TMT4301 Materials Characterization X-ray Characterization of materials

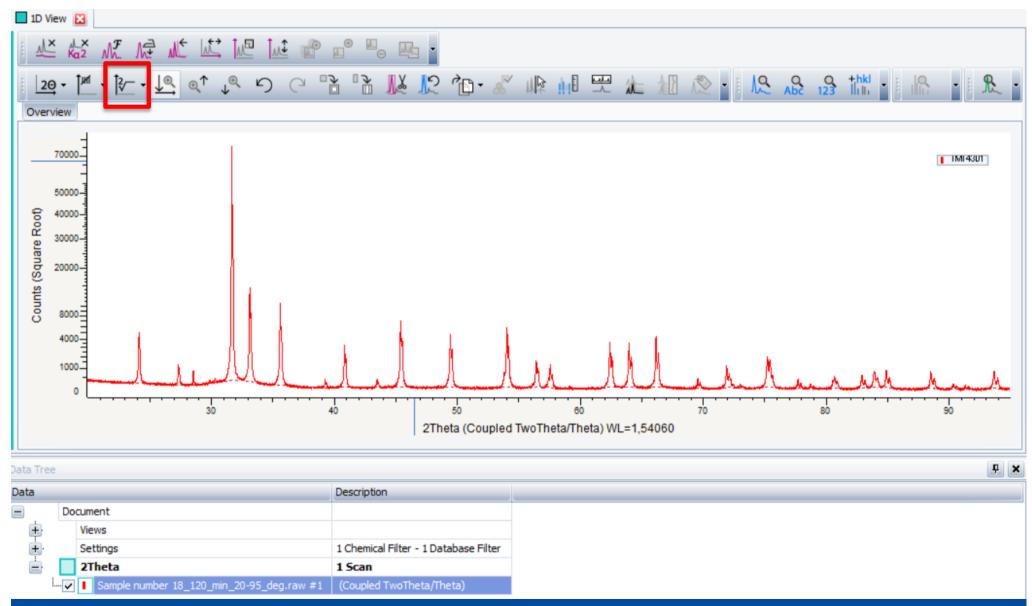
LX8-9: Extra bonus lecture – lab report

Sverre M. Selbach

Department of Materials Science and Engineering NTNU Norwegian University of Science and Technology Trondheim, Norway

This lecture

- Identifying a two-phase sample in EVA
- Performing Pawley analysis of a two-phase sample in Topas
- Rietveld refinement of a two-phase sample in Topas


EVA

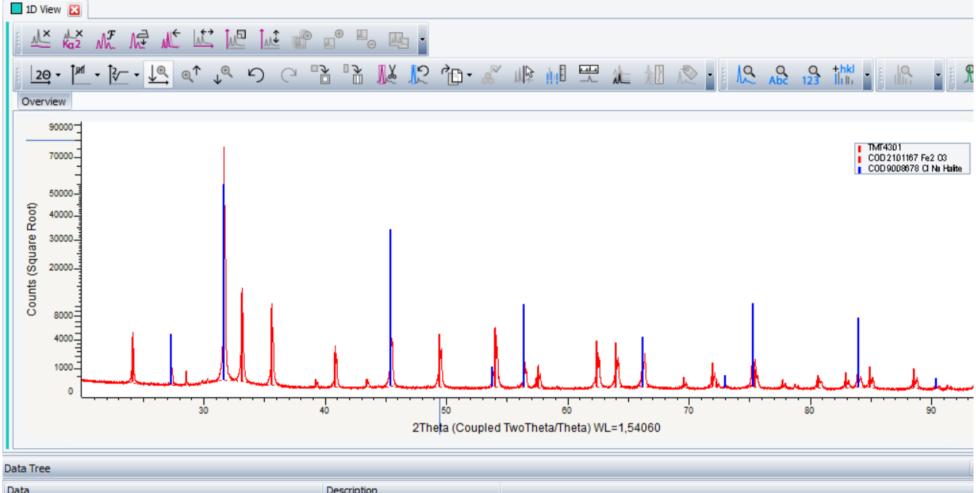
EVA

Pro tip: use square root y-axis scaling for different peak intensities.

EVA – search and match

Choose the right elements and the right conditions

Search / Match	ı (scan) Samp	e number 18	_120_min_2	0-95_deg.ra	w #1												×
Rebuild	Chemical 🔸	– aje Che	mical Filter #	#1					🖂 Databa	se 🔸 –	aje Database	Filter #1					
Database: R																	
Chemical Filt	ter Databas	e Filter Can	didate List	Selected Car	ndidates												
H	<i>D</i>																He
Li	Be											В	С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	thanoi ctinoic	•		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Ln
	Discardeo			A	t Least One			Mand	atory		Ν	lot Checked				Reset	


EVA – search and match

Check promising patterns which can index some of the peaks while you search for a second which can index the rest.

ebuild	Chen	nical	• -	ale Ch	emic	al Filter	#1							🗸 Database 🔸		ale D	ataba	se Filter #	ŧ1				
abase	COD20	016: 35	2140 -	After	Filter	s: 949																	
emical	Filter	Databa	ase Filt	ter Ca	ndida	ate List	Se	lected Candidates															
							_																
index .	û	FOM	Mtc	nM 9	6 S	ource	ID	Quality	Status	I/Icor	Mineral	Name	Formula	Crystal System	а	b	c alp	ha beta	gamma	Spacegroup	Ζ	Volume	
16		49,4	22	4.	C	:OD		Quality Unknown	Stat	3,82			Fe2 O3	Hexagonal						R -3 c	6	301,87	
	2	49,4	22	4.	C	OD		Quality Unknown	Stat	3,82			Fe2 03	Hexagonal						R -3 c	6	301,87	
	3	49,4	22	4.	C	:OD		Quality Unknown	Stat	3,82			Fe2 03	Hexagonal						R -3 c	6	301,87	
	4	48,3	23	4.	C	:OD		Quality Unknown	Stat	4,01	~	Не	Fe2 03	Hexagonal						R -3 c		301,77	
	5	31,1	18	6.	C	:OD		Quality Unknown	Stat	3,58	~	Не	Fe2 03	Rhombo.R.a			55	,28		R -3 c	2	100,79	
	6	27,6	17	9.	C	:OD		Quality Unknown	Stat	2,97			Fe1.6	Hexagonal						R -3 c	6	301,52	
	7	26,9	8	3.	C	:OD		Quality Unknown	Stat	4,72			Cl Na	Cubic						F m - 3 m	4	179,34	
	8	24,9	8	3.	C	:OD		Quality Unknown	Stat	5,02	~	Halite	Cl Na	Cubic						F m - 3 m		179,46	
	9	24,9	18	10	9 C	OD		Quality Unknown	Stat	4,01	~	Не	Fe2 03	Hexagonal						R -3 c		299,93	
	10	24,2	8	з.	C	:OD		Quality Unknown	Stat	5,02	~	Halite	Cl Na	Cubic						F m - 3 m		179,42	
	11	15,7	8	3.	C	OD		Quality Unknown	Stat	5,02	~	Halite	Cl Na	Cubic						F m - 3 m		179,21	
	12	12,9	13	14.	C	:OD		Quality Unknown	Stat	3,58	~	He	Fe2 03	Rhombo.R.a			55	,28		R -3 c		100,24	
	13	12,3	18	5.	c	:OD		Quality Unknown	Stat	4,83	~	Не	Fe2 03	Rhombo.R.a			55	,23		R -3 c	2	100,71	

EVA – search and match result

Data		Description					
=	Document						
E	Views						
E.	Settings	1 Chemical Filter - 1 Database Filter					
È	2Theta	1 Scan					
Ē	✓ I Sample number 18_120_min_20-95_deg.raw #1	(Coupled TwoTheta/Theta)					
	Pattern List #1	2 Patterns					
	COD 2101167	Fe2 O3					
		Cl Na Halite					

Export your data, from .raw to .xy

4

You can download Bruker Diffrac FileExchange from the Odin server

🕼 C:\ 🛍 D:\ T:\ Z:\	1 DB		T:\ Z:\ \		
[SOURCE] .dat type None		Filter: *.raw 🔛	[TARGET] convert to: XY	I	Filter: 🔭 🔛
Name	Ranges	Size	Name	Ranges	Size
•			· · ·		
2019_01_17_NIST_660a_10	1	54911	2019_01_17_NIST_660a_10-120_deg_0p2deg_di	1	5491
corundum 22-120 deg.raw	1	48956	Al2O3vesta.cif		193
corundum_60min_20-105deg	1	33255	a corundum 22-120 deg.raw	1	4895
Sample number 18_120_min	1	43050	a corundum_60min_20-105deg_2016_05_04.raw	1	3325
Test_Sample_18.raw	1	43045	CuKa5_CuKb_DaVinci1_from_Jan_2019.lam		27
tio2.raw	1	18132	CuKa5_WLa_CuKb_DaVinci1_autumn2017.lam		3
			avinci 1_fds_0.3deg.par		26
			🔁 LaB6.cif		175
			🕺 LaB6.vesta		70
			S MgO.brml		2166
			Sample number 18_120_min_20-95_deg.raw	1	430
			Sample number 18_120_min_20-95_deg.xy		10183
			-	1	
			Sample number 18_120_min_20-95_deg.xy	1	4304
			Sample number 18_120_min_20-95_deg.xy		4304

