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A phenomenological theory of the Soret effect in a multicomponent mixture is presented. The 
theory is applicable to mixtures in which the Soret effect is determined mainly by the energetic 
interaction between the molecules, such as liquids and dense gases, and it is based on the 
assumption that the steady state has a maximum number of possible microstates. The 
equations derived for the separation enable the thermal diffusion factor a T of each component 
to be calculated using only an equation of state for the mixture and the standard state enthalpy. 
With a sufficiently accurate equation of state, the calculated aT values correspond well with 
the data on measured a T values of liquids and dense gases and show a better correspondence 
than Haase's theory. The method presented may be applicable to other coupled transport 
phenomena in the steady state. 

I. LITERATURE 

The Soret effect (also called thermal diffusion) is the 
well-known tendency for a mixture to separate under a tem­
perature gradient in the absence of convection. The separa­
tion by the Soret effect is usually small, but it can be large if 
the mixture is at a near-critical condition (such as the natu­
ral state of some underground oil reservoirs). In the steady 
state, which is characterized by a zero mass flux, the set of 
equations between the compositional gradient in a N-com­
ponent mixture and the temperature gradient applied is l

-
3 

- VT . 
VXi = -xi(1-xi )aTi T (I = 1, ... ,N - 1), (1) 

where Xi is the mole fraction of component i, T is the abso­
lute temperature, a Ti is the thermal diffusion factor of com­
ponenti. (WedenoteaTi asaT in bindarymixtures.) Com­
ponents with a positive a Ti concentrate in the colder region. 
The thermal diffusion factor depends on temperature, pres­
sure, and mole fractions. At low pressure the thermal diffu­
sion factor of gaseous binary mixtures is roughly indepen­
dent of the mole fractions of the components. 

For gaseous mixtures, kinetic gas theory enables accu­
rate calculation of aT. For liquid mixtures, however, the 
accuracy of the calculation methods reported to date for aT 
is limited. This paper presents an alternative, more accurate, 
calculation method for liquids. The application of the meth­
od is not limited to the Soret effect; it may be possible to use it 
for other coupled transport phenomena in the steady state. 

The kinetic theory of gases3 predicts that the thermal 
diffusion ratio is largest for elastic spheres and that it de­
creases as the molecules become softer, i.e., as the exponent 
of the repelling forces diminishes. The theory also predicts 
that when two types of molecule are the same size, the mole­
cules with the greater mass will concentrate in the low-tem­
perature region. Similarly, if molecules have equal mass the 
larger molecules will concentrate in the low-temperature re­
gion. The experimental aT values of binary gas mixtures at 
atmospheric pressure are of the order of 0.1 and smaller. 4 

While in gases the molecular mass or size mainly deter­
mines the thermal diffusion, in liquids the energetic interac­
tion and, to a lesser extent, the size or form ofthe molecules 

are the main parameters. Kramers and Broeder mention 
that components enriching at the cold side are: 

(1 ) usually those with the smaller molecular volume for 
substances with equal boiling points; 

( 2 ) those with the smaller surface areas (branched com­
pounds) for substances with nearly equal boiling 
points and molecular volumes; 

(3) those having the higher boiling points for substances 
with equal molecular volume or surface; 

( 4 )those having the greatest number of C atoms for a 
homologous series, and 

(5 )the heavier molecules of isotopes. 
Kramers and Broeder used a Clusius and Dickel-type of 

column with a convection current to increase the separation 
caused by thermal diffusion. In such a column, components 
with a positive thermal diffusion factor concentrate at the 
bottom. Their experiments show that the sequence of separa­
tion of hydrocarbon mixtures from the top to the bottom is 
light normal paraffins, heavy normal paraffins, branched 
paraffins, naphthenes, and monocylic aromatics, bicyclic 
aromatics. This is confirmed by Jones and Milberger,6 who 
observed that in several mixtures of a normal paraffin and a 
cyc1oparaffin, the normal paraffin tends towards the hot re­
gion. These authors state that this may indicate that long­
chain molecules, when present together with more compact 
ring-structure types, concentrate in the hot region regardless 
of their relative molecular weight. 

In addition to qualitative predictions, quantitative pre­
dictions for the thermal diffusion factor of binary liquid mix­
tures have also been reported in the literature7- 11 and com­
pared with experimental data. The models are discussed 
briefly below to show that formulation of another model is 
justified. 

