribution toCOMpPosition and temperature differences.

the Soret effectwhich is due to selective attraction/  AS stated in Sec. |, the Soret effect consists of two con-
repulsion between the componentait ignores the ki- tributions, a kinetic and a thermodynamic, which are both

netic contribution(which is due to selective collision included in the new, comprehensive theory. The kinetic con-

interaction between the componerts the Soret effect. tribution is caused by selective collision interaction: the
As a result, the above expression cannot be used for;nagni'[ude of the interaction in molecular collisions is gen-

dilute gases, in which the kinetic contribution dominatese.rally different for each paur O.f m|xtur<_e_ compon_entg. For
._dilute gases this contribution is quantified by kinetic gas

rl[heory.12 This theory predicts a nonzero Soret effect for an
jdeal gas. We use the kinetic contribution of the ideal gas
g{ate, denoted by the thermal diffusion factor of the ideal gas
statea?;, as input to our thermodynamic theory.

(2) is valid only for very nonideal mixtures, such as

dense gases and near-critical mixtures, as was shown

the previous paper by comparison to measured data.
(2) Thetotal molar enthalpy is required as input, while gen- The thermodynamic contribution to the Soret effect is

erally no more than the deviation of the enthalpy from ac,,sed by selective attraction/repulsion between the compo-
reference state is availabl€The reference state is Nor- nonts. In” mixtures in which a nonuniform temperature is

mally taken as the ideal gas state of the pure compomaintained, it is thermodynamically advantageous for some

nent) o _ components to concentrate in the region where the tempera-
(3) In the derivation of the theory the assumption of me-ure is high and for other components to concentrate in the
chanical equilibrium is needed. region where the temperature is low. This contribution,

(4) Haase's expression compares generally better to thghich is zero for an ideal gas, is modeled here.
measured data of the near-critical mixture of methane  For calculation of the magnitude of the Soret effect we
andn-butane than expressidf), probably due to a spe- consider the following setup. Two bulb&,andB, with equal
cial measurement procedure, as was shown recently bgnd constant volum¥, are joined by an insulated rigid tube
Hgier!! of small diameter and filled with ah-component mixture
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methods of equilibrium thermodynamics to a system that is
essentially not in equilibrium, the kinetic contribution in the
ideal gas state needs to be separated from the statistical ther-
modynamic description. To model the thermodynamic con-
tribution, we therefore determine the maximum number of
microstateswvith respectto the ideal gas state, so we use the
deviationof the canonical partition functiod from the par-
tition function Z° in the ideal gas state. In this way we sepa-
bulb A bulb B rate the Soret effect in the ideal gas stajeantified by ki-
netic gas theoryfrom the thermodynamic contribution; we
FIG. 1 Setup with MO bulbs connected by a tube with valve. '_rhe setundo not model the Soret effect in the ideal gas state but con-
g?]?tti':fp:rgszrg x';?ntt\g;gé'more components. In balandB a differ- sider it as input. Hence, instead of determining maxin{an
as in our previous paper, we determine:

A
(N=2). The diameter of the tube is small enough to elimi- maximiun{ﬁ]. (€
nate convection currents and the volume of the tube is neg-
ligible in comparison with the volume of the bulbs. The two- For calculation of the canonical partition function of the sys-
bulb system is in no way intended as a restriction; it helps td€m, only the two bulbs are considered because the volume
simplify the mathematics. The thermodynamic contributionof the connecting tube is assumed to be negligible. The ca-
to the Soret effect comes from the two bulbs and the kinetidonical partition functiorz” of bulb (or subsystemA is a
contribution from the connecting tube. function of the variable3*, VA(=V), n,....n3. Similarly,

We consider the following imaginary experimefsee the partition functiorZ® of bulb B is a function of the vari-
Fig. 1. In theinitial state, the whole setup is kept at a uni- ablesT®, VB(=V), n?,....n§. The canonical partition func-
form and constant temperature and the composition of th&on 7”° of bulb A in the ideal gas state is a function of the
mixture is uniform everywhere. After closing the valve in the yariablesTA, V, niAO' i __,nﬁo_ Finally, the canonical partition
tube, the E\emperatur‘é of bulb A is increased by an amount function z8°
AT/2 to T* and the temperature of bulbis lowered by the the variablesr®, V. niBO,...,nﬁo. If we ignore for a moment

same amount t&2. After thisintermediate statethe valve is the interd d f th b f | f feul
reopened. Measures have been taken suchThaand T8 € Interdependence of the number of moles of a particutar
omponent in a bulb and the number of moles of the same

remain constant. Because the bulbs are in communicatioﬁ . )
pe in the other bulb, then we may treat the bulbs as inde-

after the valve is opened, there is some interchange of maIpendent subsystems of the two-bulb system. The partition
between the bulbs by thermal expansion and diffusion. Afte . i . '
y P function Z(Z*,Z®) of the total system is then equal to the

some time dinal, stationary statés reached, in which there " : ]

is still a constant flux of heat from bula to bulb B but the product of the partition functions of the bulbs:

mass flux of each component has vanished; in each of the z(zA zB)=zAxZB. (4)
bulbs the thermodynamic properties such as the mole fra
tionsx” andx®(i=1,...N) are uniform and constant. Due to
the Soret effect there is a difference in mole fractibg; (i
=1,...N) between the bulbs.

