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Preface

This book is addressed to all who have a need to come to grips with the fundamentals

of electrochemistry and to learn about some of its applications. It could serve as a text for

a graduate, or senior undergraduate, course in electrochemistry at a university or college,

but this is not the book’s sole purpose.

The text treats electrochemistry as a scientific discipline in its own right, not as an

offshoot of physical or analytical chemistry. Though the majority of its readers will

probably be chemists, the book has been carefully written to serve the needs of scientists

and technologists whose background is in a discipline other than chemistry. Electro-

chemistry is a quantitative science with a strong reliance on mathematics, and this text does

not shy away from the mathematical underpinnings of the subject.

To keep the size and cost of the book within reasonable bounds, much of the more

tangential material has been relegated to “Webs” – internet documents devoted to a single

topic – that are freely accessible from the publisher’s website at www.wiley.com/go/EST.

By this device, we have managed largely to avoid the “it can be shown that” statements that

frustrate readers of many textbooks. Other Webs house worked solutions to the many

problems that you will find as footnotes scattered throughout the pages of Electrochemical

Science and Technology. Another innovation is the provision of Excel® spreadsheets to

enable the reader to construct accurate cyclic (and other) voltammograms; see Web#1604

and Web#1635 for details.

It was in 1960 that IUPAC (the International Union of Pure and Applied Chemistry)

officially adopted the SI system of units, but electrochemists have been reluctant to

abandon centimeters, grams and liters. Here, with some concessions to the familiar units

of concentration, density and molar mass, we adopt the SI system almost exclusively.

IUPAC’s recommendations for symbols are not always adhered to, but (on pages 195 and

196) we explain how our symbols differ from those that you may encounter elsewhere. On

the same pages, we also address the thorny issue of signs.

Few references to the original literature will be found in this book, but we frequently

refer to monographs and reviews, in which literature citations are given. We recommend

Chapter IV of F. Scholz (Ed.), Electroanalytical Methods: guide to experiments and



xii Preface

applications 2E, Springer, 2010, for a comprehensive listing of the major textbooks,

monographs and journals that serve electrochemistry.

The manuscript has been carefully proofread but, nevertheless, errors and obscurities

doubtless remain. If you discover any such anomalies, we would appreciate your bringing

it to our attention by emailing Alan.Bond@monash.edu. A list of errata will be maintained

on the book’s website, www.wiley.com/go/EST.

Electrochemical Science and Technology: fundamentals and applications has many

shortcomings of which we are aware, and doubtless others of which we are ignorant, and

for which we apologize. We are pleased to acknowledge the help and support that we have

received from Tunde Bond, Steve Feldberg, Hubert Girault, Bob de Levie, Florian

Mansfeld, David Rand, members of the Electrochemistry Group at Monash University, the

Natural Sciences and Engineering Research Council of Canada, the Australian Research

Council, and the staff at Wiley’s Chichester office.

July 2011 Keith B.Oldham

Jan C. Myland

Alan M. Bond



101 Ions are charged atoms or groups of atoms; if positively charged, they are called cations, whereas anion is

the name given to a negative ion.

Electrochemical Science and Technology: Fundamentals and Applications, First Edition. Keith B. Oldham, Jan C. Myland, Alan M. Bond.

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

1

Electricity

At the heart of electrochemistry lies the coupling of chemical changes to the passage

of electricity. The science of electricity is a branch of physics, but here we start our study

of electrochemistry by reviewing the principles of electricity from a more chemical

perspective.

Electric Charge: the basis of electricity

Charge is a property possessed by matter. It comes in two varieties that we call

positive charge and negative charge. The salient property of electric charges is that those

of opposite sign attract each other, while charges of like sign repel, as illustrated in

Figure 1-1.

Charge is measured in coulombs, C, and it occurs as multiples of the elementary charge
19

0 eleme1.602 ntary2 10 ch rgeC aQ  1:1

Charge is not found in isolation, it always accompanies matter. Such fundamental particles

as the proton H+ and the electron e possess single charges, that is ±Q0, as do many ions101

such as the sodium Na+, chloride Cl, and hydronium H3O
+ ions. Other ions, such as the

magnesium Mg2+ cation and phosphate anion are multiply charged. Even neutral3
4PO 

molecules, which have no net charge, are held together electrically and frequently have

charges on their surfaces. For example, one side of the water molecule pictured in

Figure 1-2 has a negative region, the other side being positively charged. Such structures,
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102 Read more at Web#102 about the water dipole and dipole moments.
103 Calculate the repulsive force (in newtons) between two protons separated by 74.14 pm, the internuclear

distance in the H2 molecule. See Web#103 to check your result.
104 Frenchman Charles Augustin de Coulomb, 17361806, first confirmed the law experimentally.
105 Sir Isaac Newton, 16431727, renowned English scientist.
106 The permittivity of free space, 0, is also known as the electric constant.
107 Justify this statement. See Web#107.
108 A phase is a region of uniform chemical composition and uniform physical properties.

called dipoles102, behave as if they contain small (generally less than Q0) localized positive

and negative charges separated by a small distance.

Ions and electrons are the actors in the drama of electrochemistry, as are molecules.

Most often these charged particles share the stage and interact with each other, but in this

chapter we mostly consider them in isolation. The electrical force, f, between two charges

Q1 and Q2 is independent of the nature of the particles on which the charges reside. With

r12 as the distance between the two charges, the force103 obeys a law

1 2
2

12

Coulomb’s l
4

aw
Q Q

f
r




1:2

attributed to Coulomb104. The SI unit of force is the newton105, N. Here  is the

permittivity of the medium, a quantity that will be discussed further on page 13 and which

takes the value
12 2 1 2

0 permittivi8.85 ty o42 10 C N m f free space    1:3

when the medium is free space106. The force is repulsive if the charges have the same sign,

attractive otherwise. To give you an idea of the strong forces involved, imagine that all the

Na+ cations from 100 grams of sodium chloride were sent to the moon, then their attractive

force towards the earthbound chloride anions probably exceeds your weight107.

A consequence of the mutual repulsion of two or more similar charges is that they try

to get as far from each other as possible. For this reason, the interior of a phase108 is usually

free of net charge. Any excess charge present will be found on the surface of the phase, or

very close to it. This is one expression of the principle of electroneutrality.
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109 “Electric” and “electrical” are adjectives of identical meaning. A quirk of usage is that we usually speak of

electric field and electric charge but electrical potential and electrical conductivity.
110 Physicists use E for field strength, but traditionally electrochemists reserve that symbol for potential, a

holdover from the antiquated term “electromotive force”.
111 or, equivalently and more commonly, volt per meter, V m1. See equation 1:9 for the reason.
112 Consider two protons separated by 74.14 pm, the internuclear distance in the H2 molecule. Find the field

strength and direction at points 25%, 50% and 75% along the line connecting the protons. For a greater

challenge, find the field at some point not on the line of centers. See Web#112.

Charges at Rest: electric field and electrical potential 109

Coulomb’s law tells us that an electric charge can make its presence felt at points

remote from its site. An electric field is said to exist around each charge. The electric

field is a vector; that is, it has both direction and strength. Figure 1-3 shows that the field

around an isolated positive charge points away from the charge, at all solid angles.

The strength of an electric field at a point can, in principle, be assessed by placing a

very small positive “test charge” Qtest at the point. The choice of a sufficiently small test

charge ensures that the preexisting field is not disturbed. The test charge will experience

a small coulombic force. The electric field strength110, or more simply the field, X, is

then defined as the quotient of the force by the test charge:

test

definition of field
f

X
Q

1:4

and therefore it has the unit111 of newtons per coulomb, N C1. Thus, for any static charge

distribution, it is possible to calculate field strengths using Coulomb’s law112.

Force, and therefore also electric field, is a vector quantity. In this book, however, we

shall avoid the need to use vector algebra by addressing only the two geometries that are

of paramount importance in electrochemistry. These two geometries are illustrated in

Figures 1-4 and 1-5. The first has spherical symmetry, which means that all properties

are uniform on any sphere centered at the point r  0. Thus, there is only one spatial

coordinate to consider; any property depends only on the distance r, where 0  r < . The
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second geometry of prime electrochemical concern has planar symmetry, meaning that

uniformity of properties exists in planes. The space of interest lies between two parallel

planes separated by a distance, L, the planes being very much larger than L in their linear

dimensions. Again, there is only one coordinate to consider, now represented by x, where

0  x  L. Each of these two geometries is simple in that there is only one relevant distance

coordinate. Thus, when we discuss the field, we mean implicitly the field strength in the

direction of increasing r or x.

Coulomb’s law tells us that the electric field strength falls off with distance according

to the inverse-square law: at double the distance from a point source the field is
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113 See Web#113 for the derivation from Coulomb’s law. It involves an integration in polar coordinates.
114 Two square metal plates, each of an area of 6.25 cm2 are separated by 1.09 cm. They are oppositely charged,

each carrying 2.67 nC. The pair is immersed in acetonitrile, a liquid of permittivity 3.32 × 1010 C2 N1 m2.

Calculate the field (strength and direction) at a point 500 m from the negatively charged surface. Check your

answer at Web#114.
115 James Prescott Joule, 18181889, English scientist and brewer.

one-fourth. Thus, it is evident that at a distance R from the point charge Q

2
test

inverse-square a( ) w
4

l
f Q

X R
Q R

 


1:5

The field is uniform at all points on the sphere shown in Figure 1-4, falling off as 1/R2. The

inverse-square law does not apply to the field in planar symmetry. In that geometry,

electrochemists are interested in the field between two charged planes, such as electrodes.