Mortimer and Eyring7 present a model for the Soret 
effect (and the Dufour effect) that is based on elementary 
transition state theory. The application of their model is lim­
ited to ideal mixtures of molecules of nearly equal size. The 
expression they derive for aT requires values for the quanti­
ties t1Hi' the standard-state molal enthalpy change for the 
activation process in which the molecule moves from the 
initial to the transition state of high potential energy between 
the initial and final states, and for t1S.-t1S2 , the difference in 

J. Chern. Phys. 90 (11). 1 June 1989 0021-9606/89/116541-08$02.10 @ 1989 American Institute of Physics 6541 

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.241.87.97 On: Tue, 19 Nov 2013 14:43:14



6542 L. J. T. M. Kempers: The Soret effect 

entropy change for the same activation process. 
Tichacek, Kmak, and Drickamers derive the following 

expression for aT from the theory of irreversible thermody­
namics that is applied to a system fixed in the laboratory: 

"" (a!',) [~,r - ~:l, 
(VIX I + V:zX2)X I -

aX I T,p,n 

where Vi is the specific volume of component i, III is the 
chemical potential of component 1, P is the pressure, and n is 
the total number of moles. The quantity Q ~ is defined as the 
difference between the total enthalpy transported by one 
mole of moving molecules of component i in the isothermal 
solution and the average enthalpy of one mole of molecules 
of component i in the same mixture. Tichacek et al. state that 
the Q ~ quantity is that part of the activation energy for mo­
tion of component i which is transported with the moving 
molecules. Having made this interpretation, they connect 
the activation enthalpy transported to the viscosity of the 
mixture and they extract values of the transport enthalpy 
from measurements of the viscosity and from use of Eyring's 
viscosity model. Further, since the partial activation enthal­
py of a compound in the mixture is not available, a linear 
mixing rule is assumed. 

Dougherty and Drickamer9 give a similar, but slightly 
different, interpretation of the quantities Q~, but their inter­
pretation is no more usable than the one given by Tichacek 
et al. s 

Rutherford and Drickamer lO take the transport en thal­
pies as a starting point for further analysis, which they base 
on the theory of regular solutions, The expression they de­
rive for aT requires the value of a molecular parameter 
¢i U = 1,2) which is defined as the number of molecules 
moving into a hole left by a molecule of the type i as it jumps 
to another hole. 

The relationship between the energy transported and 
the activation energy for motion remains somewhat prob­
lematic in these models. Whitaker and Pigford, II e.g., intro­
duce a fitting parameter C in the theory ofTichacek et al. to 
calculate Q~. As a result only the trend of aT with mole 
fraction can be predicted. In some mixtures a T is not very 
dependent on C and a prediction of the absolute value of a T 

is possible. Dougherty and Drickamer relate the two quanti­
ties by: energy transported = 1/2 activation energy for mo­
tion. They propose this relationship because it is in good 
agreement with their measurements. However, even when a 
sound theoretical basis can be given to such a relationship, 
calculation of the activation energy for motion remains a 
problem. The introduction of a model for another transport 
process is required to connect the activation energy to a mea­
surable quantity, such as viscosity. 

Haase l2 follows another approach. From the phenome­
nological equations of irreversible thermodynamics, he de­
rives the following expression for aT: 

m lh2 - m2hl + m lm 2bla 
a T = , 

(all I) (mlx l + m 2X2)XI -
aX I T,p,n 

where mi is the molecular mass of component i, hi is the 

molar enthalpy of component i, and a and b are unknown 
phenomenological parameters. To determine the ratio b la, 
Haase relates it to a~, the thermal diffusion factor at the 
standard state (in this case, the ideal gas limit p-+O), as 
follows: 

mlh ~ - m2h 7 - m lm 2b
DIaD 

a~ = -::........;=------'---'------
(mlx l + m 2x 2)RT 

where R is the gas constant and the superscript 0 refers to the 
standard state. Without proof, Haase then states that b I a is 
independent of pressure and therefore b I a = b DiaD. Haase13 

tries to validate this statement by finding an analog for the 
expression for thermodiffusion from that of pressure diffu­
sion. As a result, his expression for a T is 

ml(h2-h~)-m2(hl-hn a~RT 
a T = +-----

(all I) (all I) (mlx l + m 2x 2)x l - XI -ax I T,p,n ax I T,p,n 

(2) 

The value of a~ must be derived from kinetic gas theory or 
from a measurement. 

The pressure independence of b I a is confirmed by mea­
surements on gas mixtures at low pressure, but this does not 
necessarilyimplythatbla = bDlaD. (A relationship between 
b la and b DiaD that contains, e.g., a ratio v l lv2 is also possi­
ble.) Haase 14 mentions that expression (2) was more or less 
a guess; it appears that Eq. (2) predicts experimental values 
of a T rather well. 

In summary, the most complete theory of the Soret ef­
fect in liquids is Haase's. The thermodynamic quantities in 
Haase's expression for a T can be calculated with an equation 
of state without further assumptions and a~ can be calculat­
ed with kinetic gas theory and no measurement of a physical 
property of the mixture is required. For this reason, Haase's 
theory is compared to the multicomponent theory for aT 

presented in this paper. 