To calculate the magnitude of the concentration differ-
encesAx; in the final, steady state due to the Soret effect, we niA+ niB= nt (i=1,...N), (5)
make use of a common principle from statistical thermody- N ) o
namics: the assumption is that the steady state is the macryn€ren; are given constants. The second constraint is ma-
scopic state accomplished by a maximum number of milerial conservation of the components in the ideal gas state:
crostates. If we make use of the canonical partition function
Z of the two-bulb system, the steady state can be calculated
from the maximum of the canonical partition function. The The third constraint deals with the reference frame in which
tube is ignored in the statistical mechanics in view of itsthe diffusion process takes place. In a system without con-
small volume. So far, everything resembles the approach prerection currents, the fluid motion is one-dimensional and the
sented in our previous paper. movement of the fluid parcels is constrained by the walls of

The motivation for the new element in the theory comesthe system. The system of Fig. 1 is attached to the laboratory.
from the following factsi1) the thermodynamic contribution Since the interchange of mass between the bulbs, which oc-
is localized in the two bulbs, while the connecting tube cancurs after the valve has been reopened, causes usually a
be ignored in view of its small volumd2) each bulb is in  translation of the center of mass of the fluid mixture, an
thermodynamic equilibrium(3) the kinetic contribution is external force must be exerted on the two-bulb system to
by definition localized in the connecting tubi@) the tube is  keep it attached to the laboratory. The result of this force is
not in equilibrium and produces entropy; afEl if the mix-  that the center-of-volume of the fluid mixture does not trans-
ture in the system was an ideal gas, the thermodynamic cotate. Because of the absence of convection, the zero transla-
tribution would be zero by definition. To be able to apply thetion of the center of volume applies to every fluid parcel in

of bulb B in the ideal gas state is a function of

QI'he value ofAn;=n*—n? in the steady state can be calcu-
lated from the maximum statement E8) with the follow-

ing constraints. The first constraint is material conservation
of the components, expressed by

N2+ nB’=nA+nB  (i=1,..N). (6
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the system. Since, initially, the volume of the fluid insideN-1 /4 i 1 dun
bulb A is equal to the volume of the fluid inside bull the E <f o W) Xj(L=X))
zero translation of the center of volume means that thesé * ‘Ui @ UN 7%
volumes remain equal: _hN—h&_ h,—h? (a%(l—xi)
. A A . B. B UN vi Vi
2 nfof=> nfof. (7) 0
- - et XN)) (i=1,.N-1) (10
- i=1,..N-1),
Note that the constraint of mechanical equilibrium is not UN

applied in contrast with our previous derivatibmstead, the where the partial derivatives refer to the variables
constraint of zero translation of the center of volume, &Y. T p n,x,,... Xxy_1. TO arrive at a numeric prediction for the

is applied. We consider this last constraint as more obvioughermal diffusion factorsey;, the set of Eqs(10) can be
than the constraint of mechanical equilibrium. In fact, me'imp|emented ina phase behavior Computer package, together
chanical equilibrium, which is expressed Ipf=p&, is a  \ith:

consequence of the constraint of zero translation of the

T,p,nj;&i

min

center-of-volume: if we applp”=p® as a fourth constraint, _
the result appears to be the same. This can be shown using J-Zl Xj(1=xj)arj=0, (11)
the next re.latlon and following the rest of the mathematlcalwhich follows from definition(1). It is evident that the deri-
procedure: ; :
vation of the above set of equations does not suffer from
ap ap an; ap shortcomingg1), (2), and(4) mentioned in Sec. I.
(19_”i)T e - (W)T ] / (W - (W)T ) Ui - A value for o, the thermal diffusion factor of the same
S " i mixture at the same temperature in the ideal gas state, can be
By substituting in Eq.(3), Eq. (4) and the thermodynamic calculated with kinetic gas theory. Hirschfelder, Curtiss, and
relationshipZ = exp(~F/kT), whereF(T,V,n,,...,ny) is the Bird'2 provide a practical guide for its computation. Calcu-
Helmholtz free energy, and including constrait@s—(7) into lated values oh$ agree with measurements within 20%. A
the extremum determination, the mathematical problem is téreatment for binary isotope mixtures is given by Jones and
find niA and niB(i=1,---N) from Furry!® Experimental values obz$ can also be found in
. . Vargaftik 14
FA_ FA FB_ FB N
| At e 2 [N(nf+nf)