Find SG and lattice param. with EVA and COD

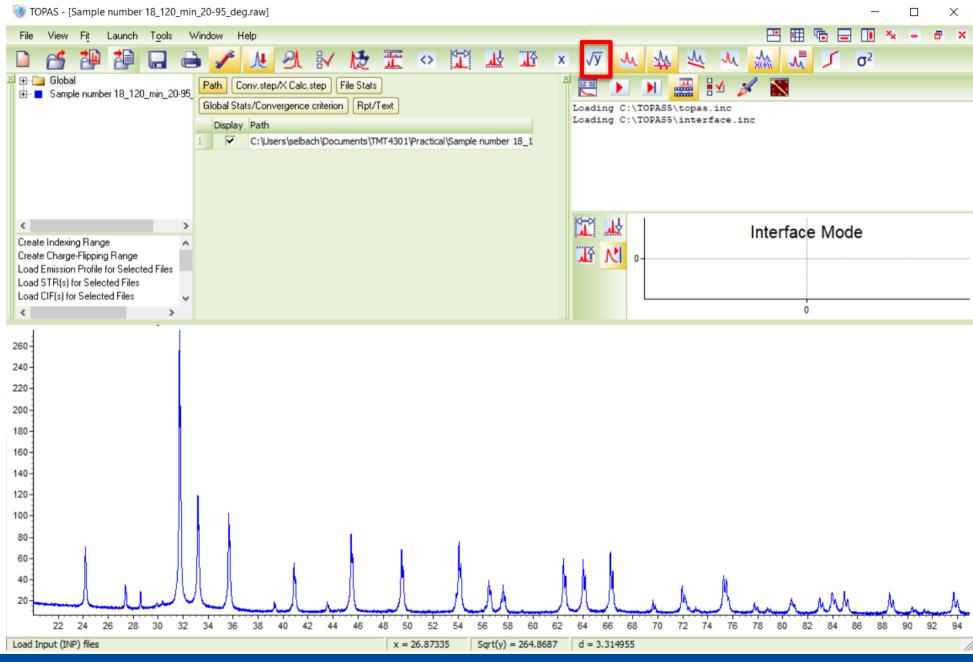
COD 2101167	Database #: COD 2101167		d(Â)	2Theta (°)	I fix	h	k		Commen
Gray all except selection		₽			295		1		
Show Selected Patterns in Ruler			2,69930		999	-1		4	
X Delete			2,51780		737	-2	1	0	
	Fe2 03		2,29120		22		0	-6	
~	Quality: Quality Unknown		2,20660	40,863	178	-2	1	-3	
Сору	Wavelength: 1,54060		2,07840	43,508	20	-2	2	2	
Paste			1,84110	-	360	-2	2	-4	
De Select Parent	General Comments Authors Additional Subfiles		1,69460		431		1	-6	
	Cell Parameters Crystal Data		1,63650		6		1	-1	
File ""	System: Hexagonal Molecular weight:		1,60280	-	23		1	2	
Import from Files	Space group: R -3 c (167) Volume (CD) (Å ³): 301,87		1,59870		80	-1	1	-8	
	a (Å): 5,0355 a (°): Dm:		1,48620		283		1	-4	
Tool	b (Å): β (°):		1,45360 1,41370		272		0	0	
Search / Match (pattern)	c (Å): 13,7471 y (°):		1,34960		28	-2	1	8	
Search by Number	a/b: 1, I / Icor		1,34960		28 98	-2		10	
d x by	c/b: 2,73004 Z: 6 3,82		1,30590		16		1	-9	
7 Tune Cell			1,26250		2		1	-7	
Create Kb-Pattern			1,25890		62			0	
& Residue			1,22740		12		0	-6	
Auto Residue			1,22740		12			6	
Make Sticks			1,21390	78,776		-4		-3	
			1,21000	10,110	10		~		
hki Make Peaks	ata Tree								
Auto-scale	Data Description								
	- Document								
100% Scale	Views								
B User Database									
hkl [hkl] Generator	Settings 1 Chemical Filter - 1 Database Filter								
Create	Sample number 18_120_min_20-95_deg.raw #1 (Coupled TwoTheta/Theta)								
Create ""	Pattern List #1 2 Patterns								
1D View									
🖯 DB View	CD 9008678 Cl Na Halite								

Find SG and lattice param. with EVA and COD

DR View DR View D

You will also find peak positions here.

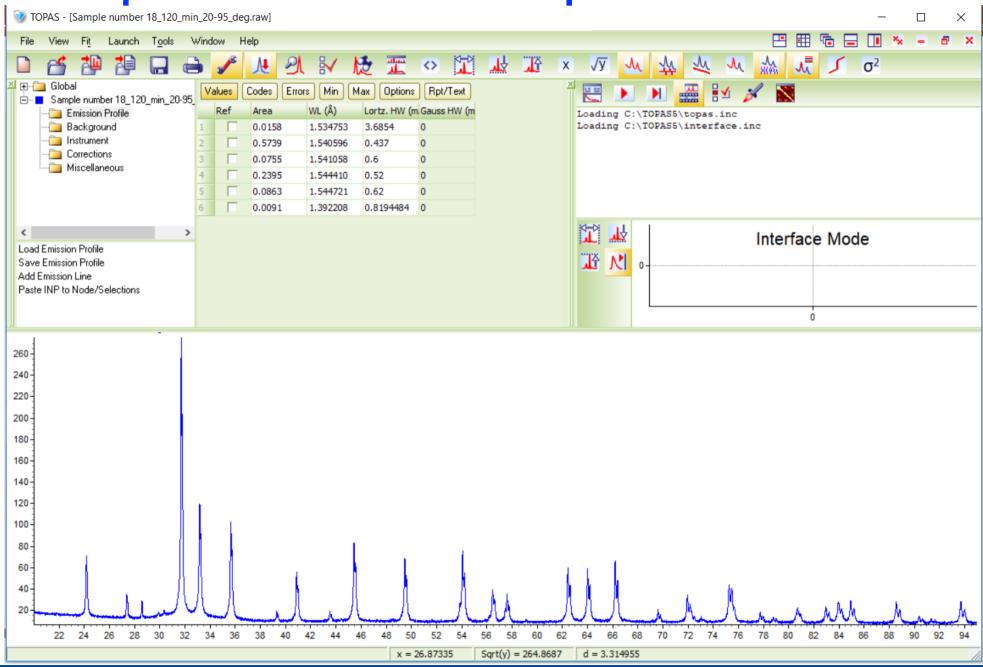
Database #: COD 9008678				d(Â)	2Theta (°)				L
					27,364	84			
				2,82030	31,701	1000	-2		1
alite				1,99420	45,445	619			
Na						19		-1	
Quality: Quality Unknown				1,62830		188	-2		
Navelength: 1,54060	\sim			1,41010	66,223 73,066	78	-4		
				1,29400 1,26130		9 194	-3		
General Comments Authors Addition			_	1,26130		194	-4 -4		
Cell Parameters System: Cubic	Crystal Data			1,13140		7			
-,	Molecular weight			1,08550		3		-1	
Space group: F m -3 m (225)	Volume (CD) (ų)			1,08550	50,105	3	-5	-5	
a (Å): 5,6406 a (°):	Dx:	2,161							
b (Å): β (°):	Dm:								
c (Å): y (°):									
a/b: 1,	I / Icor								
		5.02							
c/b: 1, Z:		5,02							
		5,02							
c/b: 1, Z: Tree		5,02 Description							
c/b: 1, Z:									
c/b: 1, Z:									
c/b: 1, Z:									
c/b: 1, Z:		Description							
c/b: 1, Z:		Description 1 Chemical Filter - 1 Database Filter							
c/b: 1, Z:		Description 1 Chemical Filter - 1 Database Filter 1 Scan							
c/b: 1, Z: Tree a Document Views Settings 2Theta i Sample number 18_120_min		Description 1 Chemical Filter - 1 Database Filter 1 Scan (Coupled TwoTheta/Theta)							


 \Box N

TOPAS – import a .raw file

TOPAS - [Sample number 18_120_min_20-95_deg.raw] \times 🖃 🔳 🦗 🗕 🗗 🗙 • G. File View Fit Launch Tools Window Help P J. ₽ は 王 Ť ΥĻ M M $\langle \mathbf{x} \rangle$ х $\int \sigma^2$ V y M Ä ⊕ 📄 Global Path Conv.step/X Calc.step File Stats \sim ⊕ Sample number 18_120_min_20-95 Global Stats/Convergence criterion Rpt/Text Loading C:\TOPAS5\topas.inc Loading C:\TOPAS5\interface.inc Display Path C:\Users\selbach\Documents\TMT4301\Practical\Sample number 18_1 ~ < Interface Mode Create Indexing Range Create Charge-Flipping Range Load Emission Profile for Selected Files Load STR(s) for Selected Files Load CIF(s) for Selected Files ~ 0 < > 75 000 -70 000 -65 000 · 60 000 -55 000-50 000 -45 000 -40 000 -35 000 -30 000 -25 000· 20 000 -15 000 -10 000 -5 000 -22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 x = 30.72405 y = 74390.39 d = 2.907695