In Figure 1-5 the left-hand plane is uniformly charged such that the charge density

(measured in coulombs per square meter, C m2) is q. The field strength caused by that

plane, at a distance , can be shown113 to be simply X()  q/[2]. Taking into account the

second, oppositely charged, plane, the total field is

planar sy( ) mmetry
q

X 


1:6

Provided that the charged sheets are large enough and parallel, the adjacent field doesn’t

depend on location. The field strength114 is constant!

The concept of a small “test charge” is a valuable fiction; it is also used to define

electrical potential. Imagine that we place a test charge at point A, and move it a small

distance r towards a much larger fixed charge as in Figure 1-6. It needs the expenditure

of work for the test charge to reach its destination, point B. Work (measured inA Bw 

joules115, J) can be calculated as force × distance or, in this case:

A B test[ ]w f r Q X r      1:7

The negative sign arises because the journey occurs in the negative r direction. It is said

that an electrical potential exists at each of points A and B and we define the difference

between these potentials as the coulombic work needed to carry a test charge between the

two points divided by the magnitude of the test charge. Hence,
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116 Calculate the electrical potential difference between the 75% and 50% points in the problem cited in

Footnote 112. Which is the more positive? Check your answer at Web#116.
117 Refer to the problem in Footnote 114 and find the potential difference between the point cited and a point

at the surface of the nearby electrode. Web#117 has the answer.
118 From Coulomb’s law derive an expression for the electrical potential difference between a point at a distance

r from an isolated proton and a point at infinity. Our derivation will be found at Web#118.
119 Alessandro Guiseppe Antonio Anastasio Volta, 17451827, Italian scientist.
120 See Web#120 for the derivation of the potential change accompanying the A  B journey in Figure 1-7.

A B
B A

test

w
X r

Q
      1:8

Notice that the definition defines only the difference between two potentials, and not the

potential, , itself 116,117. In differential notation, the equation becomes118

definition of pot
d

d
entialX

r


 1:9

The unit of electrical potential is the volt119. The first equality in equation 1:8 shows that

one volt equals one joule per coulomb (V  J C1).

The situation depicted in Figure 1-6 is simple because the distance moved, in that case,

was small enough that the field could be treated as constant. For a longer journey one

finds, making use of equation 1:5,
B

A

B

B A 2
B AA

spherical

sy

d 1

mm

1
( )d

4 try4 e

r

r

Q r Q
X r r

r r r

 
        

   
 1:10

Moreover, the situation depicted in Figure 1-6 is especially simple in that the journey was

along a radial direction. A geometry like that in Figure 1-7 is more general. The force on

the moving test charge now varies along the journey, not only because the field strength

changes, but also because the angle  constantly alters as the charge moves. The potential

difference between points A and B in this geometry can be calculated from the following

chain of equalities
B B

A B
B A

test test A A

1
cos{ }d cos{ }d

w
f X

Q Q
 

          1:11

Both X and  change as the distance  traveled by the test charge increases. Remarkably,

the result of the integration does not depend on the route that the test charge travels on its

journey from A to B. The work, and therefore the potential change, is exactly the same for

the direct route as for the circuitous path via point C in Figure 1-7, and this fact greatly

simplifies the calculation of the potential difference120. In fact, equation 1:10 applies.

Equation 1:9 shows the electric field strength to be the negative of the gradient of the

electrical potential. In electrochemistry, electrical potential is a more convenient quantity

than electric field, in part because it is not a vector. It does have the disadvantage, though,
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of being a relative, rather than an absolute quantity. For this reason we more often

encounter the symbol  rather than  itself. In this book the phrase electrical potential

difference will often be replaced by the briefer term voltage.

We can define only differences in electrical potential. Worse, we can define

differences in the electrical potential only between points that lie within phases of the same

(or very similar) compositions. The essential reason for this is that we do not have

innocuous “test charges” at our disposal. We only have electrons, protons and ions. So

when we try to measure the coulombic work in moving such charged particles from one

phase to another, we inevitably encounter other energy changes arising from the change in

the chemical environment in which the particle finds itself. Such chemical work is absent

only if the departure and arrival sites have similar chemical compositions.

The electroneutrality principle prevents charges accumulating, other than near

boundaries. A need exists to investigate the distribution of charge in spaces adjacent to

boundaries, because it is at the junctions of phases that electrochemistry largely occurs.

The symbol  is generally used to represent volumetric charge density (unit, coulombs

per cubic meter, C m3). Do not confuse this quantity with q, the areal charge density

(C m2).

Let us first consider the presence of space charge in the geometry of Figure 1-5.

Imagine that, in addition to areal charge densities on the plates, there is a space charge in

the region between the plates, its magnitude being (x) at any distance x from the left-hand

plate. We seek the field at some point x  . The space charge can be regarded as being

made up of many thin wafers, each of areal charge density (x)dx. Each of these will

contribute to the field, positively for the thin wafers to the left of x  , negatively (think
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121 Siméon-Denis Poisson, 17811840, French mathematical physicist.
122 This is derived in Web#122, preceded by an important lemma.

of the effect on a test charge) when x > . Following the discussion surrounding Figure 1-5,

it follows that the total field at the point of interest is

0

0

( ) ( )
( ) d d

2 2 2 2

L

Lq x x q
X x x

 
   

    




1:12

where q0 and qL are the areal charge densities on the plates. This complicated formula

simplifies massively on differentiating with respect to x; it becomes

d ( )
( )

d

X

x







1:13

The local field gradient is simply the volumetric charge density there divided by the

permittivity. In terms of the electrical potential, this may be written
2

2

Poisson’s equation

plana

d

r symme r

(

t

)

d y

x

x

 



1:14

This is Poisson’s equation121 for planar geometry; it will find use in Chapter 13. For a

spherically symmetric geometry, as in Figure 1-4, Poisson’s equation is more complicated,

but can be shown122 to be

2

2

Poisson’s equation

spherical symme

1

tr

(

d y

d d )

d

r
r

r r r

  
 

 
1:15

This law finds application in the Debye-Hückel theory discussed in the next chapter.

Capacitance and Conductance: the effects of electric fields on matter

Materials may be divided loosely into two classes: electrical conductors that allow the

passage of electricity, and insulators that do not. The physical state is irrelevant to this

classification; both classes have examples that are solids, liquids and gases. Conductors

themselves fall into two main subclasses according to whether it is electrons or ions that

are the charge carriers that move in response to an electric field.

electronic conductors

insulators

co
ionic conduc

nducto
tor

materials
rs

s




 

 

Electronic conductors owe their conductivity to the presence of mobile electrons.

All metals are electronic conductors, but some solid inorganic oxides and sulfides (e.g.
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123 These two solids, and others, are slightly “nonstoichiometric”. Stoichiometric compounds contain two or

more elements in atom ratios that are stricly whole numbers. Water for example, contains exactly twice as many

H atoms as O atoms. Nonstoichiometric solids, in contrast, depart often only slightly from this whole-number

rule. Such an abnormality may occur naturally, being associated with defects in the crystal lattice, or be

introduced artificially by admixture with a small quantity of a dopant.
124 Read more about semiconductor conductivity at Web#124.
125 In organic compounds having alternating single and double bonds in chains or rings, the electrons confer

unusual properties, including abnormal electrical conductivity. Such electrons are described as “pi-electrons”.
126 Rich in -electrons, the organic compound tetrathiafulvalene (TTF) readily forms the cation TTF+. Another

organic compound, tetracyanoquinodimethane (TCNQ), conversely forms the anion TCNQ. Accordingly, a

mixture of these two compounds is in equilibrium with the salt (TTF+)(TCNQ) and the mixture, known as an

“organic metal”, has high electrical conductivity.
127 Conductivities of various materials, including a similar ionic liquid are listed in the table on page 384.

PbO2 and123 Ag2S) also conduct electricity by virtue of electron flow. These, and most

other semiconductors124, owe their conductivity to an excess (n-type) or a deficit (p-type)

of electrons compared with the number required to form the covalent bonds of the

semiconductor’s crystal lattice. In p-type semiconductors, the missing electrons are known

as holes and solid-state physicists speak of the conductivity as being due to the motion of

these positively-charged holes. Of course, it is actually an electron that moves into an

existing hole and thereby creates a new hole at its former site. Pi-electrons125 are the

charge carriers in some other materials, of which graphite is the best known, but which also

include newer synthetic conductive polymers. An example is the cationic form of poly-

pyrrole, which conducts by motion of -electron holes, through a structure exemplified by

Certain crystalline organic salts126, known as organic metals, also conduct by virtue of -

electron motion. Yet another exotic electronic conductor is the tar-like material (see page

94 for an application) formed when the polymer of 2-vinylpyridine reacts with excess

iodine to form a so-called “charge transfer compound”.

The second class of materials that conduct electricity comprises the ionic conductors,

which possess conductivity by virtue of the motion of anions and/or cations. Solutions of

electrolytes (salts, acids and bases) in water and other liquids are the most familiar

examples of ionic conductors, but there are several others. Ionic liquids resemble

electrolyte solutions in that the motion of both anions and cations contributes to their

electrical conductivity127: an example is 1-butyl-3-methylimidazoliumhexafluorophosphate,
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128 also known as solid electrolytes, but this can be a misleading name.
129 See pages 68 and 173 for an application. Zirconia exists in two forms, only one of which allows oxide ion

motion; to stabilize this form, a small quantity of yttrium is added.
130 Fluorescent lights and “neon lights” are examples.