Frame of reference

N
+i;(n B — nf=nP)]-v> (nfof-nfuB) i, (8 The above equations have been derived with the center-

=1 of-volume as the frame of reference. An alternative frame of

where\|,... Ay, Ki,...,ky andv are Lagrange multipliers. reference is the center-of-mass. In this frame the center-of-

The mathematical treatment of E®) is given in the Appen- mass does not translate. In that case the constraint7q.

dix. The first step in the treatment is differentiation of the must be replaced by

expression between brackets in Ef) with respect to the N N

independent  variables n,...n8, n?,...n%, and S nfm=> ném,. (12)

A0 A0 RO 50 , . . =5 R =
ny ,...Ny, Ny ,....Ny . This results in N equations from
which the Lagrange multipliers are to be eliminated. Thewith Eq.(12) instead of Eq(7), the molar volume; in the

solution is: previous mathematical expressions must be replaced by the
0 0 molar massn; . Note that in this frame, mechanical equilib-
A i M A MNT N rium does not apply. The question, which frame of reference
T T i1 1 9 applies, and hence whether constraint Ef).or constraint
Svi SVy (i=1..N-1), © Eq. (12) is to be used, has not a straightforward answer in

) every case. It is evident that in experimental cells that are
whereA stands for the difference between biilandB, and fixed to the laboratory, and in which the material fluxes are

2 for the addition of bulbA and B. Another step in t{)e one-dimensionalno convectioh the center-of-volume is the
matrgematical treatment is the recognition of the tetM  frame of reference to be us€and hence constraint Eq)].

—xiB as the result of the kinetic contribution, which dependsAlso large-scale convection, such as in a ClausiusskBl

on the thermal diffusion factaw% of the ideal gas state as in column, is determined by the system walls, and requires the
experiment 1. This brings the kinetic contribution back intocenter of volume as a frame of reference. However, if small-
the equation. Folarge composition and temperature differ- scale convection is present, the movement of a fluid parcel is
ences one must solve the set of implicit E@.for the mole  constrained less by the walls of the system. Then the thermal
fraction differencesAx; numerically. The rest of this paper diffusion between adjacently moving fluid parcels is better
deals withsmall composition and temperature differences.described with the center-of-mass of the adjacent fluid par-
The solution is then the following set of equations in thecels as a frame of reference, and hence with @8). An
thermal diffusion factors: example of such a situation might be the application of ther-
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mal diffusion to the compositional variation in undergroundhN-1 ,
oil reservoirs in which small-scale convection currents areE x (1= )aTJ——(h ho)— (hi—hio)+RT(1—xi)
most likely to be present.

xad (i=1,..N)% (16)
I1l. SPECIAL CASES wherem is the molar mass of the mixture.

A. Alternative expression for multicomponent mixture

(center-of-volume is frame of reference ) D. Binary mixture (center-of-mass )

The Appendix shows that an alternative expression for

Egs.(10) and(11) is the following equatiort? Applying Ed. (16) to a binary mixture yields:

0 0
i hp—h2  hy—he
| _
—X(1—-Xj)« mym m m RT
jZl &X] ( ) Ti aT1= Lt 2 ! + ag (17)
My X1+ MaX; Iy « dpy
Lox, Lox,

= h=—h%) — (h—h)+RT(1-x)a? (i=1,..N),

v This corresponds to Haase’s expres$ionhich lacked a
(13)  derivation but was an educated guéssence our methodol-
ogy provides a basis for his expression. The conditions under
which Eg. (17) can be applied are discussed at the end of
Sec. Il.

whereh andv are the molar quantities of the mixture. The
largest term on the left side of E¢L3) is usually the one
with j=i. The sign ofay; is therefore determined mainly by
the term—(h;— h°)/v which is the enthalpy density. If this
term is larger than the same term for the mixture, then comg Binary mixture of which molar volume of a
ponenti concentrates at the cold side in most cases. component is small  (center-of-volume )

In some near-critical mixtures, the molar volume of one
B. Binary mixture (center-of-volume ) of the componentgsay component labeled Inay be very

Substitution in Eq(10) of Eq. (11) and the thermody- small compared to the molar volume of the other component.
namic relationshipxy (9, /9%;) =Xx(d,13x,) yields the In such a case, we have the following approximation for Eq.

following explicit expression for the thermal diffusion factor: (13:
0 0 hyh? RT
h,—h3 h;—h? gar = — 1(?; = ;. (18)
e TLLLE Y. KX X,
™ vt oaX, Iy duy ! !
X1 9%, X1 9%, Hence, the magnitude of the Soret effect is determined by the

enthalpy of the smaller species, and independent of the spe-
cific molar volumes. This result is of interest for near-critical
mixtures, such as discussed in Sec. V.

where the partial derivatives refer to the variablep,n,x; .
An alternative expression follows from E€L3):

V1 Loy 0
U(h h")—(h;—h3) RT

Q= g + > a%, (15) F. No input from kinetic gas theory available (both
yon M1 frames )
X1X2 X X1 X : ; ;
1 1 If the value of the thermal diffusion factor of the ideal

in which h=h;x;+h,x, and v=v,X;+v,X,. Expression gas state is not available, one may still calculate a value for
(14) or (15) replaces expressia2) of the old theory. These the thermal diffusion factor if one measured value dgr of
expressions yield the following qualitative observations. Bethe same mixture at the same temperature but at another
cause the enthalpy is usually negative, the species with thyessure and/or composition is available. The reason is that
largest negative molar enthalpy per molar volume tends tex? is independent of pressure and nearly independent of the
concentrate in the cold region. Second, the Soret effect inmole fractions.

creases with increasing nonideal behavior.