II. NEW THEORY OF THERMAL DIFFUSION 

For modeling thermal diffusion, the same system is con­
sidered as that used for measuring the thermal diffusion fac­
tor.3 Two bulbs, A and B, with equal and constant volume V 
are joined by an insulated rigid tube of small diameter and 
filled with a multicomponent mixture (see Fig. 1). The di­
ameter of the tube is small enough to eliminate convection 
currents. Initially, the temperatures of the bulbs are equal as 
are the mole fractions of the mixture in the bulbs. Then the 
valve in the tube is closed and the temperature of bulb A is 
changed by a small amount ll. T 12 to TA and the temperature 

Bulb A BuibB 

FIG. 1. Two-bulb apparatus for thermal diffusion. 
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of bulb B is changed by - aT 12 to TB. After the valve has 
been reopened, there is some interchange of mass between 
the bulbs until the steady state is reached. In the steady state 
there is a heat flux from A to B, but the net mass flux of each 
component is zero, while in each bulb the thermodynamic 
properties, such as the mole fractions x1 and x~, are uniform 
and constant. The change-{)f composition between the initial 
state and the steady state in bulb A and in bulb B is denoted 
by ax;l2 and - ax;l2, respectively. 

To calculate the magnitude of the Soret effect in the two­
bulb system, we determine the maximum of the canonical 
partition function Z of the system in the final, steady state. 
With this approach, the two-bulb system is characterized by 
a mean temperature T, a volume V for each bulb, a uniform 
pressurep, a mean mole number ni (i = 1, ... ,N) and, in addi­
tion, a small temperature difference aT and a small mole 
number difference ani (i = 1, ... ,N) between the bulbs. By 
maximizing the partition function, an expression for an i can 
be derived in terms of, among other things, the given quanti­
ties T,p,n),. .. ,nN,aT (Sec. II A). The result is an expression 
for aT that differs from Haase's expression. Haase's expres­
sion is derived with the same approach (in Sec. II B) to show 
the difference in the assumptions underlying the derivations. 

A. Derivation 

We start our analysis by noting that the role of the parti­
cle character of the mixture in thermal diffusion is different 
for gases and liquids. As mentioned in the literature review, 
the molecular mass or size largely determines thermal diffu­
sion in gases and leads to a nonzero a T in the ideal gas limit, 
while in liquids the energetic interaction is the main factor. 
By using the canonical partition function S dO exp( - E 1 
kn, where 0 is the degree of occupation of energy level E 
and k is Boltzmann's constant, we cannot expect a correct 
description of thermal diffusion in diluted gases, since, e.g., 
in an ideal gas mixture the energy is not dependent on the 
composition. However, for liquids and dense gases the most 
important contribution to the Soret effect is described by the 
approach presented in this paper. 

Having identified the application of the method, we 
must now find an expression for the partition function of the 
two-bulb system. The canonical partition function z!' of 
bulb (or subsystem) A is a function of the variables TA, 
VA ( = V), nt, ... ,nt or, alternatively, it is a function ofthe 
averaged variables, T, v,n1, ... ,n N and the departure variables 
aT /2, an)/2, ... ,anNI2. Similarly, the partition function~ 
of bulb B is a function of the variables TB, VB ( = V), n~, 
... ,n~ or, alternatively, like z!', it is an equal function of the 
averaged variables T, V, n ), ... ,n N and the departure variables 
- aT 12, - an)/2, ... , - anN/2. If it is assumed that the 

steady state is the macroscopic state accomplished by a max­
imum number of microstates, the steady state is treated as an 
equilibrium state that can be calculated from the maximum 
of the partition function. Ifwe ignore for a moment the inter­
dependence of the number of moles of a particular compo­
nent in a bulb and the number of moles of the same type in 
the other bulb, then we may treat the bulbs as independent 
subsystems of the two-bulb system. If the contribution of the 
connecting tube is ignored, the partition function Z(z!', ~) 

of the total system is then equal to the product of the parti­
tion functions of the bulbs: 

Z(z!',~) = z!'.~. (3) 

The value of ani in the steady state can be calculated 
from the maximum of the partition function with the follow­
ing two constraints. The first constraint is material conser­
vation, expressed by 

nt + n~ = n~ (i = 1, ... ,N), (4) 

where n~ are constants. The second constraint refers to me­
chanical eqUilibrium in the steady state, i.e., uniform pres­
sure: 

(5) 

Therefore, the mathematical problem is to find nt and 
n~ by determining 

maximum {z!"~} (6) 

with the constraints nt + n~ = n~ (i = 1, ... ,N), 

pA =pB. 