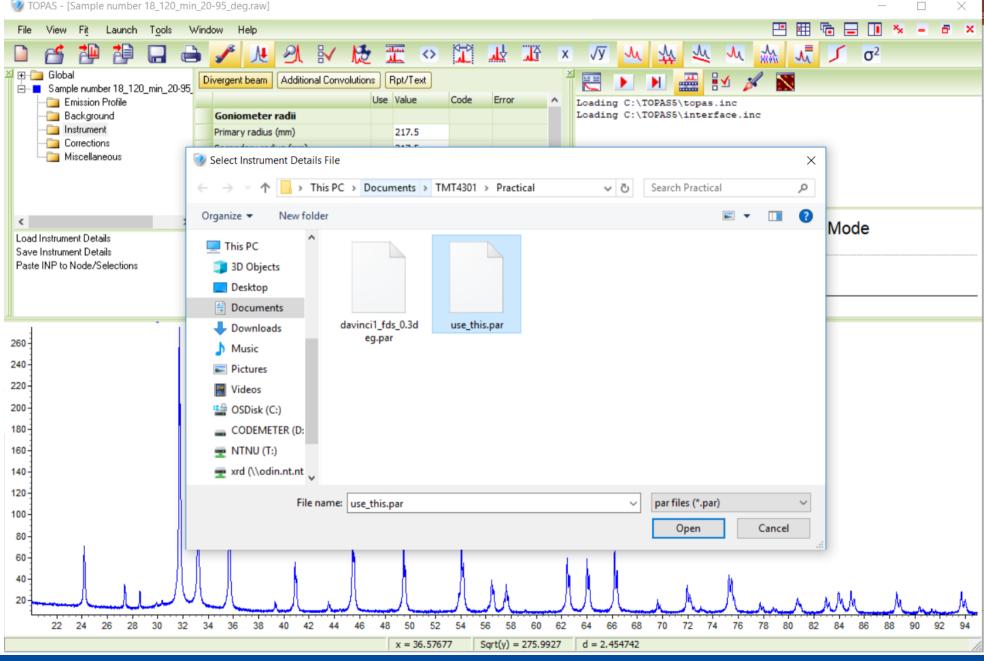
TOPAS – use square root for y-axis scaling


NTNU

Topas – load an emission profile

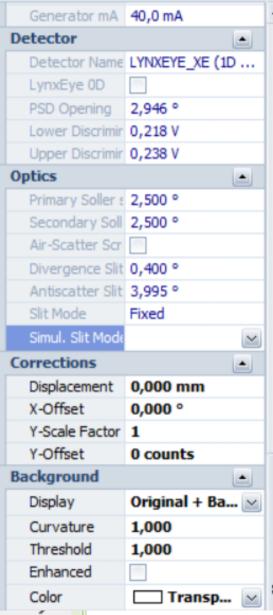
W TOPAS - [Sample number 18_120_m	in_20-95_deg.raw]	- 🗆 X
File View Fi <u>t</u> Launch T <u>o</u> ols	Window Help	😼 🖃 🔳 🐄 😑 💩 🗙
🗋 🖆 🏥 🔚 🍓	🛋 🥒 💯 💯 🔛 😒 🏗 🐼 🟗 🐼 🖓 💯 🚣 🛴	σ2
Global Global Sample number 18_120_min_20-95 Emission Profile Background Instrument Corrections	5 Values Codes Errors Min Max Options Rpt/Text 6 Ref Area WL (Å) Lortz. HW (m Gauss HW (m) 1 0.653817 1.540596 0.501844 0 2 0.346183 1.544493 0.626579 0	
Miscellaneous	Vertical Emission Profile	<
	$\leftarrow \rightarrow \circ \uparrow$ $\blacksquare \rightarrow$ This PC \Rightarrow Documents \Rightarrow TMT4301 \Rightarrow Practical $\checkmark \textcircled{O}$ Search Practical \checkmark	
<	Organize 🔻 New folder 📼 🐨 🔟 💡	Mode
Load Emission Profile Save Emission Profile Add Emission Line Paste INP to Node/Selections	 This PC 3D Objects Desktop Documents 	
260	 Downloads Music CuKa5_CuKb_Da CuKa5_WLa_CuK Unci1_from_Jan_ b_DaVinci1_autu mn2017.lam 	
240-	Pictures	
220-	Videos	
180-	CODEMETER (D:	
160-	TINU (T:)	
140	🛫 xrd (\\odin.nt.nt	
120	File name: use_this.lam lam files (*.lam)	
100-		
80-	Open Cancel	
60 40 20	Und Under	Mhanh
22 24 26 28 30 32		32 84 86 88 90 92 94
	x = 26.87335 Sqrt(y) = 264.8687 d = 3.314955	1.

DNTNU


Topas – load an emission profile

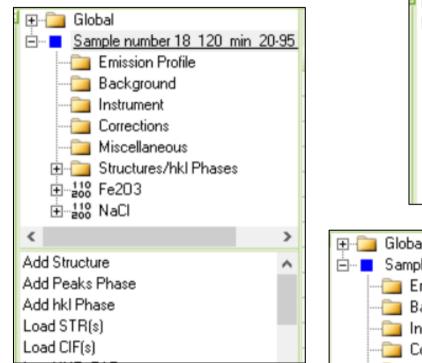
 \Box NTNU

Topas – load a .par instrumental settings file


📝 TOPAS - [Sample number 18 120 min 20-95 deg.raw]

Topas – load a .par file. EVA gives you info too:

TOPAS - [Sample number 18_120_min_20-95_deg.raw]


Image: Second and the second and th													Genera
Image: Second state of the second s	File Vie	w Fi <u>t</u>	Launch	T <u>o</u> ols	Win	idow Help							Detector
Image: Signal and the second of the secon		: 📩 🖬	*		4	1 AL		1	, 7		K-N		Detecto
Sample number 18_120_min_20-95 Use Value Code Low Background Instrument Goniometer radii Image: Code Low Upp Corrections Corrections Secondary radius (mm) 280 Prim Secondary radius (mm) 280 Prim Equatorial Convolutions Corrections Secondary radius (mm) 280 Prim Secondary radius (mm) 280 Prim Functions Secondary radius (mm) 280 Prim Secondary radius (mm) 280 Prim Functions Secondary radius (mm) 280 Prim Secondary radius (mm) 280 Prim Corrections Secondary radius (mm) 280 Prim Secondary radius (mm) 280 Prim Capillary Imagular range of LPSD (*) Sitt f Sitt f Ibeam spill, sample length (mm) 20 Fix Disp Axial Convolutions Prix Disp Axial Convolutions Imagular range of LPSD (*) Sitt f Sitt f Sitt f Disp Axial Convolutions <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td>y</td><td></td><td>1 Me</td><td></td><td></td><td>J.L.</td><td></td><td>LynxEy</td></t<>					-	y		1 Me			J.L.		LynxEy
Emission Profile Goniometer radii Code Low Background Instrument Primary radius (mm) 280 Optics Corrections Secondary radius (mm) 280 Image: Consections Primary radius (mm) 280 Primary radius (mm) Miscellaneous Equatorial Convolutions Image: Consections Image: Consections Primary radius (mm) 280 Primary radius (mm) Secondary radius (mm) 280 Primary radius (mm) Secondary radius (mm) 280 Primary radius (mm) Secondary radius (mm) Seco			. 10 10	0		Divergent beam	Additional Co	nvolution	ns 🛛	Rpt/Text			PSD Op
Image: Source close of the second arrow of the second a			_	0_min_20-3	2				Use	Value	Code	E	Lower [
Corrections Secondary radius (mm) 280 Image: Prime Secondary radius (mm) 280 Image: Prime Secondary radius (mm) 280 Image: Prime Secondary radius (mm) Seco						Goniometer	radii						Upper (
▲ Miscellaneous Equatorial Convolutions 280 And ▲ Equatorial Convolutions Image: Convolutions Image: Convolutions Image: Convolutions ● Point detector Image: Convolutions Image: Convolutions Image: Convolutions Image: Convolutions ● Capillary Image: Convolutions Image: Convolutions Image: Convolutions Image: Convolutions Image: Convolutions ● Capillary Image: Convolutions Image: Convolutions Image: Convolutions Image: Convolutions Image: Convolutions ● Capillary Image: Convolutions Image: Convolutions Image: Convolutions Image: Convolutions Image: Convolutions ● Capillary Image: Convolutions I		Instrument				Primary radius	(mm)			280			Optics
Equatorial Convolutions Sector Point detector Image: Convolutions Capillary Image: Convolutions Linear PSD Image: Convolutions ZTh angular range of LPSD (°) 3 Tbb angle (°) 0.4 Beam spill, sample length (mm) 20 Beam spill, sample length (mm) 20 Axial Convolutions Image: Convolutions Full Axial Model Image: Convolutions Full Axial Model Image: Convolutions Source length (mm) 12 Sample length (mm) 12 Save Instrument Details Sec. Soller (°) Save Instrument Details Sec. Soller (°) N Beta 30 N Beta 30						Secondary rad	lius (mm)			280			Primary
Capillary Image: Capillary Image: Diversion of the component of	i	Miscellane	ous			Equatorial C	onvolutions						Second
Linear PSD Image: Construction of LPSD (°) 3 Fix Antional Site of LPSD (°) 2Th angular range of LPSD (°) 3 Fix Site of LPSD (°) 3 Fix Site of LPSD (°) FDS angle (°) 0.4 Fix Site of LPSD (°) 0.4 Fix Site of LPSD (°) Beam spill, sample length (mm) 20 Fix Correct of LPSD (°) Z Site of LPSD (°) Axial Convolutions Image: Convol						Point detector			Г				Air-Sca
Image: Contract of LPSD (°) 3 Fix Image: Contract of LPSD (°) 0						Capillary			Г				Diverge
FDS angle (°) 0.4 Fix Simulation Beam spill, sample length (mm) 20 Fix Correct Tube Tails Image: Correct of the tails Image: Correct of tails Disp Axial Convolutions Image: Correct of tails Image: Correct of tails Disp Axial Convolutions Image: Correct of tails Image: Correct of tails Disp Full Axial Model Image: Correct of tails Image: Correct of tails Disp Source length (mm) 12 Fix Image: Correct of tails Save Instrument Details Prim. Soller (°) Image: Correct of tails Disp Paste INP to Node/Selections N Beta 30 Image: Correct of tails Paste INP to Node/Selections Finger_et_al Image: Correct of tails						Linear PSD			◄				Antisca
Image: Section						2Th angular	range of LPSD	(°)		3	Fix	C	Slit Mod
Tube Tails Image: Convolutions						FDS angle (°)			0.4	Fix	C	Simul. S
Axial Convolutions I						Beam spill, s	ample length (mm)		20	Fix	(Correctio
Axial Convolutions Image: Convolutions </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Tube Tails</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Displace</td>						Tube Tails							Displace
Image: Construct of the co						Axial Convol	utions						X-Offse
Image: Construct of the construction of the constructio						Full Axial Mode	el 🛛		\checkmark				Y-Scale
Image: Construment Details RS length (mm) 12 Fix Display Load Instrument Details Prim. Soller (°) Image: Construment Details Fix Display Save Instrument Details Sec. Soller (°) Image: Construment Details Fix Image: Construment Details Paste INP to Node/Selections N Beta 30 Image: Construment Details Image: Construment Details Finger_et_al Image: Construment Details Image: Construment Deta						Source lengt	th (mm)			12	Fix	C	Y-Offse
Image: Construment Details Prim. Soller (°) Image: Construment Details Prim. Soller (°) Image: Construment Details Prim. Soller (°) Image: Construment Details Image: Construment Details <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sample leng</td> <td>th (mm)</td> <td></td> <td></td> <td>15</td> <td>Fix</td> <td>(</td> <td>Backgrou</td>						Sample leng	th (mm)			15	Fix	(Backgrou
Load Instrument Details Prim. Soller (°) 2.5 Fix Curve Sec. Soller (°) N Beta 30 Enhage Colo Curve Finger_et_al Curve Colo Curve Curve				2		RS length (n	nm)			12	Fix	(Display
Paste INP to Node/Selections Sec. Soller (°) ✓ 2.5 Fix Three N Beta 30 Enha Finger_et_al Colo						Prim. Soller	(°)		◄	2.5	Fix	C	Curvat
N Beta 30 Enha Finger_et_al						Sec. Soller ((*)		◄	2.5	Fix	C	Thresh
Finger_et_al Colo						N Beta				30			Enhanc
<						Finger_et_al			Г				
					<								000