G. Dilute gases and dense isotope mixtures:
C. Multicomponent mixture  (center-of-mass is frame Negligible thermodynamic contribution  (both frames )

of reference ) In the ideal gas I|m|t we havéy=h? and dp;/dx;

In some cases, which are discussed at the end of Sec. i;RT/x;5;;, hence:ari= aT, Among the gases to which
the center-of-mass is a better frame of reference than thihis approximation applies are dilute gases and dense isotope
center of volume. In such cases constraint 84) must be  mixtures. The present theory covers these cases, but the re-
used instead of constraint E¢7). The set of Eq(13) has sultis very sensitive to the accuracy of input from kinetic gas
then to be replaced by: theory.
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TABLE |I. List of mixtures that are used as test cases for expres$i8)sand (16).

Pressure Temperature Mole fraction
Component 1 Component 2 (ban (K) comp. 1 # Reference

1 methane propane 40-75 346 0.23-0.58 17 Habse. (Ref. 16

2 methane n-butane 95-204 319-394 0.40, 0.49 96 Rutherford and Reef. 17

3 n-hexane n-octane 1 320 0.55 1 Korsching and WifRef. 18

4 cyclo-hexane benzene 1 313 0.2-0.8 3 Tichachek, Kmak,

Drickamer(Ref. 19

5 n-hexane benzene 1 309 0.1-0.9 5 Korschirgf. 20

6 n-heptane benzene 1 309 0.1-0.9 9 Korschirgf. 20

7 n-octane benzene 1 309 0.1-0.9 9 KorschiRef. 20

8 n-hexane toluene 1 296 0.25-0.75 3 “Her and Miller (Ref. 23

9 n-heptane n-dodecane 1 296 0.5 5 Trevoy and Drickan(igef. 22
10 n-heptane n-tetradecane 1 306-336 0.5 3 Trevoy and DrickatRaf. 22
11 n-heptane n-pentadecane 1 306 0.5 1 Trevoy and Drickarffaef. 22
12 n-heptane n-hexadecane 1 308 0.10-0.90 8 Shigtef. 23

13 n-heptane n-octadecane 1 306 0.5 1 Trevoy and Drickartieef. 22
14 methane carbondioxide 3-81 357 0.48 4 Beckaf. 24

15 methane nitrogen 4-80 357 0.50 4 BeckRef. 29

16 nitrogen carbondioxide 3-81 357 0.52 4 Becleef. 29

17 hydrogen nitrogen 3-78 357 0.50 4 Beckigef. 24

18 hydrogen carbondioxide 3-81 223-363 0.24-0.53 12 Be&ef 24, Narayanan and

Dickel (Ref. 25

H. Near-critical mixtures: Negligible kinetic gases The equation-of-stattEOS is a modified version of
contribution  (both frames ) the Soave EOS; the modification is the inclusion of an inter-

The thermal diffusion factor as a result of the kinetic action parameter in the mixing rule for tlaeparameter. In-
contribution, a$, is generally smaller than 0.3, while for teraction parameters are smaller than 0.1 for mixtures with

most nonideal mixturedu, /9x, falls in the range 0.4—1 and carbondioxide and smaller than 0.02 for all other mixtures.
at is above 3. Hence in highly nonideal liquids and denseThe mixtures are listed in Table*{=%

gases, the kinetic contribution can be neglected. The thermo- The a1 values calculated with expressi¢t¥) (frame of
dynamic contribution is particularly dominant for near- reference: center-of-volumeand those calculated with ex-

critical mixtures. pression(17) (frame of reference: center-of-maswe com-
pared to data in, respectively, Figs. 2 and 3. Hhevalues
IV. COMPARISON WITH EXPERIMENTAL DATA refer to component 2; for all mixtures the measured value is

The new theory has been compared with measured daRPsitive. The graphs have logarithmic scales to represent
for both frames of reference: center-of-volume and center-ofvalues over four decades. The signs of all calculated data,
mass. The comparison has been done for all measured Som¢cept a few datapoints of mixtures 4-8, 10, and 11, corre-
data, known to us, of mixtures that can be represented by owpond to measured data. Because of the logarithmic scale,
phase-behavior packagenainly hydrocarbons and simple these exceptions are not taken up in Figs. 2 and 3. When the