By substituting the relationship 

Z= exp[ - ~], 
where F( T,p,n), ... ,nN) is the Helmholtz free energy of a 
bulb, and integrating the constraints into the extremum de­
termination, statement (6) corresponds to 

{
FA FB N } 

minimum A + B - L Ai (nt + n~) - V(pA - pB) , 
T T i=1 

(7) 

where Ai and v are Lagrange multipliers. From differenti­
ation of the expression between brackets in Eq. (7) with 
respect to the independent variables nt,n~ and using the 
thermodynamic relationship 

(aF) = Pi' 
ani T,V,njoFi 

where Pi is the chemical potential of component i, and using 
the definition: 

Pi = (ap
) , 

ani T,V,nJ#i 

it follows that 

pt A - - A. - Vp. = 0 (i = 1, ... ,N), TA ' , 

B 
Pi 1 B 0 

- - /I.,' + Vp" = (i = 1, ... ,N). 
TB 

(8a) 

(8b) 

Subtracting Eqs. (8a) and (8b) and eliminating v gives 

(ptITA) - (p~/TB) 

pt+p~ 

(p~/TA _ (p~/TB) 

p~+p~ 

(i= 1, ... ,N-l). (9) 

Developing pt + p? with a Taylor expansion around the 
average of bulb A and bulb B and ignoring the second and 
higher order derivatives of Pi gives 2Pi' Further, the ratio 
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pJpN = (aplan; h,v.n}#/(aplanN h,v,n}#N is equal to 
(av Ian; h,p,n}#/(av lanN h,p,nHN; this ratio is by defini­
tion equal to v;!vN, where V; is the specific volume of type i, 
Shifting to the set of independent variables T, v,p,x ", .. ,X N _ , 

to make use of a v = 0 and ap = 0, developing (Ilt ITA) 
- (Il~ ITB) with a Taylor expansion around the average of 

bulb A and bulb B, and ignoring the second and higher order 
derivatives of Il;!T gives 

(
all.IT) 1 N-'(all') -'- aT+- L -' .:lxj 

aT P. v,x} T j = , aXj T,p, V.Xk "} 

(i= 1, ... ,N). 

The above derivatives at constant V can be rewritten as de­
rivatives at constant n because (allJanh,p,Xk = O. Finally, 
we have the thermodynamic relationship 

h. = _ T2( aIlJT) 
, aT p,n,x}' 

where h; is the molar enthalpy of component i. Substituting 
the above into the set of equations (9) gives 

[
hi hN] aT N-' [ 1 all; 1 allN ] - --- -+ L ----- .:lxj=O 
V; VN T j=' V; aXj VN aXj 

(i= 1, ... ,N -1), (10) 

where the partial derivatives refer to the variables 
T,p,n,x",,,,xN _, . From this set of equations the unknown 
mole fraction variations can be determined and hence the 
thermal diffusion factors. 

The explicit expression for a T of a binary mixture can be 
derived by substituting Eq. ( 1) and the thermodynamic rela­
tionship 

X,(all') = X2(aIl2) 
ax, T,p,n aX2 T.p.n 

into Eq. (10). The result is 

aT = v,h2 - v2h, (11) 

(v,x, + V2X2)X,(all ,) 
ax, T,p,n 

The magnitude of all quantities in Eq. (10) [and Eq. 
( 11 ) ] can be calculated with an equation of state. It is noted 
that the chemical potentialll; (T,p,xj ) ofacomponent in the 
state considered (temperature T, pressure p, mole fractions 
xj ) includes the chemical potential Il~( n of the standard 
state, which is mostly taken as the pure component in the 
ideal gas state. No general expression for Il~ is available and 
we have to rely on experimental data. Extra measurements 
are not needed since existing data bases can be used (e.g., 
Refs. 15 and 16). However, the effect of h ~ on aT is in most 
cases negligible. 

B. Comparison with Haase's theory 

Comparing expression (11) with Haase's expression 
(2) reveals some differences. The main difference between 
the expressions is that ( 11) contains the specific volume as a 
weighing factor, whereas (2) contains the molecular mass. 
By mUltiplying all specific volumes in expression ( 11 ) by the 
mixture density p, it can be shown that expression (11) does 

not correspond to Haase's expression (2) since 
(aplax;) T,p,n'X}#i is not usually equal to zero. 

The second difference between the two expressions is 
that expression (11) requires the enthalpy of the standard 
state, while Haase's expression (2) does not require the en­
thalpy of the standard state but only the departure of the 
enthalpy from the standard state, h; - h~. However, 
Haase's expression requires the thermal diffusion factor of 
the standard state from kinetic theory or from an extra mea­
surement. (The effect of a~ on the value of aT of liquids is in 
general small. ) 

In spite of the differences between the two expressions 
for aT' there are also apparent agreements. The rough simi­
larity between the two expressions for aT and the fact that 
Haase uses the center of mass as a reference instead of the 
laboratory frame suggest that the expressions can be derived 
by the same approach in a different frame of reference. It is 
shown below that Haase's expression can indeed be derived 
from the maximalization of the partition function with the 
center of mass as a frame of reference. 