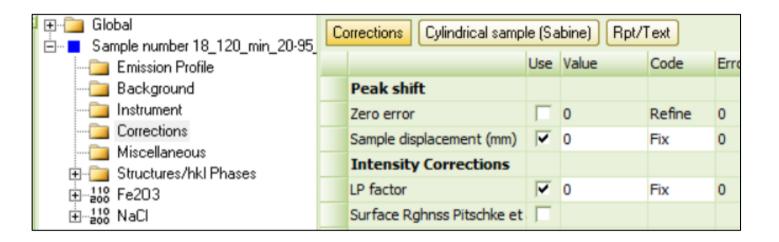
Pawley – add two hkl phases, rename them

Note context sensitive menus.

E Die Global ⊡ Die Sample number 18_120_min Die Emission Profile Die Background	_20-95_	ase Details Microstructu Is Is Additional Convolut	ions	Peak Type Rpt/Text Value	Code
Instrument Corrections		Use Phase Le Bail	▼		
		Delete hkls on Refinement		0.4	
	>	Spacegroup a (Å)	,	167 5.0355000	Fix
Save Phase Create str phase		c (Å)	_	13.7471000	Fix
Delete hkl Phase Reste INR to Node/Selections		Scale Wt% Rietveld		0.00000e+00 0.000	Fix

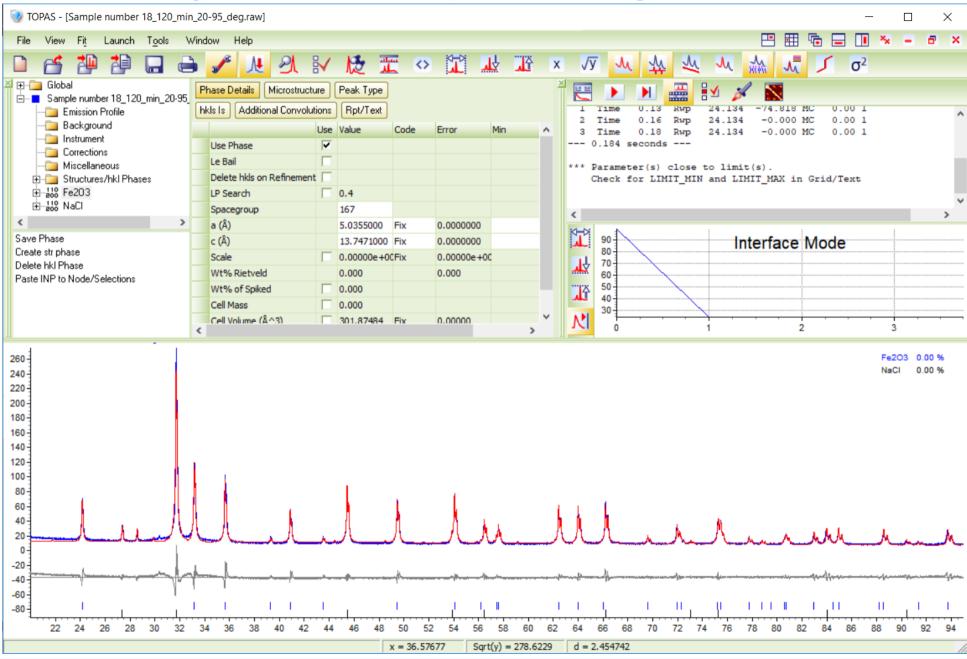
Pawley – fix all parameters first

I main and a gradient of the second seco		nase Details Microstructu Is Is Additional Convolut		Peak Type Rpt/Text	
Background Instrument				Value	Code
Corrections Miscellaneous	_	Double-Voigt Approact Crystallite size	n		
		Cry size L	$\overline{}$	200.0	Fix
it 118 Fe2O3		Cry size G		200.0	Refine
i li li NaCl		LVol-IB (nm)		0.000	


± 100 Fe203		LP Search	0.4	
±		Spacegroup	225	
<	>	a (Å)	5.6406000	Fix
Save Phase		Scale	0.00000e+00	Fix

Global Global Sample number 18_120_min_20-95_ Emission Profile	nase Details Microstructu Is Is Additional Convolut		Peak Type Rpt/Text	
Background		Use	Value	Code
	Double-Voigt Approac	h		
Miscellaneous	Crystallite size			
🗄 🚞 Structures/hkl Phases	Cry size L	\checkmark	200.0	Fix
±18 Fe2O3	Cry size G		200.0	Refine
i lination NaCl	LVol-IB (nm)		0.000	

Pawley – fix all parameters first


Exception: allow at least one variable for the background – flat background which gives a crude, but reasonable fit.

	Ba	ackground Rpt/Tex	ĸt				
Emission Profile			Use	Value		Code	Err
Background		Chebychev	$\mathbf{\nabla}$			0	
Instrument		Order		1	4 b		
		1/X Bkg	Г	1000		Refine	0
- Miscellaneous							
Structures/hkl Phases	<						

Pawley – first attempt, nothing refined

NTNU

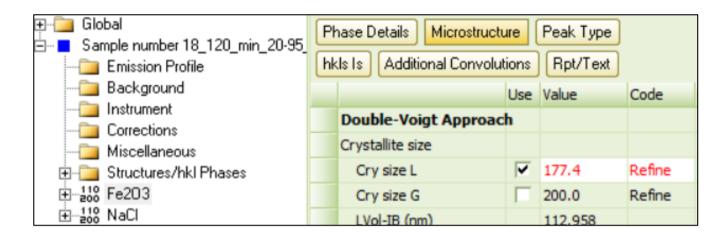
Pawley – progressively add variables

- Add more nodes to the background polynomial be careful
- ✤ The add variables affecting peak positions.

⊈ ⊕… 🧰 Global ⊡… 📕 Sample number 18_120_min_20-9	5	Corrections Cylindrical sample		le (Sa	(Sabine) Rpt/Text		
Emission Profile	~			Use	Value	Code	
Background			Peak shift				
			Zero error		0	Refine	
Miscellaneous			Sample displacement (mm)	\mathbf{V}	-0.02463897	Refine	

		Delete hkis on Refinement					
⊕ 100 Fe2O3		LP Search		0.4			
i±…iii NaCl		Spacegroup		167			
>		a (Å)		5.0355000	Refine		
ve Phase		c (Å)		13.7471000	Refine		
eate striphase lata kki Phase		Scale	\Box	0.00000e+00	Fix		