1,0E+03

01) C1+C3
[02) C1+C4
43) CB+C8
|~ 4) c-C6+CBHB
05) n-C6+CoH8|
+6) n-C7+C6H8
-7) n-C8+CEHS
% 8) C7+C12
#9) C7+C14
+10) CT+C15
@ 11) C7+C16
®12) C7+C18
= 13) CH4+CO2
a @ 14) CHA+N2
7Y I 15) N2+CO2
n A16) H24N2
X 17) H2+CO2
- ideal

1,0E+02

1,0E+01

calculated

1,0E+00

1,0E-01 +—

1,0E-02
1,0E-02 1,0E-01 1,0E+00 1,0E+01 1,0E+02

measured

FIG. 2. Comparison to measurements for 18 mixtures if center-of-volume is frame of reference.
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1,0E-02

1,0E-03

0 1) C1+C3
[12) C1+C4
A3) C6+CB

— 4) c-CB+CBHB
0 5) n-CB+CoHB
+8) n-CT+CBH8
-7) n-C8+CBH8
% 8) C7+C12
*9) CT+C14
+10) C7+C15
@ 11) C7+C16
©12) C7+C18
— 13) CH4+CO2
@ 14) CHA+N2
m15) N2+CO2
416) H2+N2

X 17) H2+CO2

- ideal

1,0E-02

1,0E-01

1,0E+00
measured

1,0E+01

1,0E+02

FIG. 3. Comparison to measurements for 18 mixtures if center-of-mass is frame of reference.

Soret data of all mixtures are taken together, both graphthe center-of-mass; for the near-critical mixture 1 the agree-
show that there is at least a qualitative agreement betweement is poor for both frames. In the case of liquid hydrocar-
measured and calculated data over four decades. Generalbpn mixtures 4—13 the agreement varies between fair and
the agreement is better for the center-of-mass as a frame pbor for both frames.
reference than for the center-of-volume. For most of the 18 mixtures the calculateq-value is

In the case of some mixtures, i.e., gaseous mixtures 14xtremely sensitive to the value of the specific molar volume
16-18, there is good to fair agreement for both frames obr the specific molar enthalpy. This means that calibration of
reference, and slightly better for the center-of-volume. In thehe molar volume or molar enthalpy of the mixture to mea-
case of the near-critical mixture 2, the agreement is fair foisured density data is not sufficient for an accurately calcu-

TABLE II. List of mixtures with type of agreement to data, some experimental condittengperature differ-
ence between chambers, presence of large-scale conyemtidrsensitivity ofe to specific molar volume and
specific molar enthalpy.

Quantitative Quantitative

agreement agreement Sensitivity Sensitivity
for c.o.v.,, for c.o.m,, AT Presence ratio ratio
Type mixture expr. (13 expr. (17) K convection Y sh
1 near-critical pod¥ poor 8 stirring 0.6-1.0 0.6-1.0
2 near-critical poor fair 10-20 stirring 0.1-2.2 0.1226
3 liquid at room cond. poor poor 40 yes 24 24
4 liquid at room cond. poor poor 10 stirring 12-390 12-390
5 liquid at room cond. poor fair not no stirring  7-93 7-93
given
6 liquid at room cond. poor poor not no stirring  4-168 4-168
given
7 liquid at room cond. poor poor not no stirring  4-297 4-297
given
8 liquid at room cond. poor fair not no stirring 6-22 6-22
given
9 liquid at room cond. poor poor 5 yes 23-41 3-21
10 liquid at room cond. fair fair 5-10 yes 24-32 1-36
11 liquid at room cond. fair poor 5 yes 31 197
12 liquid at room cond. poor poor 15 stirring 15-70 6-122
13 liquid at room cond. poor poor 5 yes 30 17
14 gaseous at high fair fair 140 no stirring 1.5-2.1 2.1-2.7
15 gaseous at high good poor 140 no stiring  1.4-1.6 0.9-1.9
16 gaseous at high fair fair 140 no stirring  0.8-1.0 0.5
17 gaseous at high good good 140 no stirring  0.2-0.3 0.2-0.3
18 gaseous at high fair good 140, 100  no stirring  0.5-1.3 0.0-1.6

goor: calculated value less than 50% or higher than 200% of measured value; good: calculated value between
80% and 125% of measured value.
Pof the 96 datapoints 92 hawh below 3.
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£
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pressure (bar)

lated value forat. To express this sensitivity, the sensitivity The table shows that the hydrocarbon mixtures 3—13 are
ratio sv for the specific molar volume is defined as the raticextremely sensitive to specific molar volume and specific
between the sensitivity aft to the specific molar volume by molar enthalpy. For some test data of these mixtures, a
the sensitivity of the molar volume of the mixture to the change in the molar specific enthalpy or molar specific molar

specific molar volume: volume has a 100 times greater effect on the thermal diffu-
sv=max[absfvl),absév?2)] sion factor than on the molar enthalpy or molar volume of
with the mixture. This means that the uncertaintyaip of many
datapoints is 100% if the uncertainty in enthalpy or volume
sp= L leT [ Ui 19 's1%. , , ,
ar dv; v du; An alternative test for mixture No. 2 is to use one of the