Assume that the two-bulb system is not fixed to the labo­
ratory frame but moves with the center of mass of the fluid. 
In the closed two-bulb system, this assumption implies that 
the total masses in the bulbs, MA and MB, stay constant. 
Then, since MA and MB are equal at the start of the thermal 
diffusion process, they are also equal in the steady state. 
Hence, the contraint on statement (6) is 

MA=MB, (12) 

where MA and MB are defined by 
N N 

MA= L ntm; and MB = L n~m;. 
;= , ;= , 

with m; the molecular mass of component i. To give the 
system the same number of degrees of freedom, constraint 
(5) on uniform pressure is dropped. The mathematical 
problem is now to find 

{
FA FB N 

minimum A + B - L A; (nt + n~) 
T T ;=, 

_V(MA_M B)}, (13) 

with respect to nt,n~. Hence, with a calculation similar to 
that in the previous section it follows from Eq. (13) that 

_ [.!!!..._~]aT + Ni ' [_I_aJL; __ 1_ aIlN].:lxj =0 
m; mN T j=' m; aXj mN aXj 

(i = 1, ... ,N - 1), (14) 

where the partial derivatives refer to the variables 
T,p,n,x,,· .. ,xN_' . 

The explicit expression for aT' of a binary mixture de­
rived from Eq. (14) is 

m,h2 - m2h, aT = -----!..-=----=.--'----

(m,x, + mzX2)X1(all ,) 
ax, T,p,n 

(15) 

Applying the ideal gas limit on Eq. (15) gives 

o m,h~ - m2h? 
aT = ----=--=----=--=-

(m,x, + m2x2)RT 
(16) 
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Substitution of Eq. (16) into Eq. (15) gives Haase's expres­
sion (2). Since in a measurement the two-bulb system is 
fixed to the laboratory frame and not to the center of mass of 
the fluid and the condition of uniform pressure must be satis­
fied, Haase's expression cannot be expected to correspond to 
measured aT values. If the density of the mixture does not 
depend to any great extent on the composition, Haase's theo­
ry will be a good approximation. This is in line with his 
remark14 that it appears that expression (2) predicted aT 
values rather well. 

III. COMPARISON WITH EXPERIMENTAL DATA 

The multicomponent model formulated in Sec. II A has 
been checked against the limited experimental data available 
for binary liquid mixtures. For this purpose the quantities in 
the set of equations (10) were calculated with the Soave 
equation of state and, for comparison, also with the Peng­
Robinson equation of state. We actually used modified ver­
sions of the Soave equations of state that are commonly used 
and that contain experimentally determined correlations for 
the temperature-dependent interaction parameters (Jij in the 
mixing rule for the a parameters: 

amix = l:ijXiXj (1 - (Jij )vaivaj" 

The correlations that we used are particularly useful for va­
por/liquid calculations at pressures of the order of 1 and 10 
MPa. The calculated values of the interaction parameters 
that were used as input for the equation of state are listed in 
the tables. 

In addition to the calculation of a T with expression 
( 11), we have calculated a T with the adapted Haase expres­
sion (15) and, for those mixtures for which an a~ value is 
available, also with the Haase expression (2). We have com­
pared the calculations of all liquid mixtures that are repre­
sented accurately by our phase behavior package and for 
which a measured aT is available. The mixtures are: 

(1 ) methane and propane at 346.08 K and 5.6 MPa, at 
six different mole fractions in the near-critical re­
gion, 

(2) methane (mole fraction 0.34) and propane at 346.08 
K, at seven different pressures in the near-critical 
region, 

(3)n-hexane (mole fraction 0.55) and n-octane at 320 
K and atmospheric pressure, 

( 4 ) carbon dioxide and hydrogen at four different dense­
gas conditions, 

(5)cyclohexane (mole fraction 0.5) and benzene at 313 
K, atmospheric pressure and three different mole 
fractions, 

(6)various liquid mixtures of a normal paraffin with a 
naphthene, at 313 K and atmospheric pressure 
(only qualitative measured data available), 

(7)idem for various mixtures of a branched paraffin 
with a naphthene, a naphthene with a monocyclic 
aromat, and a monocyclic aromat with a multicyclic 
aromat. 

In the discussion below, the measured aT values are 
denoted by a~, the a T values calculated with our model by 
a~, those calculated with Haase's adapted expression (15) 

TABLE I. Comparison of aT values as calculated and as measured for a 
mixture of methane and propane at 346.08 K and 5.6 MPa at various mole 
fractions (equation of state: Soave; interaction parameter: 0.009 812). Su­
perscript K refers to the model presented here. Superscript m refers to mea­
sured values. Superscript H refers to Haase's adapted expression (15) 
(without a~ ). Superscript Haase refers to Haase's expression (2) (contain­
ing a~). Superscript H-BWR refers to calculations done by Haase with 

BWR. 

Xmethane a~ am 
T aI.f. a H .... 