±		Spacegroup	225	
D	>	a (Â)	5.6406000	Refine (

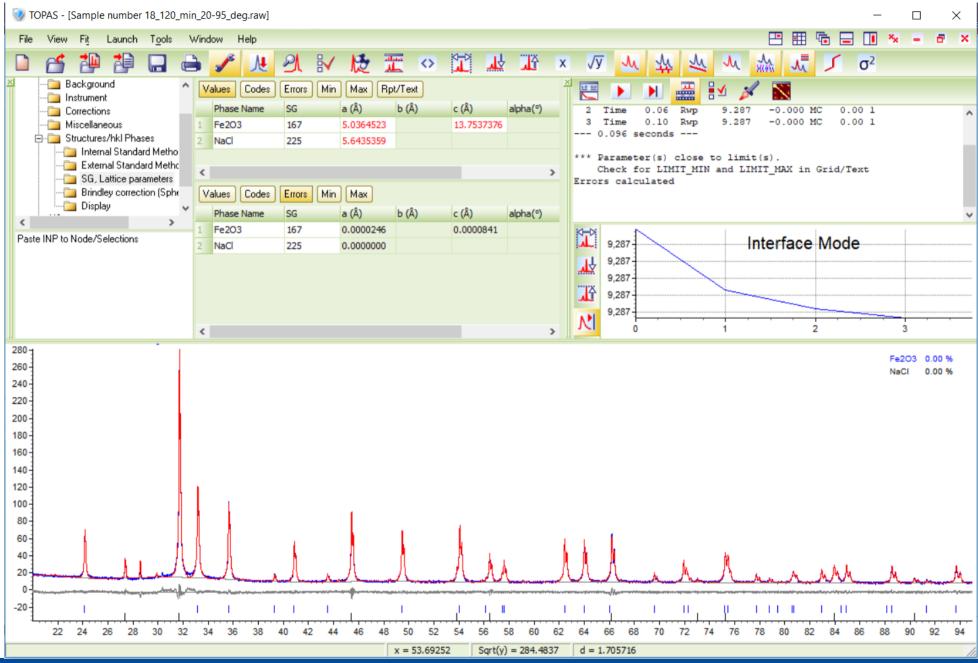


Pawley – second attempt, some variables

TOPAS - [Sample number 18 120 min 20-95 deg.raw] X P Ŧ G. 🚺 🛰 - 🗗 🗙 File View Launch Tools Window Help Fit 3 مىيان. مىلە ЧĻ Ť Martin 1 P \mathbf{O} √у $\int \sigma^2$ х J. 💐 🕀 🛅 Global Phase Details Microstructure Peak Type Sample number 18_120_min_20-95 hkls Is Additional Convolutions Rpt/Text 🛅 Emission Profile 0 Time 0.03 Rwp 14.061 0.000 MC 0.00 0 -0.000 MC 0.06 2 1 Time 0.04 Rwp 14.061 🛅 Background Use Value Code Error Min 0.05 2 Time 14.061 -0.000 MC 2 0.04 Rwp - Instrument ~ Use Phase 3 Time 0.07 14.061 -0.000 MC 0.05 2 Rwp Corrections --- 0.073 seconds Le Bail Miscellaneous Delete hkls on Refinement 🗄 🛅 Structures/hkl Phases *** Parameter(s) close to limit(s). ± 18 Fe2O3 LP Search 0.4 Check for LIMIT MIN and LIMIT MAX in Grid/Text ± 18 NaCl 225 Spacegroup < a (Â) 5.6436359 Refine 0.0000000 14,061 K-D: Save Phase Interface Mode Scale 0.00000e+00Fix 0.00000e+00 J. Create str phase 14.061 Wt% Rietveld 0.000 0.000 ل<mark>ل</mark>ه Delete hkl Phase Wt% of Spiked 0.000 14.061 Paste INP to Node/Selections Ĩ Cell Mass 0.000 14.061 Cell Volume (Å^3) 179.75333 Fix 0.00000 マ 2,968 R Brann 0 2 3 < > Fe2O3 0.00 % 260 NaCI 0.00 % 240-220-200-180 160 140-120 100 80 **60** · 40-20 0--20 -40ш -60 22 24 26 28 30 32 42 48 50 52 54 56 58 72 74 76 78 82 90 92 34 36 38 40 44 60 62 64 66 68 70 80 84 86 88 94 x = 47.0888 Sqrt(y) = 280.4813d = 1.92835

NTNU

Pawley – next add variables for peak shape


- 🔁 Miscellaneous	Crystallite size			
🗄 🛅 Structures/hkl Phases	Cry size L	${\color{black} \checkmark}$	276.2	Refine
± 18 Fe2O3	Cry size G		200.0	Refine
±	LVol-IB (nm)		175.826	

Strain				
Strain L	$\overline{\mathbf{v}}$	0.02228824	Refine	0
	-			

Emission Profile		Use	Value		Code	E
Background	Chebychev	\mathbf{V}			0	Π
Instrument	Order		13	••		
	1/X Bkg		1000		Refine	C

Pawley – a pretty good fit!

NTNU

Pawley – summarising results

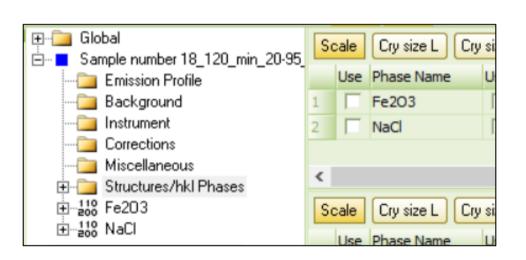
Useful for many phases or many diffractograms (under global).

🖅 💼 Global 🔹 🧥	S	cale Cry size L	Cry	size G Stra	ain L Str	ain G Rpt/1	[ext			
🖻 🗧 Sample number 18_120_min_20							_			
Emission Profile		Phase Name	Use	Value	Code	Error	Min			
Background	1	Fe2O3	\checkmark	218.4	Refine	5.6				
Instrument	2	NaCl		2062.8	Refine	0.0				
Corrections										
🖃 🛅 Structures/hkl Phases	<									
Internal Standard Metho	S	Scale Cry size L Cry size G Strain L Strain G								
External Standard Methc 🗸		Phase Name	Use	Value	Code	Error	Min			
	1	Fe2O3	$\overline{\mathbf{v}}$	0.02165705	Refine	0.003282266	5			
Paste INP to Node/Selections	2	NaCl	$\overline{\checkmark}$	0.1043375	Refine	0.000435059)			

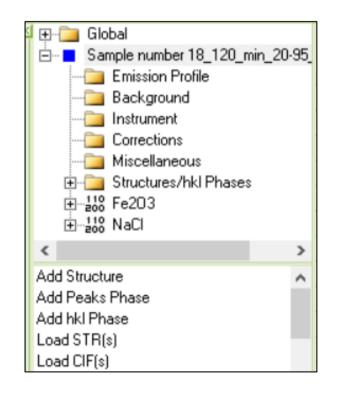
I ⊞ ⊡i Global ^ ⊡ I Sample number 18_120_min_20	Co	orrections Cylindrical samp	le (Sa	abine) Rpt/1	[ext	
Emission Profile			Use	Value	Code	Error I
Background		Peak shift				
🛅 Instrument		Zero error		0	Refine	0
		Sample displacement (mm)	\checkmark	-0.06692649	Refine	0.000218274
Miscellaneous Structures/hkl Phases		Intensity Corrections				

Pawley – background polynomial

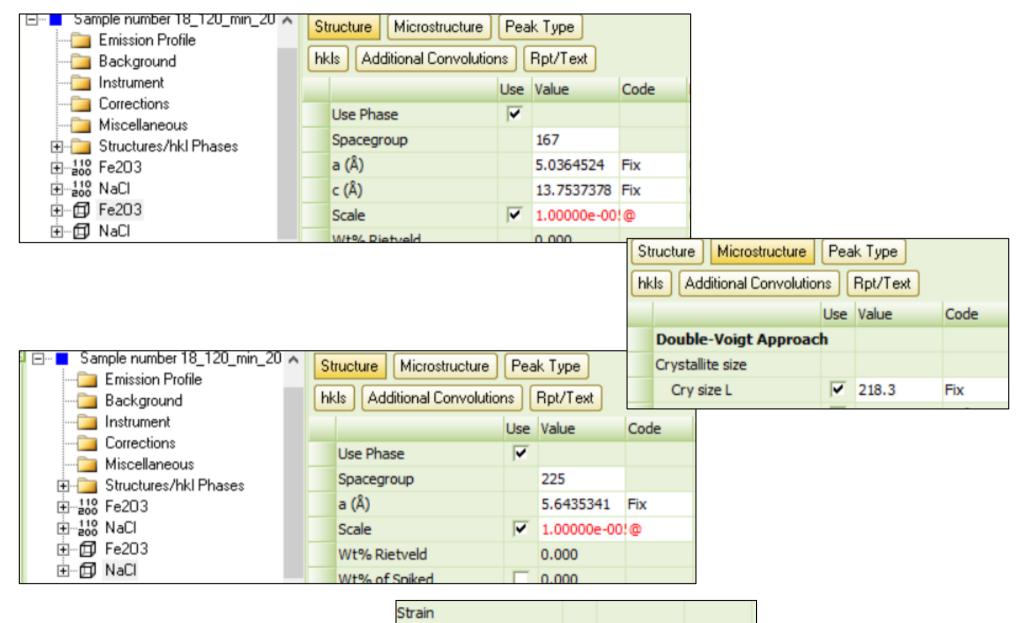
- You can add more nodes as long as the background does not fit peaks.
- E.g. 13 is a high number, but unproblematic with broad 2q range and a bulk well-crystallized sample.
- Can be problematic for small nanocrystallites why?