Ionic liquids are, in fact, molten salts, but inorganic salts generally have much high melting

points and conduct only at elevated temperatures. Solid ionic conductors128, on the other

hand, usually have only one mobile ionic species that may be either an anion (as in zirconia,

ZrO2, which, at high temperatures, allows oxide ions, O2, to migrate through its lattice129)

or a cation (as in silver rubidium iodide, RbAg4I5, in which Ag+ is mobile even at room

temperature). An interesting case is provided by lanthanum fluoride, LaF3, crystals that

have been “doped” by a very small addition of europium fluoride, EuF2. Because the

dopant contributes fewer F ions to the lattice than its host, the crystal has “fluoride ion

holes” which can move exactly as do electron holes in p-type semiconductors. Such

crystals find applications in the fluoride ion sensor described on page 121.

A few materials permit the flow of electricity by both electronic and ionic conduction.

An example of such mixed conduction is provided by the hot gases known as plasmas,

which contain positive ions and free electrons130. A second example is the solution formed

when sodium metal dissolves in liquid ammonia. Such a solution contains sodium Na+

cations and solvated electrons (see page 41), both of which are mobile and share duties as

charge carriers. Yet another example of mixed conduction is provided by hydrogen

dissolved in palladium metal; here there is conduction by the migration of protons

(hydrogen ions) as well as by electrons. In summary:
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Though we shall not go into details, technological devices exist that produce a constant
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131 An ideal voltmeter measures the voltage between its terminals while preventing any charge flow through

itself. Modern voltmeters closely approach this ideal.
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difference of electrical potential. Such a device is called a voltage source and it has two

terminals, one of which (often colored red) is at a more positive electrical potential than

the other. There are other devices, named voltmeters, that can measure electrical potential

differences. Both these devices are electronic; that is, they produce or measure an electrical

potential difference by virtue of a deficit of electrons on their red terminals compared with

the other. We do not have devices able directly to produce or measure deficits or excesses

of other charged species, such as protons or ions, so studies on these latter charge carriers

are conducted through the medium of electronic devices. Much of the later content of this

book is devoted to experiments carried out to investigate the behavior of ions, via

measurements made with electronic devices.

Figure 1-8 shows a voltage source connected by wires and a switch to a voltmeter131

and to a pair of parallel metal sheets, often called plates. On closing the switch, a brief

surge of electrons occurs and causes charges to appear on the plates. Because of the

electroneutrality principle, electrons arrive on the inward-facing surface of the right-hand

metal plate. There is a complementary withdrawal of electrons from the inward-facing

surface of the left-hand metal plate, leaving a positive charge on that surface.

We have seen in equation 1:6 that such a parallel distribution of charges produces a

uniform electric field of strength X  q/ in the space between the plates. Here  is the

permittivity of the medium between the plates and, if this is air, it differs only marginally

from 0. The direction of the field is towards the negative plate, rightwards in Figure 1-8.

To carry a test charge a distance L, from a point adjacent to the negatively charged plate

to a second point adjacent to the positive plate, will require work w equal to XQtestL or

qQtestL/ and, accordingly, the potential difference
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132 A capacitor can have a shape other than the parallel-plate configuration discussed here. Read about another

important capacitor – the isolated sphere – at Web#132.

close to positive plate close to negative plate

test

w qL

Q
      


1:16

exists between the destination and starting points. This shows, reasonably, that the medium

close to the positive plate is at a more positive electrical potential than is the medium close

to the negative plate. And of course, because the field is uniform, the potential changes

linearly with distance between the two points as illustrated in Figure 1-9.

The in equation 1:16 is the potential difference between two points in the medium.

The voltmeter shown in Figure 1-8 measures the differenceE in potential between the two

metal plates. We now assert that E  . As alluded to on page 7, we cannot measure

(or even usefully define!) the potential difference between such chemically diverse media

as metal and air, and so we have no information about the two potential differences labeled

“?” in Figure 1-9. However, we do believe the two to be equal, because the “chemical

work” in transferring any charged particle across the two interfaces will be the same. We

shall continue to follow the convention that immeasurable electrical potentials that are

imagined to exist within phases are symbolized , whereas electrical potential differences

that can be measured by a voltmeter are denoted E.

Return to Figure 1-8 and note that, on reopening the switch, the charges remain on the

plates; electric charge is stored. A device, such as the parallel plates132 just described, that

is able to store electric charge is called a capacitor. The stored charge is

A
Q E

L

 
 1:17

The ratio of the potential difference across a capacitor to the charge it stores is called the

capacitance of the capacitor and is given the symbol C

definition of capacitance

planar symmetry

Q A
C

E L

 
 


1:18
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133 Copper sheets, each of 15.0 cm2 area are separated by an air gap of 1.00 mm. Calculate the capacitance,

checking at Web#133. Also find the charge densities on the plates and the field within the capacitor, when

1000 V is applied.
134 Confusingly  is sometimes used to denote relative permeability (or dielectric constant or dielectric

coefficient), which is the ratio of the permittivity of the material in question to the permittivity of free space.
135 These are listed in farads per meter, the conventional unit of permittivity. Show that this is equivalent to the

unit given in equation 1:3. See Web#135.
136 and also more energy. The energy stored by a capacitor is QE/2. Can you explain the reason for the divisor

of 2? If not, consult Web#136.
137 Even if the material is not dipolar, the presence of the imposed field can induce a temporary dipole. Such

polarizability is how a material such as tetrachloromethane, CCl4, exhibits an elevated permittivity.

The unit of capacitance133 is the farad, F. One farad equals one coulomb per volt. The

negative sign in the last two equations, which you will often find missing from other texts,

arises because positive charge flowing into a capacitor produces a negative charge on the

remote plate.

We now turn to discuss what happens when an insulator is placed between the parallel

plates of a capacitor. Equations 1:17 and 1:18 still apply, with  becoming the

permittivity134 of the insulator. Permittivities vary greatly, as evidenced in the table on

page 382. Notice that the listed permittivities135 always exceed 0 so that the capacitor now

has a larger capacitance and stores more charge136 for a given voltage. The explanation for

this is especially easy to understand when the insulator has a dipolar molecule, such as the

organic liquid, acetonitrile, CH3CN. Like the water molecule shown in Figure 1-2, this

molecule has a positive end and a negative end and, in an electric field, such molecules tend

to align themselves as illustrated in Figure 1-10. The effect is to create localized fields

within the insulator that oppose, and partially neutralize, the imposed field, so that more

external charge is required to reach the applied voltage E. Insulators that behave in this,

and similar137, ways are often called dielectrics.

It is quite a different story if we place an electronic conductor between the plates. The

electrons are now able to pass freely from the negative plate into the conductor, and from

the conductor into the positive plate, as in Figure 1-11. Electrons being negative, their

passage from right to left through the conductor in this figure corresponds to electric charge

flowing from left to right. We say an electric current, I, flows through the conductor: it
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138 André Marie Ampère, 17751836, French physicist.
139 Some pacemaker batteries (see Chapter 5) are required to generate 29 A of electricity at 2.2 V and to

operate reliably for 8 years. What is total charge delivered in the battery’s lifetime? How many electrons is

that? What energy is liberated? What average power? See Web#139.
140 An ideal ammeter measures the current flow without producing any voltage across its terminals. Modern

ammeters closely approach this ideal.

expresses the rate at which charge passes through the conductor:

definition of cu rent
d

d
r

Q
I

t
1:19

Electric current is measured in the ampere138 unit, one ampere corresponding to the passage

of one coulomb in a time t of one second139 (A  C s1). The flow of electricity through the

conductor is continuous, unlike the case of an insulator, in which there is only a brief

transient passage of electricity.

Of course, the same flow of electricity that occurs in the conductor is also experienced

in the wires and plates that constitute what is known as the circuit, the pathway through

which the charge flows. That is why an ammeter, an electronic device140 that measures

electric current, can be positioned, as in Figure 1-11, remote from the conductor and yet

measure the current flowing through it. An important quantity, equal to the current divided

by the cross-sectional area through which it flows, is the current density, i:

definition of current density
I

i
A

1:20
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141 The reciprocal 1/ of the conductivity is known as the resistivity. Conductivity and resistivity are properties

of a material. In contrast conductance and resistance are properties of a particular sample of material.
142 Ernst Werner von Siemens, 18161892, German engineer.
143 Another uses alternating current, as discussed on page 104.
144 Georg Simon Ohm, 17891854, German physicist.
145 Show that the resistance, measured between opposite edges of a square of a thin conducting film, does not

depend on the size of the square. For this reason, the resistances of thin films are often expressed in ohms per

square. A thin copper film has a resistance of 0.6  per square. Using the table entry on page 385, find its

thickness. Compare you answer to that in Web#145.
146 Find the resistance between opposite faces of a cube of pure water of edge length 1.00 cm. See Web#146.

It is measured in amperes per square meter, A m2. Unlike the current itself, the current

density does differ in different sections of a circuit.

The ratio of the current density flowing in a conductor to the field that creates it is

called the conductivity  of the material141

definition of conductivity

pla

/

nar symme y/ tr

i I A

X L
  


1:21

It has the unit (A m2)/(V m1) = A V1 m1  S m1. S symbolizes the siemens142 unit.