T 
a~-BWR 

0.34 8.86 12.51 8.54 8.15 10.01 
0.35 7.50 12.48 7.44 7.07 9.58 
0.42 3.57 2.67 3.95 3.64 4.42 
0.49 1.82 1.30 2.72 2.42 2.94 
0.51 1.57 0.70 2.51 2.20 2.62 
0.58 0.96 0.36 1.97 1.66 2.01 
0.63 0.65 0.47 1.72 1.39 1.71 

with a!f, and those calculated with Haase's expression (2) 
containing a~ with a~aase. The values from Ref. 16 that 
Haase et af. calculated with expression (2) and the Bene­
dict-Webb-Rubin equation of state (BWR) are denoted by 
a~-BWR. The aT values refer to the heaviest component of the 
mixture, unless an aT value is given for each component of 
the mixture. 

The results for the mixture of methane and propane at 
346.08 K and 5.6 MPa, at various mole fractions in the near­
critical region, are listed in Table I and plotted in Fig. 2. The 
calculated data are represented by four curves. These curves 
are interpolated between 12-15 data points. The four curves 
represent the a~, the a!f" the a~aase, and the a~-BWR values. 
The a~ and a~-BWR values come from Ref. 17. The figure 
shows that the a~ values agree best with the measured val­
ues. The figure also shows that a better agreement with the 
experimental data is obtained with the Soave equation of 
state than with the BWR equation of state. Finally, the fig­
ure shows that including a~ into Haase's expression (15) 

16 
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is 
~ 10 c: 
0 
·iii 
:::l 8 E 
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"iii 
E 6 
CI) 

~ 
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0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.60 

Mole fraction methane 

FIG. 2. Thermal diffusion factor of methane and propane at 5.6 MPa and 
346.08 K as a function of composition (K: our model, Haase: Haase's 
expression with a~, H: Haase's expression without a~, H-BWR: calculated 
by Haase et al. with BWR equation of state). 
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results, at relatively low pressures, in a better fit with the 
experimental data, as expected. 

The difference between the calculated and measured 
values can be ascribed partly to the inaccuracy in the mea­
surements. However, Haase et al. 17 do not provide a value 
for the measurement inaccuracy, but they do mention that 
the temperature difference between the bulbs used in the 
measurements is 8 K. The effect of a finite temperature dif­
ference on the measurement of a T can be estimated by calcu­
lating aT = 1I2[aT (TA) + a T( TB)] and comparing it to 
aT = a T( 1I2(TA + T B». For example, a~ is 20% higher 
than a~ at TA - TB = 8 K and 0.34 methane molefraction; 
at 0.58 methane molefraction, i.e., far from critical condi­
tion, the difference is only 2%. 

The results for a mixture of methane (mole fraction 
0.34) and propane at 346.08 K and at various pressures in 
the near-critical region are listed in Table II. The agreement 
between the calculated values and the measured values 
(from Ref. 17) varies strongly. The agreement is poor at 
supercritical pressures (6.58 and 7.60 MPa) and is reasona­
ble to good at subcritical pressures. Since all calculated val­
ues at supercritical pressures show a poor agreement with 
experimental data, regardless of which expression for aT is 
used, the poor agreement is ascribed to the equation of state 
in the supercritical region. This is discussed after the next 
paragraph. 

At subcritical pressures the best agreement with experi­
mental data is shown by the values calculated with expres­
sion (11), as can be seen from Fig. 3. This figure also shows 
the effect of the equation of state used on the a T values calcu­
lated with expression (2): the agreement with the experi­
mental data is better with the Soave equation than with the 
BWR equation. Further, the Soave and the Peng-Robinson 
equation of state have been compared. The a~ values ob­
tained with the Soave equation are no more accurate than 
those obtained with the Peng-Robinson equation of state. 
To detect an effect of the sensitivity to the interaction param­
eter in the Soave equation, three different values (0.009 812, 
0.011 16, and 0.011 99) have been compared. No effect of 
the interaction parameter in the Soave equation on a~ has 
been detected. 

It is not surprising that the calculated aT values are 
unrealistic in the supercritical region. The equation of state 
used in the supercritical region is an extrapolation of the 

TABLE II. Comparison of aT values as calculated and as measured for a 
mixture of methane (mole fraction 0.34) and propane at 346.08 K and at 
various pressures (equation of state: Soave; interaction parameter: 
0.009812). 