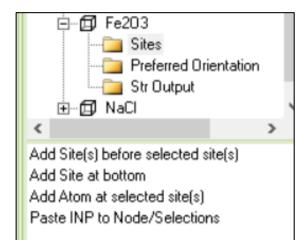
File View Fit Launch Tools Wir	ndow Help					
🗅 🖆 🏥 🖨 🖨	🖌 🥂 A 🕅	' kt 🗄			X	 √y <u>M</u> <u>M</u> <u>M</u> <u>M</u> <u>M</u> <u>M</u> <u>J</u> σ²
[≦] ⊞ <mark>]a</mark> Global ⊟ ■ Sample number 18_120_min_20-95	All range dependent Rwps	Path Displa	y Rpt/Tex	t		ž 🚬 🕨 🛲 🛃 💉 🔊
Emission Profile		Use Value	Code	Error	Min 🔺	2 Time 0.05 Rwp 9.287 -0.000 MC 0.00 1
Background	Background					3 Time 0.08 Rwp 9.287 -0.000 MC 0.00 1
Instrument	Chebychev	V	0			0.083 seconds
- Corrections	Order	13	41			*** Parameter(s) close to limit(s).
Miscellaneous	1/X Bkg	1000	Refine	0		Check for LIMIT_MIN and LIMIT_MAX in Grid/Text
⊡ - ⊡ Structures/hkl Phases ⊡ - 100 Fe2O3	Goniometer radii					Errors calculated
	Primary radius (mm)	280				
< >	Secondary radius (mm)	280				
Load INP, PAR	Equatorial Convolutions					9,287 Interface Mode
Load d_Is - DIF, UXD	Point detector					9,287
Save if displayed Yobs,Ycalc,Diff,Phase:	Capillary					9,287
Replace Scan Data	Linear PSD	V				9,287
Reverse data and make x-axis positive Delete Range	2Th angular range of LPSD	(°) 3	Fix	0		9,287
Paste INP to Node/Selections	FDS angle (°)	0.4	Fix	0	~	9,287


TOPAS - [Sample number 18_120_min_20-95_deg.raw]

Preparing for Rietveld refinement


- Uncheck the hkl phases for Pawley
- Add two new structures
- You can also load a saver .str file or a downloaded .cif file
- .cif Crystallographic Information File

Add structures for Rietveld refinement


Strain L

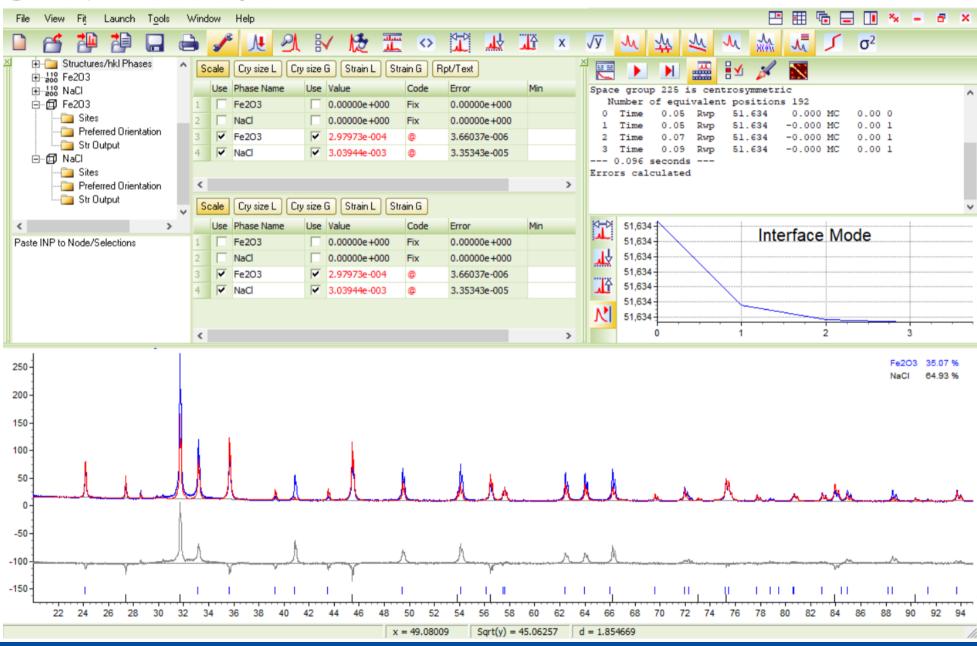
✓ 0.104205

Fix

N	ΓN	ΤT
ТЛЛ		\mathbf{U}

Structures for Rietveld – atomic positions

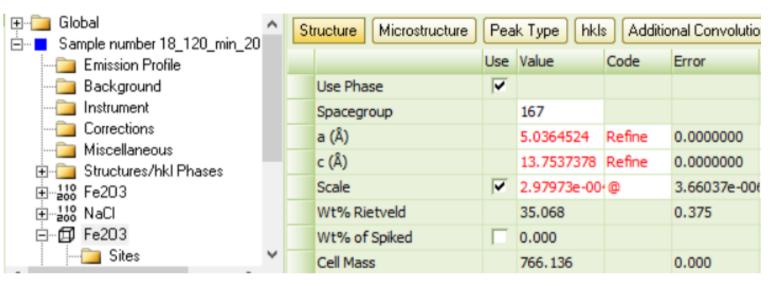
	Background Instrument	^	Va	alues 0	Codes	Errors	lin Max F	Rpt/Text		_	1
	- 🛅 Corrections			Site	Np	x	у	z	Atom	Occ.	Beq.
			1	Fe	0	0.00000	0.00000	0.35500	Fe+3	1	1
	吏 🛅 Structures/hkl Phases		2	0	0	0.699	0.00000	0.25000	0-2	1	1
	i∃…108 Fe2O3										
			<								>
	⊡…∰ Fe2O3			alues	Codes	Errors	lin Max				
	Preferred Orientation			Site	Np	х	у	z	Atom	Occ.	Beq.
	⊡⊡ D NaCl	~	1	Fe	0	Fix	Fix	Fix	Fe+3	Fix	Fix
<	>		2	0	0	Fix	Fix	=1/4	0-2	Fix	Fix

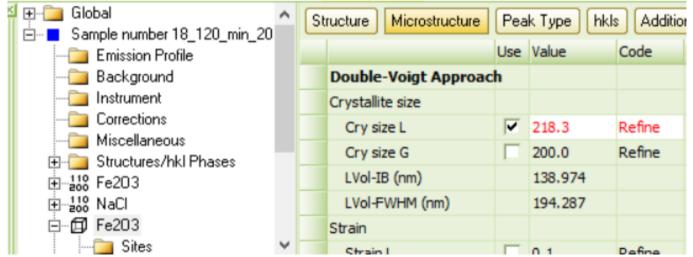

Structures for Rietveld – atomic positions

d ⊕…j_ Structures/hkl Phases ⊕…j_% Fe203	^	Values Codes Errors Min Max Rpt/Text								
			Site	Np	х	у	z	Atom	Occ.	Beq.
⊟ ⊡ Fe2O3		1	Na	0	0.00000	0.00000	0.00000	Na+1	1	1
🛅 Sites		2	Cl	0	0.50000	0.50000	0.50000	Cl-1	1	1
Preferred Orientation										
⊡-⊡ NaCl		<	<							
Sites		Values Codes Errors Min Max								
Str Output			Site	Np	х	у	z	Atom	Occ.	Beq.
	~	1	Na	0	Fix	Fix	Fix	Na+1	Fix	Fix
< >		2	Cl	0	=1/2	=1/2	=1/2	Cl-1	Fix	Fix
Add Site(s) before selected site(s) Add Site at bottom Add Atom at selected site(s) Paste INP to Node/Selections										

Rietveld – first attempt with Pawley results

TOPAS - [Sample number 18_120_min_20-95_deg.raw]

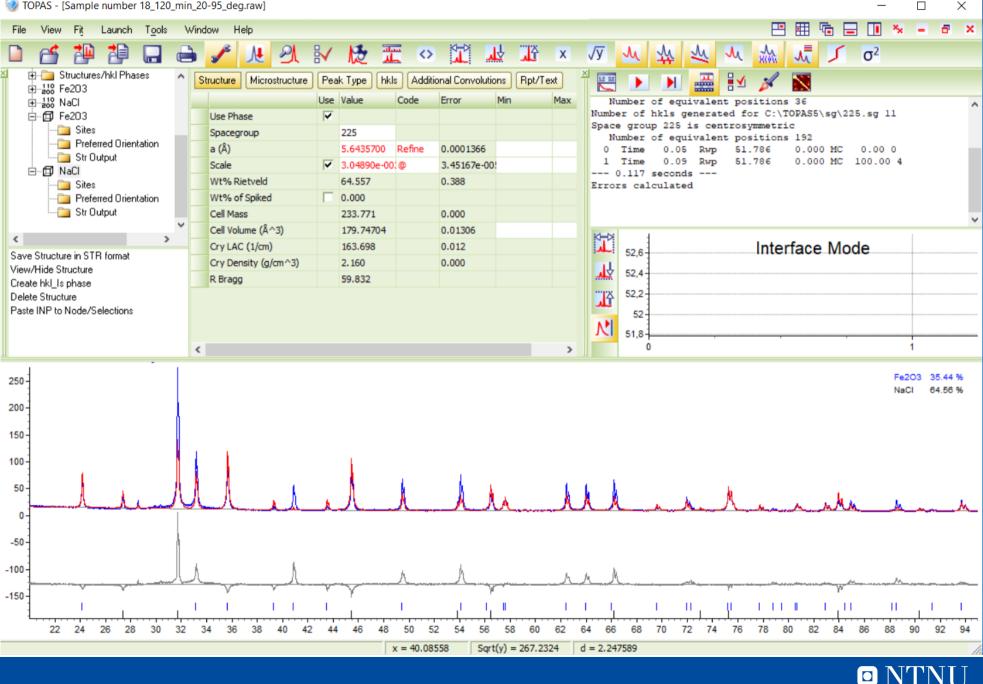



 \square NTNI

X

Rietveld refinement

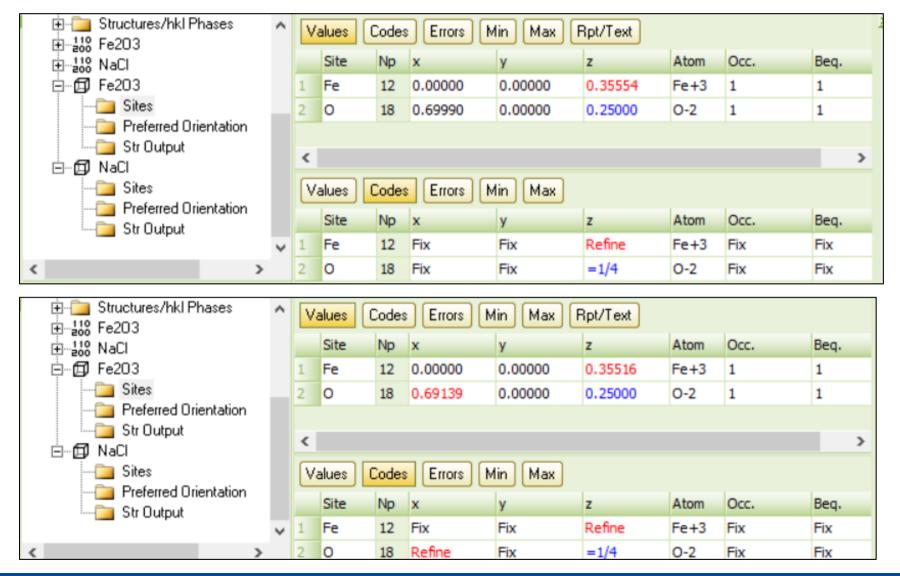
- Start with lattice parameters peak positions.
- Proceed with size/strain peak shapes.