One way in which the conductivity of an electronically conducting material can be

measured143 is illustrated in Figure 1-11. A voltmeter measures the electrical potential

difference E between two points A and B on the conductor, which has a uniform

cross-sectional area A, and through which a known current is flowing. Then, using 1:9,

B A( )/

d / d

I x xi I A

X x A E


   

   
1:22

The relationship i  X is one form of Ohm’s law144. Another is E/I  R which defines

the resistance R, measured in the ohm () unit, equal to S1. The second equality in the

formula
definition of resistance

planar symmetry

E L
R

I A


 


1:23

applies only to conductors of a simple cuboid145,146 or cylindrical shape. The resistances of

conductors of these and some other geometries are addressed in Chapter 10.

The negative sign in the three most recent equations arose because the current flow

occurred in the direction of the coordinate in use. However, Ohm’s law is often used in

contexts in which there is no clear coordinate direction and accordingly the equation E

 IR is often written, in this book and elsewhere, without a sign. The issue originates

because, strictly, I is a vector whereasE and R are not. Exactly the same ambiguity arises

in equations 1:17 and 1:18. Just remember that the flow of current through a resistor or

capacitor is accompanied by a decrease in electrical potential.

Thus far, we have investigated what happens when we apply an electric field to an
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147 Electrochemists refer to such a circumstance as “an electrochemical cell under totally polarized conditions”.

See Chapter 10.
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insulator or to an electronic conductor. What occurs when an electric field is applied to an

ionic conductor, for example by applying a voltage between two plates that sandwich the

conductor? Often a chemical reaction occurs and we enter the realm of electrochemistry.

Sometimes, however, if the applied voltage E is small enough, conditions147 are such that

no chemical reaction can occur. In such circumstances, when the switch shown in

Figure 1-12 is closed, a current flows that, unlike the case of the electronic conductor,

declines in magnitude and eventually becomes immeasurably small. The quantity of

charge, Q(t ), that has passed increases with time in the manner described by the curves in

Figure 1-13. As in the insulator case, the charge passed ultimately, Q(), is proportional

to the area A of the plates and (approximately at least) to the applied voltageE. However,

it is entirely independent of the separation L. Evidently there are factors at play in the case

of an ionic conductor that have no parallel in the other two classes of materials, but the

novel behavior is readily explained.

If the ionic conductor contains mobile ions of two types, cations and anions, then the

effect of the field is to cause these ions to move, anions leftwards in Figure 1-14 and

cations rightwards. As the moving ions approach the impenetrable plates, they are halted

and accumulate there. The two sheets of accumulating ions themselves create a field that

opposes that caused by the plates, decreasing the field experienced by the moving ions and

slowing their motion. Eventually the motion ceases because the two fields entirely cancel

and leave the interior of the conductor field-free.
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We now have four sheets of charge: two electronic and two ionic. At the surface of

each plate a layer of ions confronts a layer of electronic charge of equal magnitude but

opposite sign. This is called a double layer. Just as the two layers of charge in Figure 1-8

constitute a capacitor, so do the layers at each plate in the present case. Such double layer
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148 There is such a capacitor at each plate. If its capacitance is C, show that the effective capacitance of the unit

as a whole in C/2. See Web#148.

capacitances are very large because of the closeness of the layers148. We shall have much

more to write about double layers and their capacitances in Chapter 13. Commercial

capacitors mostly rely on the metal*insulator*metal sandwich structure, but the so-called

supercapacitors (see page 87) exploit the capacitive properties of double layers.

Regrettably, we cannot carry out the experiment diagrammed in Figure 1-11 on

ionically conducting materials. There are two reasons for this. Firstly, whereas electrons

exist on each side of the plate|material boundaries for an electronic conductor and can pass

from one side to the other, ionic conductors behave differently. Secondly, we lack

voltmeters that can directly detect differences of potential within ionic conductors.

Nevertheless, exactly the same principles apply. Electric fields can exist within ionic

conductors and they lead to the flow of electric current. Moreover, ionic conductors can

be assigned conductivities in just the same way as can electronic conductors. The table on

page 384 is a listing of the conductivities of a wide variety of materials, and shows the

charge carriers responsible in each case.

In truth, the classification of materials into insulators and conductors, though

convenient conceptually, is not a rigid one. Most “conductors” exhibit some dielectric

behavior and most “insulators” do conduct to some small extent. Water is a good example

of a substance that displays both types of behavior. Its small content of hydronium H3O
+

and hydroxide OH ions gives it conductivity, yet the considerable dipole moment of its

majority H2O molecules (Figure 1-2) causes them to orient in an electric field in a manner

analogously to that illustrated in Figure 1-10.

Mobilities: the movement of charged particles in an electric field

Let us look at electrical conduction from the standpoint of the charge carriers

themselves. Initially, consider the case of a material with a sole charge carrier, its charge

being a single positive charge Q0, such as a hole in a p-type semiconductor or a silver ion

in RbAg4I5. Figure 1-15 pictures a cylinder of such a material with a current I flowing

through it. Some thought shows that this current can be equated to the product of four

terms
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The first of these is the number density of charge carriers which, in chemical terms, is the
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149 Amadeo Carlo Avogadro, 17761856, Italian count, lawyer and natural philosopher.
150 Confirm that the units in equation 1:25 are consistent. Check at Web#150.
151 Michael Faraday, 17911867, Englishman and “father of electrochemistry”. Faraday’s law (Chapter 3)

establishes the proportionality between electric charge and the amount of chemical reaction during electrolysis.
152 Mobilities of anions are negative in this book, but elsewhere you may find the absolute value reported.

Moreover, mobility is sometimes defined as i i/( ).z Xv
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concentration c of the carrier multiplied by Avogadro’s constant149, NA, equal to 6.0221

× 1023 mol1. The second and third right-hand terms in 1:24 are simply A and Q0

respectively. The fourth is the average velocity with which the carrier moves in the xv
direction. Thus150, with c representing the concentration of the charge carrier,

0AI FcAQ cN A v v1:25

The product of Avogadro’s number and the elementary charge is a quantity that crops up

repeatedly in electrochemistry. This product is given the symbol F and the name

Faraday’s constant151.
23 1 19 1

A 0 (6.0221 10 mol )(1.6022 10 C) = 96485 C molF N Q      1:26

Faraday’s constant provides the quantitative connection between chemistry and electricity.

In one mole of sodium chloride, the total charge on the sodium ions, Na+, is 96485

coulombs and, of course, there are 96485 C on the chloride ions, Cl.

Equation 1:25 shows that the velocity of the charge carrier is proportional to the

current, and therefore to both the electric field and the conductivity

average velocity
I i X

FAc Fc Fc


  v1:27

The ratio of the average velocity of the moving charge carriers to the field that causes that

motion is known as the mobility152 u of the carrier. Thus, we see that the conductivity of

the material shown in Figure 1-15 is related to the carrier’s mobility by the simple relation

single charge carrier
Fc

Fuc
X

  
v

1:28

This simple relationship needs modification, of course, if there is more that one charge

carrier, or if a carrier has a charge of other than +Q0. A carrier i that has a charge of Qi is
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153 See Web#153 for the related terms molar conductivity, ionic conductivity, and transport number.
154 Water purity is often gauged from its conductivity, though conductimetry measures only ionic impurities.

Assuming the impurity to be sodium chloride (Na+ and Cl ions in solution), assess the purity (in moles per liter

and as a percentage) of a water sample of conductivity 22 S m1. See Web#154. The conductivity of seawater

is measured to assess its salinity.
155 In silver, the most conductive metal, electrons travel at about 6 millimeters per second in a field of one volt

per meter, on the assumption of a single mobile electron per Ag atom. The high conductivity of metals arises

from the high electron concentration rather than high mobility. In contrast, electrons in silicon travel about

twenty times faster.
156 or cluster ions, H+, NH4

+, OH, and NO3
 ions with attached H2O molecules, having an average mass of

about 160 g mol1.

said to have a charge number

i
i

0

definition of charge number
Q

z
Q

1:29

For example, electrons e and calcium ions Ca2+ have charge numbers of 1 and +2

respectively. The replacement for equation 1:28 that is true generally is

i i i
i

linking mobilities

to conductivity
F z u c  1:30

Note that carriers of either sign contribute positively to the conductivity153 because, if zi

is negative, so is ui, as clarified in Figure 1-16.

Of course, mobilities are affected by such factors as temperature and the medium in

which the charge carriers find themselves, but some representative values are given in the

table on page 388. The listed values for ions relate to aqueous solution154, because this is

the most widely studied electrochemical medium. For the most part, mobilities are

surprisingly small. One gets the impression, fromthe “instantaneous” response of electrical

appliances, that electrons travel fast in copper cables. Their effect does travel fast, but the

particles themselves are sluggards155. The slow motion of ions in condensed phases (solids

and liquids) results from the “drag” as they jostle past the atoms, molecules and ions in

their path. As one might expect, ions travel much faster in gases. Natural air ions156 have
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157 A graphite cylinder, of 2.40 cm length and 0.450 cm diameter, was found to have a resistance of 0.0347 .