For example, asv-value of 5 means that a 10% uncertainty 96 Soret measurements on this mixture as a calibration, e.g.,
in the mixture volume due to one of the components correthe smallest measureg value (2.1) at the lowest tempera-
sponds to a 50% uncertainty in . A similar ratioshfor the  ture, by using thex? value calculated from this calibration
specific molar enthalpy is defined. Table Il lists the values ofpoint as input in all other 95 measurements. The result of this
these ratios for each mixture. exercise is shown for a selection of the 96 datapoints in Fig.

1000.0

&  measured
¢©.0.v. after calibration
c.ov.

= ==c.0.m. after calibration
——=—c.om.

thermal diffusion factor

0.1 T T T T T T T !
40 45 50 55 60 65 70 75 80

pressure (bar)

FIG. 5. Comparison to measurements for meth@nelefraction 0.3% + n-propane at 346 K.
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4 for both frames. This figure shows that a better match isnolar volumes, is mostly worse than 10%. According to
obtained for both frames, and that the match for the centerfable Il, a few extreme examples are the mixtures Nos. 4-7:
of-mass is best. the sensitivity of the thermal diffusion factor to the molar
The exercise is also done for the 17 datapoints of mixvolume of one of the components is about 10, several hun-
ture No. 1[with the smallest measuregr-value (0.8) at the  dred times the sensitivity of the mixture density to the molar
lowest pressure as a calibration pdirffigure 5, in which  volume of the same component.
some results of the calibration are shown, shows an im- There is thus a need for calibrating the EOS to new
proved match for both frames, particularly for the center-of-demands like the prediction of the Soret effect. Further re-
volume. There is, however, no match near the critical pointsearch in this area is recommended. One may even reverse
the problem: measurements of the Soret effect may reveal
more about the phase behavior and thermodynamic proper-
V. DISCUSSION ties of the components in the mixture.
A. Equation-of-state

In all papers in which our and other’s expression for theB- Recipe for improved prediction
thermal diffusion factor are compared to measured 8&tat With the present EOS accuracy, it seems from Figs. 3

itis Imp|ICIt|y assumed that the EOS used for the Calculationand 4 that an improved prediction of the Soret effect can be

of molar enthalpy and molar volume yields accurate valuesghtained by using one measured datapoint as a calibration.
This assumption is doubtful. The effect of the EOS on therpe recipe is then:

value of the thermal diffusion factor can be illustrated very o o
well by comparing our calculation of the thermal diffusion (1) calculate the thermal diffusion factor with either E&3)
factor of the methane/propane mixture in our previous paper  ©" EQ: (16); o _
to the recent calculation by Shukla and FiroozaB&diheir ~ (2) determine the sensitivity of a to input data of the EOS
calculated values for methane/propane at 346 K and 55 bar  With Eq. (19); o _ _
are 2—3 times larger than the values presented in our prevf-?’) in case of high sensitivity, calibrate with measured data.
ous papef, although the same mathematical expression for
the thermal diffusion factor is uséé. C. Linearilization

Another illustration of the insufficient accuracy of EOS In most tested mixtures the temperature difference be-
is the prediction of the critical pressure of the methane/,[Ween the chambers of the cell was small compared to the
propane system: 62 bar according to the measurements Q{oage absolute temperature. However, in mixture 3 and
Haase and 65.8 bar according to our phase-behavior paCkanaseous mixtures 13—18 this is not the césee Table I\
Since the numerator in the expressiondarbecomes zero at ., hese mixturesy; values are not symmetric over the

the critical point,ay is very sensitive to the location of the o nerature range around the average temperature. As a con-
critical point. This explains the absence of a match near thgg ence, linearization is not allowed and one must solve the
qutlcal point, even after ca_hbratlon as in Fig. 5. The dev'a'implicit Eq. (9). For comparison to measurements one then
tion by an order of magnitude between measurement anfloaqs the composition of each chamber, which is not avail-
theory of ag in the near-critical regime of the methane/ able from the relevant pap&[For mixture 3 these compo-
propane mixture must therefore be attributed in the first plac%itions are available. but the measurement is done in the

to an inadequate EOS. Furthermore, the EOS in the SUpefesence of large-scale convection for which the mathemati-
critical region is an extrapolation of the EOS in the subcriti- ., description with Eq(9) is invalid] Hence only a quali-

cal region _and IS not bas_e_:d on d_ata relgtmg to the physicgly;, o comparison to data is possible for these mixtures.
properties in the supercritical region. This means that small