Rietveld refinement, peak pos./shape included

TOPAS - [Sample number 18 120 min 20-95 deg.raw]

Rietveld refinement – atomic positions

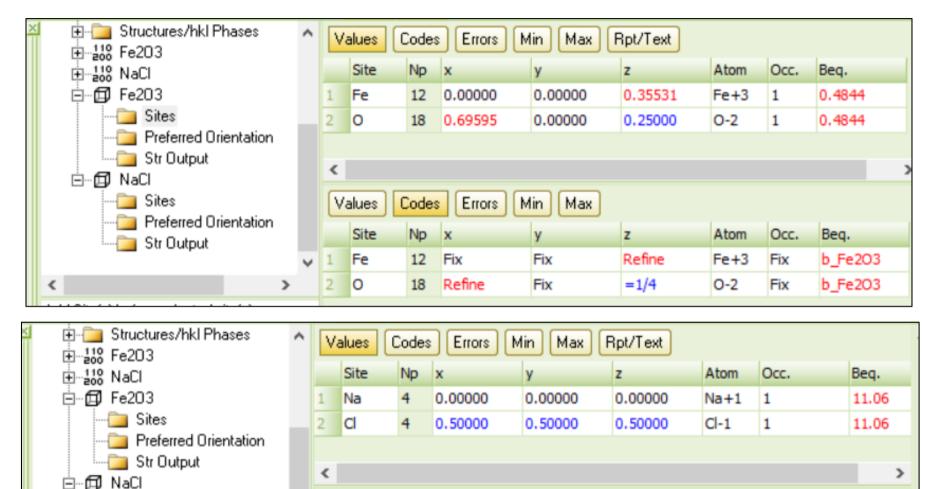

- Always start with locked atomic positions.
- Lattice parameters and size/strain MUST converge before you add atomic positions as variables.

×	ia - 🔁 Structures/hkl Phases ia - 118 Fe2O3	^	V	Values Codes Errors Min Max Rpt/Text								
				Site	Np	x	у	z	Atom	Occ.	Beq.	
			1	Na	4	0.00000	0.00000	0.00000	Na+1	1	1	
			2	Cl	4	0.50000	0.50000	0.50000	Cl-1	1	1	
	Str Output		<	<							>	
	⊡…∰ NaCl ⊡ Sites ⊡ Preferred Orientation		V	Values Codes Errors Min Max								
	Str Output			Site	Np	x	у	z	Atom	Occ.	Beq.	
		¥	1	Na	4	Fix	Fix	Fix	Na+1	Fix	Fix	
<	2	•	2	Cl	4	=1/2	=1/2	=1/2	Cl-1	Fix	Fix	

Rietveld refinement – atomic positions

- Start with heaviest atomcs, proceed with lighter.
- If more what one Wyckoff position: start with highest multiplicity.

Rietveld refinement – B-factors


Start with linking parameters, see example below.

Sites

<

🛅 Str Output

Preferred Orientation

Errors

Min

y

Fix

=1/2

Max

z

Fix

=1/2

Codes

Np

4

4

X

Fix

=1/2

Values

Site

Na

C

≻

Cl-1 Fix B_NaCl

Beg.

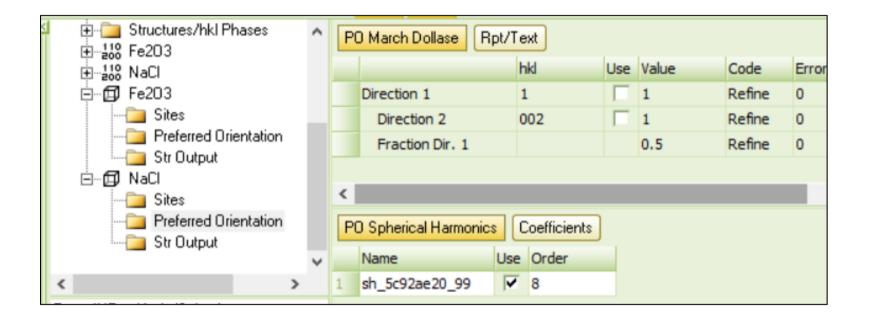
B NaCl

Occ.

Fix

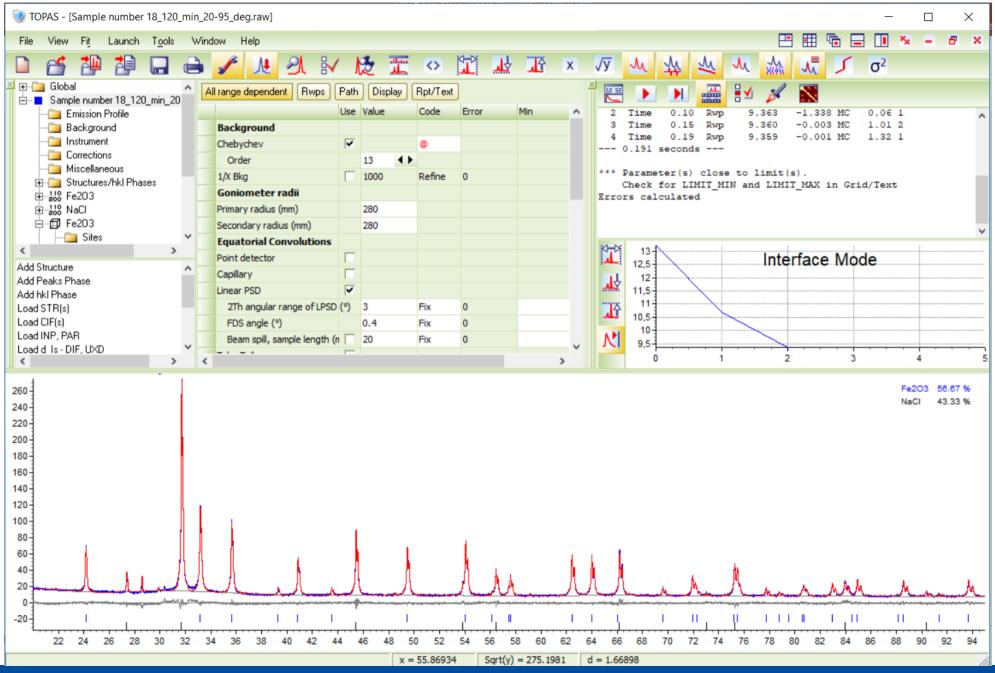
Atom

Na+1


Peak intensities wrong and B-factors too high...

TOPAS - [Sample number 18 120 min 20-95 deg.raw] П \times Fit Launch Tools Window Help PP. G. 8 X File View 1 P 13 ΥĻ Ť √у 4 σ^2 김희 <> X r M h m 🗄 🛅 Structures/hkl Phases ^ Values Errors Min Max Rpt/Text Codes ±-18 Fe2O3 Site Np z Atom Occ. ± 18 NaCl Beg. X v Space group 225 is centrosymmetric Number of equivalent positions 192 Ė~67 Fe203 4 0.00000 0.00000 Na+1 11.06 Na 0.00000 1 0 Time 0.06 Rwp 36.203 0.000 MC 0.00 0 - 🗀 Sites CI 2 0.50000 0.50000 0.50000 Cl-1 11.06 4 1 Time Rwp 36.203 -0.000 MC 0.30 3 1 0.07 Preferred Orientation 2 Time 0.11 Rwp 36.203 -0.000 MC 1.28 3 - 🛅 Str Output 3 Time 0.14 Rwp 36.203 -0.000 MC 0.81 2 < > 🗄 🗇 🕅 NaCl --- 0.146 seconds ---Sites Values Codes Errors Min Max Errors calculated Preferred Orientation Atom Occ. Site Np v Z Beg. X - 🛅 Str Output B_NaCl Na 4 Fix Fix Fix Na+1 Fix CI < =1/2 B_NaCl > 4 =1/2=1/2Cl-1 Fix 36,203-Interface Mode 36.203 Add Site(s) before selected site(s) Add Site at bottom γŗ 36,203 Add Atom at selected site(s) 36,203 Paste INP to Node/Selections Â 36,203 36.203 36,203 0 2 3 < > Fe2O3 24.39 % 250 75.61 % NaCI 200 150 100 50-0. -50 -100 Ш 11 22 24 26 28 30 32 34 36 40 42 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 38 44 x = 50.43265Sqrt(y) = 248.2478d = 1.808054

DNTNU


Preferential orientation in powder

- Use this with care and make sure you know what you are doing!
- (I know what I'm doing and I made the sample...)