Calculate the conductivity of this particular graphite, checking your result against Web#157.
158 Show that if several resistances are connected in series, the overall resistance is the simple sum of all the

individual resistors, but that if several capacitors are connected in series, the reciprocal of the overall capacitance

is the sum of the reciprocals of the individual capacitors. What are the corresponding rules for a parallel

connection? See Web#158.
159 James Watt, 17361819, Scottish engineer, after whom the unit (symbol W) is named.
160 The resistor in left-hand diagram of Figure 1-17 overleaf has a resistance of 425  and the voltage applied

is 1.15 V. Calculate the current through the resistor and the power dissipated by it, comparing your results with

Web#160. Also, select a voltage and a resistance, such that the current through the resistor is 13 milliamperes

and the power is 150 microwatts.

mobilities close to 1.5 × 104 m2 V1 s1. In vacuum, charge carriers do not travel with a

constant speed in a uniform field; they accelerate, negating the concept of mobility.

We have been discussing the movement of charged particles caused by an electric

field. Such motion is called migration. Motion may occur from other causes, notably by

diffusion and by convection. All three modes are important in electrochemistry and their

interplay is the subject of Chapter 8.

Electrical Circuits: models of electrochemical behavior

A device that is fabricated to have a stable resistance is known as a resistor157; it is

represented in circuit diagrams by . Similarly, is used to symbolize a

capacitor. Resistors and capacitors are examples of circuit elements. There are others,

but resistors and capacitors are the ones of most interest to electrochemists. When two or

more circuit elements are connected so that they experience the same voltage, they are said

to be in parallel; conversely they are in series if they experience the same current158. The

circuit shown on the left-hand side of Figure 1-17 overleaf has a resistor and a capacitor in

parallel: it provides a model of materials that have both dielectric and conductive

properties. One or more circuit elements connected into such a circuit as those in the figure

are often referred to as the circuit’s load. How does the circuit behave in response to the

load when the switch is closed? The resistor experiences a constant electrical potential

difference E, so the current has a constant value, equal in magnitude to E/R. The

capacitor charges, in principle immediately, to attain the charge CE. Energy, provided

ultimately by the voltage source, has been stored in the capacitor. The resistor, in contrast,

has destroyed electrical energy by converting it to heat; that is how electric heaters work.

The power dissipated by the resistor, measured in joules per second or watts159, is the

product of the voltage E and the current I flowing through the conductor160.

More interesting, and more relevant to electrochemistry, is the right-hand circuit in

Figure 1-17 overleaf, in which the resistor and capacitor are in series. The capacitor is

uncharged at time t  0, when the switch is closed. What will the current be subsequently?
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161 because, after taking three steps around the circuit, you eventually return to your initial point.
162 It is easy to see how equation 1:32 follows from 1:33; less easy to derive 1:33 from 1:32. See Web#162 for

a discussion of Laplace transformation, (Pierre Simon de Laplace, 17471827, French mathematician) a

technique useful for solving such differential equations as 1:32.

There are three voltmeters in the circuit and it is evident161 that the sum of their readings

must be zero:

source R C 0E E E     1:31

The voltage across the resistor, and that across the capacitor, are calculable via Ohm’s law

and equation 1:18, respectively; and therefore

source R C

d

d

Q Q Q
E E E RI R

C t C
        1:32

Definition 1:19 was used in the final step. Equation 1:32 is a first-order differential

equation that can be solved162 to give

source1 exp
t

Q C E
RC

   
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1:33
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163 Demonstrate that, at sufficiently short times, the series arrangement behaves as a resistor whereas, at long

times, the behavior is as if the resistor were not present. See Web#163.
164 In formulating an exponential function, you may be used to the notation et/RC instead of exp{t/RC}. The

latter style is used throughout this book.
165 Demonstrate that multiplying the farad and ohm units give the unit of time, the second. See Web#165.
166 Derive equation 1:35. Check at Web#166.
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which describes how the current falls off exponentially164 with time, as illustrated in Figure

1-18. Notice that the product RC is a time165; it is called the time constant or decay time

of the series circuit. Electrochemical cells have time constants, as we shall discover in

Chapter 13.

Connected circuit elements find use in electrochemistry. A frequently used model of

an electrochemical cell has one resistor Rs in series with a parallel combination of a

capacitor C and a second resistor Rp. In response to a voltage step, it allows the current

s psource s

s p p s p

( )
1 exp

R RE R
I t
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1:35

to flow166.

Alternating Electricity: sine waves and square waves

Up to this point we have been discussing electric currents that do not change sign;

these are said to be direct currents or d.c. Of equal importance, however, is alternating
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167 The reason for choosing the root-mean-square as the voltage of record is that such an a.c. voltage generates

the same power (applied across a resistor, for example) as a d.c. voltage of the same magnitude.
168 Heinrich Rudolf Hertz,18571894, German physicist.

current electricity or a.c.. The “alternating” designation indicates that the charge carriers

(electrons or ions) alternate in the direction in which they travel: they go backwards and

forwards.

The electricity that power utilities deliver to our homes and laboratories is described

either as “120 V a.c., 60 Hz” or “240 V a.c., 50 Hz”, depending on the country we inhabit.

The electrical potential of the “live” wire is more positive than ground (earth) for half the

time and more negative than ground for the other half. The cited voltage, 120 V or 240 V,

is the root-mean-square of the continuously changing voltage167, while the 60 or 50

designates the frequency, which is the number of repetitions per second of the sinusoidal

voltage pattern. Frequency is expressed in the hertz168 unit; one hertz equals a reciprocal

second, so a frequency of 50 Hz corresponds to a period P of 20 ms. Thus
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1:36

describes the electricity supply. Figure 1-19 illustrates these two alternating voltages.

For scientific purposes, Erms and P are less convenient than two alternative parameters:

the a.c. voltage amplitude |E|, equal to the maximum voltage achieved by E(t); and the

angular frequency, equal to 2/P. When these parameters are adopted, the first equality

in equation 1:36 becomes replaced by the equivalent expression
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169 Literally, “a.c. current” (alternating current current) contains a redundancy. Nonetheless, this expression is

commonly used.
170 Alternatively, |I|/|E| is the admittance Y of the load, measured in siemens. Read more about impedances on

pages 305322.

 ( ) sinE t E t 1:37

The a.c. electricity supplied by most American utilities, for example, has a nominal voltage

amplitude |E| of 170 V and an angular frequency of 376.99 rad s1. To validate equation

1:37, the zero of time must be chosen to correspond to one of the instants at which the

electrical potential is zero and increasing, as in Figure 1-19. When other choices of t  0

are made, the more general equation

 ( ) sin a.c. voltageEE t E t   1:38

applies, in which E is the phase angle of the a.c. voltage. Thus three parameters are

required to describe an arbitrary a.c. voltage: the amplitude |E|, the angular frequency ,

and the phase angle E.

The imposition of an a.c. voltage of angular frequency  often causes an alternating

flow of electricity. This is described as an a.c. current169 and it generally has the same

frequency as the applied voltage and obeys the equation

 ( ) sin a.c. currentII t I t   1:39

which shows that an a.c. current possesses the same three attributes – amplitude, frequency

and phase – as an a.c. voltage. The relationship between I(t) and E(t) reflects the nature of

the load and incorporates two aspects: how |E| depends on |I|, and how the phase angles E

and I are related. The ratio |E|/|I| is called the impedance, Z, of the load170 and is

measured in ohms. The difference I  E is the phase shift and is measured in radians or

degrees.

In Figure 1-20, the symbol indicates a connection to ground (earth). This figure

is of a simple circuit, equipped with an a.c. voltmeter and a.c. ammeter, that can measure
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171 such as lock-in amplifiers, phase-sensitive detectors, and their digital counterparts.
172 Derive the entries for the parallel and series loads. Or see Web#172 for our derivations.
173 See Web#173 and Chapter 15 for information on the Warburg element.
174 Musicians and some others refer to the harmonic of frequency 2 as the first harmonic; others, including

ourselves, call it the second harmonic. In our terminology, the first harmonic is the fundamental frequency, .
175 Jean Baptiste Joseph Fourier, 17681830, renowned French mathematician.
176 or as a power spectrum, as on page 325.

Load Impedance Z Phase shift I  E

Resistor R R 0

Capacitor C 1/C /2

R and C in parallel 2 2 2/ 1R R C  arctan{RC}

R and C in series 2 2 21 /R C C   arccot{RC}

Warburg element / /R C W   /4

|I| and |E|, and hence the impedance Z of the load. Other devices171, not shown, can also

measure the phase shift. The voltage applied to the load is that in equation 1:38. When the

load is a single resistor, the resulting current |I|sin{t + I} can be found directly from

Ohm’s law
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( ) sin so that andE I E

E EE t
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        1:40

The impedance equals the resistance and there is no phase shift. When the load is a

capacitor, however, one has
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 
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so that the impedance and phase shift are as listed in the second row of the table below.

This table also has entries172 for other loads of electrochemical interest173.

When some circuit elements, as well as electrochemical systems, are exposed to an

alternating voltage of angular frequency , they generate not only a current of the

“fundamental frequency”  but also a.c. currents of frequencies 2, 3, etc. These are

called harmonics174. A d.c. current may also be produced. A signal that contains harmonic

frequencies may be analyzed to find the amplitudes of its various components, and the

phase angles, too, should those be of interest, by the procedure of harmonic analysis or

Fourier transformation175. The results of this exercise are often displayed graphically as

a Fourier spectrum176, such as the one displayed in Figure 1-21.
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177 Int{ } denotes the integer-value function. Int{ y} means the largest integer that does not exceed y; thus

Int{8.76}  8 and Int{8.76}  9.