errors in the EOS of the supercritical liquid region are likely. D. Frame of reference
The present EOS’s are generally not intended for pre-""
dicting the Soret effect, which depends on thiferencebe- We have shown in Sec. Il that the frame of reference is
tween component properties. They are calibrated only fothe center-of-volume if the experimental setup is attached to
predicting quantities that depend on thédition of compo-  the laboratory and if the fluid motion is one-dimensional.
nent properties. The prediction of the magnitude of the Sorelowever, the comparison with measurements in Sec. 1V, in
effect with quantities derived from the EOS is therefore genparticular those for mixture 2 of methane amebutane,
erally more sensitive to an error in a component propertyshows that the center-of-mass compares generally better to
(specific molar volume and specific molar enthalfhyan is,  data than the center-of-volume. Since the experimental setup
for example, the fluid density. But even the density poses & attached to the laboratory, a possible conclusion is that the
problem. For example, near-critical gas/condensate mixtureffuid motion was not one-dimensional in the measurements.
are notorious for a bad prediction of density and molar vol-Measurements that were designed to eliminate convection
ume; deviations of more than 10% are not uncommon. Al-might have had convection because of the stirring in the
though the volume translation method has been developed tthambers of the experimental cell. Stirring, which promotes
match the measured density of the mixture, this method i uniform mixture composition in each chamber and helps to
not intended for the prediction of the molar volume of eachattain the steady state quicker, introduces two-or three-
component in the mixture. Hence the accuracy of the predicdimensional fluid movement. Tichachek al® found a re-
tion of the magnitude of the Soret effect, which depends oration between separation and stirring speed.
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E. Suitability of measurements to test theory

able that fulfill the following demands:

L]

It appears from Table Il that there are no test data avail-

4
sufficiently reliable EOS, hence small sensitivity to
EOS 5

small temperature difference or all relevant data avail-
able in paper in case of large temperature difference

no large-scale convection
no stirring (see also next paragraph

If one drops the demand of no stirring, then two mixtures
remain: those data of mixture 1 and 2 that are far from criti-

cal

condition. For future measurements it is recommended

that all above demands be fulfilled.

Experiments without stirring in a microgravity environ-

ment seem to be the most reliable way to eliminate convec-

tion

. Therefore, the Microgravity Research Center in Brux-

elles carries out a project in sp&&éor the European Space (6)
Agency. It may result in a reliable test of our theory.

F. Application to cross-effect in isothermal diffusion
(“Hertz effect” )

(7)

The methodology of the theory presented in Sec. Il is not

restricted to application to the Soret effect. In principle, ev-

ery

cross-effect from irreversible thermodynamics can be

modeled with this methodology. An example is the cross-
effect between diffusion fluxes in an isothermal mixture of

three or more components with a spatial concentration dif-
ference. This cross-effect is the cause of diffusion of a com-
ponent against its own concentration gradient. Gustav Hertz
was the first to use this cross-effect for the separation of
mixtures. Using the methodology presented in this paper, we
have developed for the first time a calculation method for thé‘IST OF SYMBOLS

magnitude of this cross-effect, which we call Hertz effect,C.0.m.
without using input of any measured diffusion coeffici&ht. C.0.v.
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mal diffusion factor must be usdéq. (13) or (16) for a
multicomponent mixture and Ed14) or (17) for a bi-
nary mixture.

The theory can be used also for systems with a large
temperature and/or concentration difference. Seg%q.

On comparison with nearly 200 measured datapoints of
18 different liquid and gaseous mixtures, the predicted
thermal diffusion factor shows agreement within a factor
2 on average over 4 decadésetween 0.01 and 100
Closer agreement cannot be expected because of the ex-
treme sensitivity of most datapoints to input from the
equation-of-state. The center-of-mass as a frame of ref-
erence matches measured data better than the same
theory with the center-of-volume as a frame of reference.
This can be explained by the presence of two-or three-
dimensional fluid movement in the experimental cells. A
possible cause for this movement is the stirring during
the measurements to reach the steady state quicker.
The present equations-of-state, even those that are cali-
brated for use in the chemical and petroleum industry,
require modification for the calculation of the Soret ef-
fect, because of a higher demand in accuracy. Further
research to improve the accuracy of the EOS is recom-
mended, particularly for near-critical conditions.