P 
(l00 kPa) a K 

T a'; aIJ. a~au.se a H -BWR 
T 

40.5 1.12 0.79 2.23 1.99 2.50 
44.6 1.95 2.01 2.95 2.69 3.42 
46.6 2.53 2.88 3.44 3.18 4.05 
55.7 8.86 12.51 8.54 8.15 10.01 
60.8 21.88 34.24 18.42 17.80 19.82 
65.8 72.41 18.26 54.78 53.32 37.18 
76.0 97.53 8.96 64.36 62.70 42.80 
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FIG. 3. Thermal diffusion factor of methane (mole fraction 0.34) and pro­
pane at 346.08 K as a function of pressure (K: our model, Haase: Haase's 
expression with a~, H: Haase's expression without a~, H-BWR: calculated 
by Haase et al. with BWR equation of state). 

equation of state in the subcritical region and is not based on 
data relating to the physical properties in the supercritical 
region. This means that small errors in the equation of state 
in the supercritical region cannot be excluded, regardless of 
the accuracy of the equation of state in the subcritical region. 
The Soret effect is very sensitive to the thermodynamic prop­
erties of the components, and therefore a small error in the 
equation of state of the mixture may have a large effect on the 
calculation of aT and thus give unrealistic aT values in the 
supercritical region. Further, following this line of reason­
ing, it is likely that the a T values calculated with an equation 
of state extrapolated in the supercritical region are more ac­
curate in the immediate vicinity of the two-phase region than 
far away from it. 

For a mixture of n-hexane (mole fraction 0.55) and n­
octane at 320 K and atmospheric pressure we calculate a~ to 
be 0.161. The measured aT value is 0.16 (from Ref. 2; origi­
nal paper is Ref. 18). The aIf. value is markedly different: 
- 0.142. The a~ values obtained with three interaction pa­

rameters in the Soave equation (0.001 573, 0.001 977, and 
0.002 360) and with the Peng-Robinson equation have been 
compared. The effect of the interaction parameter on the 
thermal diffusion ratio is small (only 1.8% at maximum). 
However, the result obtained with the Peng-Robinson equa­
tion of state differs in sign from the measured value. 

The results of the dense gas mixtures of carbon dioxide 
and hydrogen are shown in Table III. It is evident from the 
table that the agreement between the calculated a~ and mea­
sured a T values (from Ref. 19) is reasonable; the agreement 
between the aIf. and the a~ values is worse. More than a 
reasonable agreement could not be expected because of the 
inappropriate measuring procedure. In the analysis the tem­
perature difference is assumed to be small compared to the 
absolute temperature, while in the measurements the tem­
perature difference was 100 K. 
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TABLE III. Comparison of aT values as calculated and as measured for a 
mixture of carbon dioxide and hydrogen at various conditions (equation of 
state: Soave). 

p T Interaction 
x co, (lOOkPa) (K) parameter a~ a'; a~ 

0.5\ \5.0 223 0.100 8 0.216 0.539 1.374 
0.52 31.4 245 0.09999 0.722 0.789 1.720 
0.55 45.2 252 0.09979 1.266 1.050 2.155 
0.54 54.0 263 0.09986 1.575 1.315 2.332 

A large deviation between theory and measurement is 
shown by the calculation of aT for a mixture of cyclohexane 
and benzene at 313 K, atmospheric pressure, and three dif­
ferent mole fractions (Table IV). The calculated values are 
different in sign and magnitude from the measured values of 
Dougherty and Drickamer. This was also the case for the 
values calculated with the Haase expression ( 15). The effect 
of the interaction parameter used or the equation of state on 
the calculated values is negligible. In the past, the mixture of 
cyclohexane and benzene has also been used to test the theo­
ry of Tichacek et al. 8 Whitaker and Pigford II found a differ­
ence in sign between calculated and measured aT values, 
regardless of the value of the fitting parameter they used. 
Note that the measured values of Dougherty and Drickamer 
do not agree with the qualitative rules of Kramers and 
Broeder (benzene has a smaller molar volume than cyclo­
hexane; normal boiling points differ only 0.61 K). 

Table V shows the calculated thermal diffusion factor of 
7 liquid mixtures of a normal paraffin with a naphthene: 
methane + cyclopentane, n-butane + cyclopentane, n-de­
cane + cyclopentane, methane + cyclohexane, propane 
+ cyclohexane, n-butane + cyclohexane, n-decane + cy-

clohexane. The thermal diffusion ratio of all mixtures is posi­
tive for the naphthene regardless of the relative magnitude of 
the molecular masses. This means that the naphthene of 
these mixtures concentrates in the colder region, which is in 
line with Kramers and Broeder's5 observation. Our calcula­
tion of a positive thermal diffusion factor of the heaviest 
paraffin in the mixtures methane + propane and n-hex­
ane + n-octane is also confirmed by the rules of Kramers 
and Broeder. 

For various mixtures of some arbitrary branched paraf­
fins with some arbitrary naphthenes (Table VI), naphthenes 
with monocyclic aromats (Table VII), and monocyclic aro­
mats with multicyclic aromats (Table VIII) the calculated 
a~ values are in accordance with the qualitative observa-

TABLE IV. Comparison of aT values as calculated and as measured for a 
mixture of cyc10hexane and benzene at 313 K and atmospheric pressure 
(equation of state: Soave). 