Alternating currents and voltages may have waveforms other than sinusoidal. One

waveform that finds use electrochemically is the square wave, shown in Figure 1-22 and

representable algebraically by177

Int{2 / } square wa( ) ( ) vet PE t E 1:42

Like many other waveforms, the square wave may be represented by the sum of a set of

sine waves. In the case of the square wave, the first few terms are

Int{2 / } square4 4 42 6 10
w

( ) sin sin sin
a3 ve5

t P E E Et t t
E

P P P

       
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       
1:43

In fact, the Fourier spectrum shown in Figure 1-21 is that of the square wave 1:43. Modern

electrochemical instrumentation applies waveforms as a discontinuous set of brief constant

segments, as illustrated in Figure 1-22, rather than continuously. Likewise, the current

response is measured stepwise.
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View supplementary web material at www.wiley.com/go/EST.

In electrochemistry, a number of investigative methods employ alternating currents

with waveforms that are either sinusoidal or square. These techniques are described in

Chapter 15. They include impedance measurements and provide information about the

physical and chemical processes that accompany electrode phenomena.

Summary

The presence of electric charges causes electric fields and therefore gradients of

electrical potential:
2
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The imposition of an electric field on an insulator rearranges the charges within it, causing

a transitory passage of charge:
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    1:45

In a conductor, the mobile charges, which may be electrons or ions, move in response to

a potential difference leading to a steady current:

E A
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 
   1:46

The conductivity of a conductor, electronic or ionic, reflects the charge numbers,

mobilities, and concentrations of all the charge carriers present:

i i i
i

i
F z u c

X
   1:47

Interconnected resistors and capacitors can represent electrochemical cells, whereby the

cell’s behavior under d.c. or a.c. perturbation may sometimes be modeled.

A bewildering collection of terms has been introduced in this chapter. For review, they

are collected in the Glossary (page 365), with their symbols and units.



201 A table of oxidation numbers will be found on page 386. Read more about oxidation numbers at Web#301.
202 In magnetite, Fe3O4, iron’s oxidation state is Or one might prefer to say that this oxide is composed of8

3 .
one-third Fe(II) and two-thirds Fe(III).
203 Stoichiometry is the study of the relative amounts of reactants consumed and products created in a chemical

reaction. More on this topic on page 46.
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2

Chemistry

In Chapter 1 we introduced those aspects of electricity that have close relevance to

electrochemistry. In the present chapter our subject is those fundamental aspects of

physical chemistry on which much of electrochemistry is based.

Chemical Reactions: changes in oxidation state

In this book we need not go deeply into the subject of valency – how atoms bond

together to form chemical compounds – but the term oxidation state (or oxidation

number201) is relevant both to chemistry and electrochemistry. As a working definition

applied to a metallic element, it refers to the number of positive charges on the bare ion, or

the number of chloride atoms bonded to each atom of the element in its chloride, or to twice

the number of oxygen atoms per atom of the element in its oxide. Thus, aluminum is in

oxidation state +3 in Al3+, in AlCl3, and in Al2O3. Less obviously it is also in oxidation

state +3 in AlOOH and in . In fact, aluminum is rarely in an oxidation state other4AlF

than +3, except in its elemental form when its oxidation state is 0. Other metals, however,

wantonly adopt a variety of oxidation states; iron, for example, is found in states202 0, +2,

+3, and +4. In such cases it is common to add a roman numeral to specify the oxidation

state. Thus “copper(II) sulfate” implies that the copper in this salt is in oxidation state +2.

The main focus of chemistry, and of electrochemistry, is on reactions, in which one

form of matter, the reactants or substrates, is converted into different substances, the

products. A stoichiometric equation203, or chemical equation, of which

2 2 2 2 3Hg Cl ( ) 2H O( ) H ( ) 2Hg( ) 2H O ( ) 2Cl ( )s g aq aq      2:1
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204 Find the oxidation states of each element, in each compound, in reaction 2:1. See Web#204.
205 The parenthesized italic “(s)”, “(aq)”, “(g)”, etc. indicate the state (solid, in aqueous solution, gas, etc.). They

are informative, but optional, additions to a stoichiometric equation. Likewise, (), “(ads)”, “( fus)”, etc. imply

in the liquid state, the adsorbed state, the molten (or fused) state, etc.
206 The reaction must be conducted at, or corrected to, constant temperature and pressure. We assume constant

temperature and constant ambient pressure throughout this section, and indeed most of the book.
207 Josiah Willard Gibbs, 18391903, U.S. physical chemist. G is also known as free energy.

is an example204, provides a shorthand way of representing a reaction205. A stoichiometric

equation must be “balanced”; that is, equal numbers of all atoms must appear on each side

of the  symbol. Moreover, the charge on each side must be equal.

Though many chemical reactions do not involve any change in oxidation state, many

others do. When one element undergoes a change in oxidation state during a chemical

reaction, another element necessarily changes its oxidation state too. In reaction 2:1, for

example, the elements mercury Hg and hydrogen H both change their oxidation states.

When, later in this book, we address electrochemical reactions, you will find that they

invariably involve changes in oxidation state, and that usually it is a single element that

changes its oxidation state.

Gibbs Energy: the property that drives chemical reactions

Energy can exist in many forms. All nonthermal forms of energy may be converted,

often rather easily, into an equivalent quantity of heat. If a reaction generates heat

Reactants Products heat 2:2

the reactants evidently contained more energy than do the products. Energy associated with

chemicals is called enthalpy H. The change in enthalpy206 accompanying reaction 2:2,H

 Hproducts  Hreactants, is negative. Most, but not all, chemical reactions that proceed

spontaneously have negative H values, and liberate heat.

That most chemical reactions liberate heat is a manifestation of a general law of nature:

processes that lead to a lowering of nonthermal energy are favored. Another rule is:

processes that lead to an increase in disorder are favored. The chemical property that

reflects the change in disorder accompanying a reaction is the entropy change S.

Depending on the temperature T, either the change in H or the change in S is the more

important influence on the reaction. The Gibbs energy207 G takes both factors into account

appropriately by defining206

G H T S    2:3

Just as a boulder can tumble downhill but not uphill, chemical changes can occur if G

decreases, but not if it increases. G is the “chemical energy” that governs the feasibility of

chemical reactions. Physical chemists have accurately measured the standard Gibbs
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208 Earlier, H+ was used as the symbol for what is now called the hydronium ion, and its standard Gibbs energy

was defined as zero.

209 What change in standard Gibbs energy accompanies the reaction? See2 2 2Hg Cl ( ) 2Hg( ) Cl ( )s g 

Web#209.
210 or spontaneous or exergonic.
211 Standard laboratory conditions are a temperature of 298.15 K and an ambient pressure of 100.00 kPa. These

conditions will be assumed throughout this book, unless otherwise stated.

energy of very many chemicals and a list will be found on page 390; those of the six

substances in reaction 2:1 are tabulated as Go values below. To give this property its full

name and fully embellished symbol, the tabulated values are the molar Gibbs free energies

of formation at 25.00oC of each substance in its standard state, . The “ofo
f 298.15( )G

formation” in this name means “during the process of formation from its elements in their

standard states”, which is why Go is zero for Hg and H2. Because the Gibbs energies of

individual ions cannot be measured, one ion – the hydronium ion H3O
+ – is chosen as a

standard and assigned the same Go value as water208. From tabulated values of Go, one can

calculate the change in Gibbs energy accompanying any reaction206,209. Thus, for reaction

2:1, the value calculated for the change in Gibbs energy is

2 2 2 23

o o o o o o o 1
Hg Hg Cl H O HH O C l

2 2 2 2 51.7 kJ molG G G G G G G 

        2:4

No reaction that has a positive Go will occur chemically under standard conditions.

Processes with negativeGo, such as reaction 2:1, are said to be feasible210 and may occur.

Substance State Go / kJ mol1

Hg pure liquid mercury 0

H3O
+ hydronium ion, in aqueous solution at unit activity 237.1

Cl chloride ion, in aqueous solution at unit activity 131.2

Hg2Cl2 pure solid mercury(I) chloride 210.7

H2O pure liquid water 237.1

H2 hydrogen gas at standard pressure 0

Thermodynamicists use the term “standard state”. By this they mean not only that the

substance should be in the physical state usually encountered in the laboratory211 – for

example H2O as liquid water, not ice – but also that it be in a prescribed condition

described as unit activity. Precisely what “activity” means is discussed in the following

section.

The statement that no reaction with a positive Go will occur chemically “under

standard conditions” means “with all of the reactants and products present in their standard

states”. Under those conditions and with Go > 0, the reverse reaction will inevitably be
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212 Calculate the equilibrium constant of reaction 2:1. Check your answer at Web#212.

213 The equilibrium constant of the reaction is 1.19×104 at 25oC. Find Go for2 22Ag O( ) 4Ag( ) O ( )s s g

silver oxide. Compare your answer with that at Web#213 or the tabulated value on page 391.
214 In contrast to the w encountered in Chapter 1, W is a molar work term, in joules per mole, J mol1.

feasible. Except for the unlikely event that Go = 0, either the forward reaction or the

reverse reaction will always be feasible for any conceivable process. Of course, only to be

feasible is not a guarantee that the reaction will, in fact, occur. Moreover, even if a feasible

reaction does occur, it will often fail to go to completion; that is, it may cease before all the

reactant is consumed.