Rietveld refinement – final result

NTNU

Rietveld refinement – fit statistics

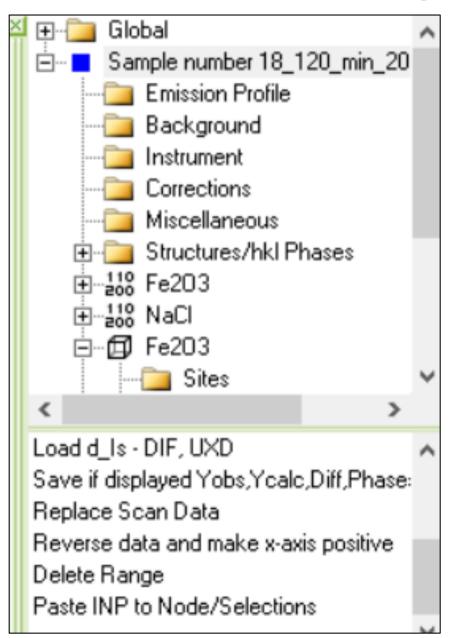
∯ ⊕ 🛅 Global	^	A	Irange dependent Rwps Path	Display Rpt/Text
🖻 🗉 Sample number 18_120_min_20		<u> </u>		
Emission Profile				Value
Background			GOF	1.97
			Rexp	4.96
			Rwp	9.76
Miscellaneous E Structures/hkl Phases			Rp	6.97
			Rexp-dash	6.11
±			Rwp-dash	12.02
Ė ∰ Fe2O3			Rp-dash	9.51
Sites	~		Weighted Durbin Watson	0.57
< >				

Rietveld refinement - results

Emission Profile	^	So	cale Cry size L	Cry	size G Stra	ain L Str	ain G Rpt/1	「ext
			Phase Name	Use	Value	Code	Error	Min
Corrections		1	Fe2O3		218.3	Refine	4.2	
Miscellaneous		2	NaCl	Г	2062.8	Refine	0.0	
🖻 🧰 Structures/hkl Phases		3	Fe2O3	\checkmark	217.5	Refine	4.4	
Internal Standard Metho External Standard Metho		4	NaCl		4143.9	@	1257.1	
Brindley correction (Sphe								
⊡ <mark>i</mark> iii Display ⊡iiii Fe2O3	¥	So	cale Cry size L	Cry	size G Stra	ain L Str	ain G	
< >			Phase Name	Use	Value	Code	Error	Min
Paste INP to Node/Selections		1	Fe2O3	\mathbf{V}	0.134611	Refine	0.001841314	ŧ
		2	NaCl	$\overline{\checkmark}$	0.104205	Refine	0.000460946	5
		3	Fe2O3	$\overline{ \checkmark }$	0.02137314	Refine	0.002042238	3
		4	NaCl	\mathbf{V}	0.1055814	Refine	0.000486459)

Rietveld refinement - results

Emission Profile	^	Va	alues Codes	Errors Min	Max Rp	t/Text		
- instrument			Phase Name	SG	a (Å)	b (Â)	c (Å)	а
Corrections		1	Fe2O3	167	5.0364248		13.7537028	
Miscellaneous		2	NaCl	225	5.6435341			
E Structures/hkl Phases		3	Fe2O3	167	5.0364513		13.7537742	
Internal Standard Metho		4	NaCl	225	5.6435355			
SG, Lattice parameters								
⊡ Brindley correction (Sphe ⊡⊡ Display ⊕ 188 Fe2O3	~	< [Va	alues Codes	Errors Min	Max			
< >			Phase Name	SG	a (Â)	b (Â)	c (Å)	а
Paste INP to Node/Selections		1	Fe2O3	167	0.0001347		0.0006824	
		2	NaCl	225	0.0000000			
		3	Fe2O3	167	0.0000241		0.0000925	
		4	NaCl	225	0.0000290			


Rietveld refinement - results

Structures/hkl Phases ± <u>11</u> 8 Fe2D3	^	V	alues (Codes	Errors	fin Max I	Rpt/Text			
			Site	Np	х	у	z	Atom	Occ.	Beq.
⊨ ⊡ Fe2O3		1	Na	4	0.00000	0.00000	0.00000	Na+1	1	0.5961
🚞 Sites		2	Cl	4	0.50000	0.50000	0.50000	Cl-1	1	0.5961
Str Output		<								>
⊡…∰ NaCl ⊡ Sites ⊡ Preferred Orientation		V	Values Codes Errors Min Max							
Str Output			Site	Np	x	У	z	Atom	Occ.	Beq.
Ou buiput	~	1	Na	4	0.00000	0.00000	0.00000	Na+1	0	0.0329
< >	•	2	Cl	4	0.00000	0.00000	0.00000	Cl-1	0	0.0329

Rietveld refinement – export your data

Getting the positions of the hkl ticks

Instrument	^	S	tructure) Mici	rostruct	ure F	eak Type	kls Additional	Convolutions	Rpt/Text
			h	k	1	m	d	th2	F^2	
Miscellaneous										
⊡		1	0	1	2	6	3.68310	24.14436	15.353	
i		2	1	0	4	6	2.70013	33.15139	98.719	
⊞ 18 NaCl		3	1	1	0	6	2.51808	35.62540	82.192	
⊡…∰ Fe2O3		4	0	0	6	2	2.29217	39.27357	2.550	
Preferred Orientation		5	1	1	3	12	2.20706	40.85428	35.846	
Str Output		6	2	0	2	6	2.07870	43.50116	3.603	
⊡…∰ NaCl		7	0	2	4	6	1.84155	49.45303	94.142	
Sites	~	8	1	1	6	12	1.69506	54.05737	143.826	
		9	2	1	1	12	1.63676	56.14967	1.781	
Save Structure in STR format View/Hide Structure		10	1	2	2	12	1.60305	57.43860	8.486	
Create hkl_Is phase		11	0	1	8	6	1.59937	57.58339	29.380	
Delete Structure		12	2	1	4	12	1.48646	62.42471	129.999	
Paste INP to Node/Selections		13	0	3	0	6	1.45382	63.99001	134.967	

⊕ <mark>ial</mark> Structures/hkl Phases ⊕ i al Fe203	^	S	tructure	Mic	rostruct	ure F	eak Type	nkls Additiona	l Convolutions	Rpt/Text
±			h	k	1	m	d	th2	F^2	
🖻 🗇 Fe2O3		1	1	1	1	8	3.25814	27.35099	7.324	
- 🚞 Sites		2	0	0	2	6	2.82163	31.68541	109.569	
Preferred Orientation		3	0	2	2	12	1.99520	45.42118	153.293	
⊡⊡ Str Output		4	3	1	1	24	1.70151	53.83600	7.334	
Sites		5	2	2	2	8	1.62907	56.43829	78.200	
Preferred Orientation		6	0	0	4	6	1.41082	66.18532	47.222	
🛄 Str Output		7	3	3	1	24	1.29465	73.02296	6.736	

Pawley refinement – hkl phases

- Advantages:
 - Data quality requirement limited compared to Rietveld
 - Uncertainty will still depend on collection time and 2θ range
 - Lattice parameters often the most important information
 - E.g. high symmetry structures have no/little degrees of freedom in atomic positions
 - Crystallite size the essential information for nanocrystalline powder
 - Lattice strain the essential information for disordered or strained materials, or chemically complex solid solutions.
- Disadvantages:
 - No information about atomic positions or occupancies
 - No quantification of phase fractions

Rietveld refinement – structure models

- Advantages:
 - ✤ Atomic positions, occupancies and B-factors extracted.
 - Quantitative information about phase fractions obtained.
 - Necessary information to publish or report new or novel structures.
- Disadvantages:
 - + High quality data necessary long collection time and broad 2θ .
 - ✤ More variables, more possibilities of making mistakes.

General refinement strategy for Pawley

- Start with the most important things, proceed with less important when convergence is reached for the most important.
- In other words: do NOT refine all variables at once!
- TOPAS has no chemical/physical knowledge you have.
- Set background to 3, increase it later if necessary.
- Make sure your emission profile and instrumental parameters are right.
- Make sure your simulated Bragg peaks "hit" the measured.
 - Lock size and strain with FP.
 - Follow the position of the hkl ticks.
 - Use d-spacing for the x-axis and the formulas from previous lectures and adjust the initial guess value.
 - Refine lattice parameters and sample displacement simultaneously.
- ♦ Add crystallite size and/or strain to fit the peaks shapes with FP.

General refinement strategy for Rietveld

- As for Pawley +:
- Lattice parameters (peak positions) and size/strain (peak shape) must converge before you refine atomic positions.
- ONLY refine atomic positions where the space group has a degree of freedom.
 - How do you know which positions have degrees of freedom?
 - Use fractions for high symmetry positions in codes field
 - ✤ Wyckoff sites test with VESTA to be certain!
- Start with the position that affects the peak intensities the most.
 - → Z² x multiplicity/stoichiometry
 - Start with the heaviest atoms
 - Reach convergence before you add progressively lighter atoms.
 - Exceptions may apply, a sound understanding is required.
- Occupancies be careful! Examples: $PbZr_{0.2}Ti_{0.8}O_3$ and Fe_3O_4 .
- ✤ Link parameters when sensible user understanding required.
- Do not over-fit your data! Mind R_{wp} , R_{exp} and χ^2 !

Take-home messages from *bonus* lecture LX8-9

- This is the essence of what you should do for your lab report.
- The nominal composition was 50% Fe_2O_3 and 50% NaCl.
- Serious preferred orientation of the NaCl crystallites
 - or simply too large/few crystallites
 - Wrong peak intensities with position sensitive detector
 - Spots in Debye rings on a 2D plate detector
 - ✤ Had to use corrections to obtain a reasonable result
 - Note how the B-factors tell you if something is wrong
- Never underestimate visual inspection, more important than R-factors!
- Rietveld refinement still not trivial after 15 years...