Interaction 
Xbenzene parameter a K 

T 
am 

T a H 
T 

0.2 0.000 875 5 - 3.02 0.58 - 1.63 
0.5 0.000 8761 - 3.45 0.40 - 1.85 
0.8 0.000 8755 - 3.87 0.10 -2.03 

TABLE V. Thermal diffusion factor of seven liquid mixtures of a normal 
paraffin and a naphthene at 293 K and atmospheric pressure. 

Mixture Mole fraction a K 
T a~ 

Methane 0.0026 -4.8 -1.5 
Cyc10pentane 0.9974 4.8 1.5 

n-butane 0.37 - 3.1 -1.3 
Cyc10pentane 0.63 n 1.3 

n-decane 0.50 - 3.4 -2.3 
Cyc10pentane 0.50 3.4 2.3 

Methane 0.0034 -4.4 -1.3 
Cyc10hexane 0.9966 4.4 1.3 

Propane 0.10 -2.7 -0.42 
Cyc10hexane 0.90 2.7 0.42 

n-butane 0.45 -3.0 -0.73 
Cyc10hexane 0.55 3.0 0.73 

n-decane 0.50 - 3.5 - 1.6 
Cyc10hexane 0.50 3.5 1.6 

TABLE VI. Thermal diffusion factor of four liquid mixtures of a branched 
paraffin and a naphthene at 293 K, atmospheric pressure and equimolar 
composition. 

Mixture a~ a~ 

i-butane - 5.6 -2.5 
Methylcyc10pentane 5.6 2.5 

i-octane -4.6 - 3.4 
Methylcyclopentane 4.6 3.4 

i-butane -4.4 - 1.8 
Cyc10hexane 4.4 1.8 

i-octane -4.9 -3.9 
Cyc10hexane 4.9 3.9 

TABLE VII. Thermal diffusion factor of five liquid mixtures of a naphthene 
and a monocyclic aromat at 293 K, atmospheric pressure and equimolar 
composition. 

Mixture a~ a~ 

Cyc10hexane - 3.7 - 1.9 
Benzene 3.7 1.9 

Cyc10hexane -2.9 -1.4 
Toluene 2.9 1.4 

Methylcyc10pentane -2.2 -1.5 
m-xylene 2.2 1.5 

Methylcyc10hexane -4.5 - 3.2 
Benzene 4.5 3.2 

Methylcyc10hexane -2.8 -2.4 
m-xylene 2.8 2.4 
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TABLE VIII. Thermal diffusion factor of four liquid mixtures of a mono­
cyclic aromat and a mUlticyclic aromat at 293 K, atmospheric pressure and 
equimolar composition. 

Mixture aK 
T a'/-

Benzene - 1.6 0.12 
Phenanthrene 1.6 -0.12 

Benzene -2.3 0.84 
Anthracene 2.3 -0.84 

m-xylene -5.4 -1.5 
Phenanthrene 5.4 1.5 

m-xylene -6.6 -0.75 
Anthracene 6.6 0.75 

tions ofKramers and Broeder. This is also the case for the a!f. 
values but there are some exceptions (see Table VIII). 

IV. CONCLUSIONS 

(1) Ifit is assumed that the steady state is accomplished 
by a maximum number of microstates, the set of equations 
(10) for the Soret effect in a multicomponent mixture has 
been derived. The application ofEq. (10) is limited to mix­
tures such as liquids and dense gases in which the separation 
of the compounds is determined mainly by the energetic in­
teraction. For a binary mixture, the thermal diffusion factor 
is given explicitly by expression (11). 

(2) The quantities in the set of equations (10) can be 
calculated with the equation of state and the standard state 
enthalpy. The models that have been proposed in the past 
(except for Haase's) contain quantities that cannot be calcu­
lated practically or that must be measured. Haase's expres­
sion for aT consists of quantities that can be calculated with 
an equation of state and kinetic gas theory. However, the 
assumption in Haase's model is weak. 

(3) By comparing the new model with Haase's model 
for mixtures of which accurate thermodynamic data and a 
measured value of the thermal diffusion factor are available, 
it appears that for 18 mixtures a fairly good to good quantita­
tive agreement with experimental data is obtained with both 
models; for all these mixtures the new model gives better 
agreement with the measured values of a T than does Haase's 
model. For three mixtures of compounds with nearly equal 
normal boiling points, neither model agrees with the mea­
sured data. The qualitative rules of Kramers and Broeder 

(concerning mixtures of light normal paraffins, heavy nor­
mal paraffins, branched paraffins, naphtenes, monocylic 
aromats, bicylic aromats) are confirmed by the model of this 
paper and by Haase's model with a few exceptions. 

(4) For mixtures at supercritical conditions far from 
the two-phase region, the extrapolation of an equation of 
state to the supercritical region is not sufficiently accurate 
for calculating a reliable thermal diffusion factor with the 
described theory and Haase's theory. 

(5) The method presented in this paper is, in principle, 
applicable to other coupled transport phenomena in the 
steady state. 
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