Associated with Go is the equilibrium constant K for a reaction. A negative value

of Go implies an equilibrium constant of greater than unity. In fact, the important

relationship
o

oexp or ln{ }
G

K G RT K
RT

 
    

 
2:5

provides a quantitative link between the two properties212,213. Here R is the gas constant.
1 18.3145 J K molR  2:6

Note that RT  2.4790 kJ mol1 at the standard temperature T o  298.15K.

The statement above – that no reaction will occur unless Go < 0 – requires the

reactants and products to be in their standard states. For states other than standard, the

requirement is that G < 0, the distinction between Go and G hinging on the activities

of the products and reactants, a subject addressed in the next section. A chemical reaction

ceases when the change in Gibbs energy becomes zero and equilibrium prevails.

equilib um0 riG 2:7

A caveat is that the process be purely chemical. If other kinds of work can be brought into

play to foster the reaction, then the requirement is that

feasib0 ilityG W  2:8

whereas

equilibriumG W 2:9

Here W is the work214 performed by some external agency when the Reactants Products

reaction takes place. By supplying external work, you can make that boulder travel uphill!

It is the facility to couple electrical work into a chemical reaction that makes

electrochemistry into a powerful synthetic tool, creating a possibility to drive reactions that

would otherwise be unfeasible. Examples of electrosynthesis, as the generation of

chemicals with electrochemical assistance is called, will be found in Chapter 4. Other

examples of external work being coupled to chemical processes include metabolically

powered physiological “pumps” (Chapter 9), photosynthesis, and some gravitationally

powered processes.
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Activity: restlessness in chemical species

The concept of activity is useful in chemistry and especially in electrochemistry.

Before encountering a definition of the term, it is valuable to acquire a qualitative

appreciation of what activity implies. In daily life, the terms “unsettled” and “restless” are

used to describe discontented persons who are eager to leave their present situation. When

a similar characteristic applies to a molecule or ion, we say the substance has a high

“activity”. A high activity may be manifested in several ways:

react more readily (it has a high Gibbs energy)

react more rapidly (rates of reaction are faster)

transfer to another p

a substance

with a high

activity
hase (e.g. by evaporating or

te
dissolving)

d

nds to





 iffuse into a more dilute region








To pursue the anthropomorphic analogy further, substances with high activity have

unsociable or even suicidal tendencies. Low activity confers contentment.

Quantitatively, the activity ai measures the restlessness of a substance i in some

condition of interest compared with that in its standard state. Thus, being ratios, activities

have no units; they are positive numbers. Activities are affected by temperature and, to a

lesser extent, by the ambient pressure, but we shall not explore these dependences, because

they seldom have great importance in electrochemistry.

The activity ai of a gaseous species i depends on its partial pressure. As Figure 2-1

illustrates, the activity of a gas varies linearly with its partial pressure pi up to very high

pressures. The standard state of a gas occurs when it is at the standard pressure, 1 bar, so:

o 5i
i o

where 1.0000 when i is aPa10
p

a p
p

   gas2:10

the pascal (Pa) being the SI unit in which pressure is measured. Under all conditions,

except extreme pressures, the activity of a gas may be accurately replaced by pi/p
o.
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215 not only on its own concentration, but on those of all ions present. Read about ionic strength on page 41.

The story for solutes is rather similar. The graphs in Figure 2-2 show how the

activities of solutes depend on their concentration. For nonionic solutes, the linearity of

the graph extends almost to the standard condition which, for solutes, is chosen as one mole

per liter, so that, except for the most concentrated solutions, the approximation

o 3 3i
i o

where 1.0000 10 mol m when i is an
c

a c
c

   nonionic solute2:11

is adequate for most purposes. When the solute is an ion, however, linearity ceases well

before the standard condition, as Figure 2-2 demonstrates, so that a relationship like 2:11

serves only as a very crude description of behavior. Instead, an empirical factor called an

activity coefficient, with the symbol , is introduced; it is not a constant, itself depending

on concentration215

o 3 3i i
i o

where 1.0000 10 mo when i is anl m
c

a c
c


   ionic solute2:12

As you may have guessed, the reason that dissolved ions behave differently from dissolved

molecules is because of their electric charges; we shall say more about ionic activity

coefficients on pages 4145.

The activities of liquids and solids cannot be changed in any way comparable to the

variability that partial pressure or concentration gives to the activities of gases or solutes.

These condensed phases have an invariant activity that, by convention, is unity:

i when i is a pure or1a  liquid solid2:13

Of course, if the purity of the substance is seriously impaired, its activity will be affected;

copper has a lower-than-unity activity in brass or bronze alloys. If two or more not very

dissimilar substances compose a solid or liquid solution, then the activity of each
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216 The mole fraction, xi, of a component in a solution is the ratio of the number of moles of that component

to the total number of moles of all components in the solution.

217 though sometimes larger; for example  1.004 in a 2.0 mol L1 aqueous solution of KCl.
2H Oa

component will be close to its mole fraction216 xi.

i i when i is a of a solid or liquid solutiona x component2:14

As would be expected, the activity of water is generally somewhat lower than unity217 when

it serves as a solvent. A relation analogous to 2:14 occurs in films that are one molecule

thick. If the fraction (by area) occupied by a particular component of that film is i, then

i i when i is a component of aa   unimolecular film2:15

What about the activity of electrons? This takes us outside the realm of traditional

thermodynamics, but there are good reasons for ascribing an activity of
o

e

( )
forex np a

F
a

RT


    
  

 
electron2:16

to an electron at a point where the electrical potential is . We learned in Chapter 1 that

only differences in potential can be measured and only then between two phases of the

same (or very similar) compositions. Let I and II signify two such similar phases within

which electrons exist, then the electron activities in the two phases are in the ratio
II

II Ie

I

e

exp
a F E

E
a RT





  
      

 
2:17

where E is the measurable voltage between phases II and I.

As we saw on page 33, activity influences the behavior of species in several realms of

chemistry and physics. Its effect on Gibbs energy is through the relationship
o

i i iln{ }G G RT a 2:18
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218 At 25oC, what is the Gibbs energy of oxygen gas O2(g) when its partial pressure is 20.9 kPa (as in air) or 300

bar (as in a gas cylinder)? See Web#218.
219 Except, of course, for elements, for which the first right-hand term is zero by convention.
220 The po and co terms are frequently omitted from equations such as this, on the understanding that pressures

and concentrations are the unit-less values of these properties measured in bars and moles per liter respectively.

Such concentration values are sometimes represented by the formula of the solute in brackets, as in [Cl].
221 Most likely, the reaction would be carried out by bubbling hydrogen through a suspension of mercury(I)

chloride in water, in which case the hydrogen activity would soon remain constant.

The logarithmic increase in the Gibbs energy of substance i with its activity218 is illustrated

in Figure 2-3. The first right-hand term in equation 2:18 usually219 dominates the free

energy of a substance at normal temperatures.

Recall that Go is the Gibbs energy change accompanying a reaction when all

reactants and products are in their standard states. In other circumstances, when activities

are not all equal to unity, we use the unsuperscripted symbol G to denote the Gibbs

energy change for a reaction. Turning to reaction 2:1 as an example of the way in which

the activities of the reactants and products influence the Gibbs energy change, one finds
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Notice how the stoichiometric coefficients from the reaction’s equation have appeared as

powers in the argument of the logarithm, with the products in the numerator and the

reactants in the denominator. The activities of the condensed phases (solids and liquids)

can be omitted, because they are unity, and the other three activities may be replaced by

recourse to equations 2:10 and 2:12, so that220

+ + +
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As the reaction proceeds, the concentrations of the hydronium H3O
+ and chloride Cl

ions will steadily increase and the partial pressure of hydrogen H2 may221 decrease. These

activity changes cause the RT ln{ } term to increase steadily in magnitude, making G

steadily less negative. Eventually the reaction will cease, either because G reaches zero

or because the Hg2Cl2 reactant becomes exhausted. In the first eventuality, but not the

second, we say the reaction has reached equilibrium.

At equilibrium, G  0 and therefore

+ +
3 3

2 2

2 2 2 2 o
H O Cl H O Clo

H H
equil equil

ln or exp
a a a a G

G RT
a a RT
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the subscript “equil” serving as a reminder that this is the value of the activity grouping

only at equilibrium. Note an important and valuable feature of equations 2:21: one side of

the relationship relates to standard conditions, the other to equilibrium conditions. On

comparing this result with equation 2:5, we find

2

+
3

H

2 2

H O Cl equil

law of chemical equilibrium
a

K
a a 

 
  
 
 

2:22

which is an example of the usual formulation of the law of chemical equilibrium.

In addition to affecting the Gibbs energy change in reactions, activities also govern the

G accompanying the transfer of a substance from one phase to another, as in Figure 2-4.

Imagine that such a small amount of a nonionic substance transfers from phase L to phase

R that no significant change occurs in the composition of either phase. Then the Gibbs

energy change is
R
i
L
i

for i neutralln
a

G RT
a

 
   

 
2:23

However, if the transferred species is ionic, we may think of the transfer taking place in two

steps, via the intermediate reservoir labeled I in Figure 2-4. This has the same electrical

potential as Reservoir L but the same composition as Reservoir R. Thus the first half of the

journey, L  I, encounters no electrical discontinuity and the change in Gibbs energy is

as in equation 2:23. The remainder of the journey, I  R involves no chemical

discontinuity and is assumed to leave the potentials of phases I and R unchanged. The

second half of the journey requires electrical work to be performed of a magnitude that

equation 1:8 shows to be Qi(
R I) for an individual ion or ziF(R I) on a molar basis.