It is recommended to carry out measurements of the
Soret effect in which a small temperature difference is
applied(or to report the composition of each chamber if
a large temperature difference is appliesh which no
stirring is applied and convection is absent, and to select
mixtures of which the thermal diffusion factor is not
very sensitive to input data from the equation-of-state.
None of the measurements on the 18 mixtures fulfill
these demands.

center-of-mass
center-of-volume

EOS  equation-of-state

F Helmholtz free energy

g gravitational acceleration
VI. CONCLUSIONS AND RECOMMENDATIONS h molar enthalpy

(D

)

3

The present comprehensive theory of the Soret effectk
which yields a set of Eqs(13) for a multicomponent m
mixture and expressiofl4) for a binary mixture, incor- N
porates both the thermodynamic and the kinetic contrin
bution to the Soret effect. p
The new description applies to any multicomponent mix-R
ture, gaseous, liquid, or solid. The description is particu-T
larly useful for nonideal mixtures, such as concentrated/
solutes and near-critical mixtures. Applications to solids,v
polymer solutions, and colloids have not been tested, bux
are possible in principle. z
The theory has been formulated in several frames of ref-
erence. The frame of reference for thermal diffusion isa+
normally the center-of-volume. When small-scale con-A
vection is present, the frame of reference for the thermal
diffusion between moving fluid parcels may be betteru
described by the center-of-mass. The frame of referencg
determines which mathematical expression for the thers,

Boltmann’s constant

molar mass

number of components in mixture

mole number

pressure

gas constant

absolute temperature

volume of bulb

molar volume

mole fraction

canonical partition function of two-bulb systeif
with label: single bullp

thermal diffusion factor

operator for the difference between bland bulb
B

chemical potential

density

operator for the addition of bulB and bulbB
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superscripts:

A, B bulb label
0 ideal gas state
subscripts:

i, j, K, N component label

APPENDIX: MATHEMATICAL TREATMENT

In this Appendix, the solution of minimum statement Eq.
(8) is calculated. From differentiation of the expression be- (ﬂ
tween brackets in Eq(8) with respect to the independent

respectively, and us-

variablesn*,n*" n? n®" (i=1,..N),
ing the thermodynamic relationship

=
=ui,
an VN, I

whereu; is the chemical potential of componentt follows
that

(A1)

:U‘l

AN K wh=0 (i=1,..N), (A2a)
_MAO

TA‘ —k=0 (i=1,..N), (A2Db)
B

T—'B—xi+,<i+vvf‘=o (i=1,..N), (A2c)
—,u-BO

TB‘ —k=0 (i=1,...N). (A2d)

Adding Eg.(A2b) to Eqg. (A2a) and Eq.(A2d) to Eqg. (A2c)
to eliminatex; results in:

P
'TA' —Ai—wl=0 (i=1,..N), (A3a)
M-B—MBO
'TB' —N+wP=0 (i=1,..N). (A3b)

Subtraction of Eq.(A3b) from Eq. (A3a) to eliminate \;
gives:

A_ A0 B_  BO
Mi T M Mi T M

TA TB U(Uﬁ‘f’UiB):O

(i=1,...N),
(A4)

from which follows Eq.(9). Developmgu, +v in the above 2
equation with a Taylor expansion around the average of bulp=?
A and bulbB, ignoring the third and higher order derivatives,
and using theA symbol to denote the difference between

bulb A and bulbB gives:

(A5)

| 0
A(¢>—A(%)—2vvi=0 (i=1,..N).

Substitution of the equation with=N to eliminatewv gives
an equation without Lagrange multipliers:

L. J. T. M. Kempers

= (i=1,..N-1).
(A6)

DevelopingA(u;/T) as a Taylor expansion with indepen-
dent variablesT,p,n,Xq,....Xy_1 t0 make use ofAp=0

(which follows from the constraint of zero translation of the
center of volumgand of (@u; /T/an)T,p,xj=0 and ignoring

second and higher order derivatives gives

&,u,/T
_( aT ) AT
P.N.X]

T

I i
X

1
TZ

) Ax;  (k#},N). (A7)
T,p,n,x

A thermodynamic relationship for the molar enthalpy of
component is:

ho— T2 ﬁui/T AS
p,n,x-
In the ideal gas state the terTnA(,uI /T) is:
Bi)__poAT RT o iz
TA T)_ h; T + % Axy  (i=1,..N). (A9)

Note that the mole fraction differencésc” are those of the
ideal gas state: relationshif), when applied to the ideal gas
state, yields:

0 o AT
AX; =—xi(1—xi)aTi7 (i=1,...N), (A10)
wherea?, is the thermal diffusion factor in the ideal gas state
and is quantified by kinetic gas theory. Finally, substitution

of Eq. (A7)—(A10) and definition(1) in Eq. (A6) gives:

"< (1w 1 dpy 1
j=1 \Uj (7XJ UN (7XJ XJ( X])aTJ
:hN—ha_hi—hE+RT((1—x,->a%_(1—xN>a%

UN Uj Uj UN
(i=1,..N—1), (A11)
where the partial derivatives refer to the variables
T,p,n,Xq,... Xn—1. A shorter expression for EgA11) is:'®

N—1 ,LL
|
o ——Xj(1=X)) ay;

:;i(h—ho)—(hi—hio)-irRT(l—Xi)agi (i=1,.N),

(A12)

whereh andv are the molar quantities of the mixture. This
equation can be derived by multiplying E&\11) with x;v;,
summing ovei (i=1,..N), and substituting Eq11) and the
Gibbs—Duhem equation:
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