Accordingly, the total Gibbs energy change is
I R

L I i iI R

L L

I

i

R
i i

i

L(ln n) )l (R a a
G RT RT

a
F

a
G G z z F     

    
   

         2:24

The equations refer to the transfer of one mole of i but, of course, much smaller transfers

would be demanded to satisfy the stipulation of unchanged composition and (especially)

potential.

If phases R and L are at equilibrium with respect to species i, there is no change in

Gibbs energy accompanying the transfer and equation 2:24, which of course incorporates
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222 Ludwig Eduard Boltzmann, 18441906, Austrian physicist. His law also governs the effect of altitude on

atmospheric pressure. How much work must be expended at 25oC in carrying a nitrogen molecule to the top

of a mountain (partial pressure 57 kPa), from sea level (partial pressure 79 kPa)? See Web#222.
223 The law is usually written with R/NA replaced by kB, Boltzmann’s constant.
224 In fact, until the seminal work of Wazonek, Blaha, Berkey, and Runner (J. Electrochem. Soc. 102, 1955,

235), the electrochemical solvent used almost exclusively was water.
225 Another unit favored by physical chemists is molality; the molar amount of solute per kilogram of solvent.

2:23, may be rearranged to
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which identifies a condition of transfer equilibrium for charged (or uncharged) species.

Clearly the concept may be extended to multiple phases or to a continuum. If a gradient

of potential (an electric field) exists in a fluid at equilibrium, ions i will distribute

themselves so that which is known as the electrochemical activity, isi iexp{ / },a z F RT

the same at all points. Equation 2:25 finds application in the theories of Gouy-Chapman

(pages 262264) and of Debye-Hückel (pages 4145). This equilibrium is one example

of the Boltzmann’s distribution law222, which in a more general form asserts that, at

equilibrium, the concentrations at two sites are related by223

R
L Ri A
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Boltzmann’sp lax we
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w
c RT
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 
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where is the work needed to move a particle of i from L to R.L R
iw 

Ionic Solutions: the behavior of dissolved ions

Studies of solutions of inorganic chemicals in water have provided most of our

knowledge of the behavior of ions. Even though electrochemists now use many others,

water remains the most important solvent224 and aqueous solutions of ions are the

traditional, and best understood, examples of ionic conductors. Accordingly, it is aqueous

solutions that are mostly discussed in this section.

A word about concentration. The SI unit of concentration is mol m3, but chemists225

prefer to use moles per liter (mol L1), which is spoken of as molar and abbreviated M. As

we have seen, the thermodynamic standard concentration co is one molar. For

compatibility, this book often cites millimolar (mM) concentrations, this being equal to the

SI unit.

A valid, but nonthermodynamic, interpretation of equilibrium is that the forward and

reverse reactions are proceeding at equal rates. This idea is conveyed by the reversed

arrows that chemists use to indicate the existence of equilibrium. For example, the

equilibrium that exists in water between molecular water and its ions is described by the
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226 This equilibrium is often written but, because a naked proton cannot exist2H O( ) H ( ) OH ( )aq aq  

in aqueous solution, we prefer the representation in 2:27. There is evidence from the work of Eigen251, however,

that the formula might be more appropriate than H3O
+(aq).9 4H O ( )aq

227 whereupon the equilibrium constant would become the reciprocal of that given in 2:28 and 2:29. The

standard change in Gibbs energy would become the negative of that reported in the following footnote.
228 From the data on page 391 show that Go = 79.9 kJ mol1. Then, go on to calculate the K value given in

equation 2:29, as in Web#228.
229 Other solvents have ionic products; for sulfuric acid it is 4.7 × 103, for dimethyl sulfoxide 5.0 × 1034. The

ions involved, in each case, result from autoprotolysis, the transfer of a proton from one solvent molecule to

another. When its ionic product is very large, a solvent is classed as an ionic liquid (page 9).
230 These reactions are so fast that equilibrium is almost always established.

231 The problematic definition of pH as may be encountered.
3

10 10H O H
log { } or log { }c c  

stoichiometric equation226

+
2 32H O( ) H O ( ) OH ( )aq aq 2:27

Note that, at equilibrium, the concepts of reactant and product are meaningless and we

could equally write the equation the other way round227 . Equilibrium 2:27 is addressed by

the law of chemical equilibrium in the form
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The value of K can be calculated from Go data for the +
2 32H O( ) H O ( ) OH ( )aq aq 

reaction228 and is
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The equilibrium constant for this reaction is so important that it has been given the special

symbol Kw and the name ionic product for water229. In formulating equation 2:29, we

have dropped the “equil” subscript230, and taken the activity of water to be unity, which is

valid for dilute aqueous solutions. If the water is free of other ions, then electroneutrality

requires that Moreover, activity coefficients can be treated as unity at the low
3H O OH .c c 

concentrations involved, so that taking the square-root of equation 2:29 gives

3

o 7
wH O OH

1.003 10 mM in pure waterc c c K 

   2:30

In aqueous solution, the activities (and, approximately, the concentrations) of the H3O
+ and

OH ions are in inverse relationship to each other, as illustrated in Figure 2-5 overleaf.

Water is by far the most common solvent and the activity of the hydronium ion is

important in determining the properties of aqueous solutions. The usual way of reporting

this property is through the pH, defined231 by

 +
3

10 H O
definitioH nl of Hogp a p 2:31
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232 Svante August Arrhenius, 18591926, Swedish chemist and 1903 Nobel laureate. To Arrhenius we owe

present-day concepts of ions, and the Arrhenius equation, describing how rate constants depend on temperature

via the factor exp{G‡/RT } where G‡ is the Gibbs energy of activation.

233 Equation 2:32 is a simplification of what actually occurs. The species CO2(aq), H2CO3(aq) and 2
3CO ( )aq

are involved in the full story.
234 Its value is 4.7 × 107. Calculate the approximate pH of “soda water” (H2O in equilibrium with CO2 at one

bar partial pressure). See Web#234.
235 Weak bases similarly have basicity constants. For example, ammonia NH3 has a basicity constant defined

by How is the acidity constant of the ammonium ion, related to this basicity+
2 34

H O NHNH OH
/ .a a a a 4NH

constant? See Web#235.
236 How is the pH of one liter of water affected when one gram of sodium oxide, Na2O, dissolves? See

Web#236.

+
3

wH O OH
.a a K 

 +
3

10 H O
log .a

pH values of less than 7 have a preponderance of hydronium ions over hydroxide ions and

are said to be acidic. When pH values exceed 7, and the solution is basic
3OH H O

,c c 

or alkaline. Only when the pH is very close to 7 is the solution neutral. Following the

groundbreaking concepts of Arrhenius232, solutes that increase the hydronium ion content,

and thereby decrease the pH, of water are said to be acids. Carbon dioxide is a case in

point; it sets up the equilibrium233

2 2 3 3CO ( ) 2H O( ) H O ( ) HCO ( )g aq aq   2:32

The equilibrium constant for this process234 is known as the acidity constant of carbon

dioxide235. Conversely, a species such as sodium oxide that increases the pH of water is a

base. It reacts with water completely236

2 2Na O( ) H O( ) 2Na ( ) 2OH ( )s aq aq   2:33

to produce two hydroxide ions for each sodium oxide molecule.
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237 In the context of electrochemical cells (Chapter 3), “electrolyte” has another meaning.
238 and sometimes the special symbol Ksp. Though tabulations of solubility product values are usually given

without units, they are often based on concentrations, not activities.
239 The concentrations of the major ions in ocean water are: Cl 554.1 mM, Na+ 469.7 mM, Mg2+ 47.0 mM,

15.3 mM, K+ 9.9 mM, Ca2+ 9.5 mM, and the ion pair 6.1 mM. Calculate the ionic strength of2
4SO 

4NaSO

seawater. See Web#239. This Web also discusses ion association generally.

Electrolytes are compounds that dissolve (usually in water) to produce ions237. The

adjectives weak and strong are applied according to whether the electrolyte does, or does

not, establish an equilibrium: carbon dioxide is a weak acid; sodium oxide is a strong base.

There are numerous exceptions, but generally inorganic electrolytes are strong, whereas

organic electrolytes are weak. When an electrolyte is only partially soluble, as is lead

sulfate in water, an equilibrium is established between the solid and the ions it forms, as

in
2 2

4 4PbSO ( ) Pb ( ) SO ( )s aq aq 2:34

The equilibrium constant that describes this equilibrium

2+ 2 2+ 2 2+ 2
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( )
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a a c c

K
a c

   
 2:35

is given the special name solubility product238.

The properties of the solvent are profoundly affected by the presence of solutes, and

particularly ionic solutes. The molecules of dipolar solvents, such as water (page 2) cluster

around dissolved ions, becoming oriented so that the end of opposite charge is closest to

the ion. The phenomenon is known as solvation, or specifically hydration if the solvent

is water. For example, four water molecules cluster around a dissolved copper(II) ion; they

are bound so strongly that [Cu(H2O)4]
2+(aq) is perhaps a more appropriate formula than

Cu2+(aq) for the dissolved ion.

Ionic Activity Coefficients: the Debye-Hückel model

The approximation a c/co is usually acceptable for nonionic solutes, but for ions only

at unusually low concentrations. The distinction in behavior between ions and nonions is

easy to understand: nonionic solutes encounter each other only when they happen to

collide, but ions feel coulombic forces even from their remote neighbors. Any one ion

experiences the forces from all the ions present, those from multiply charged ions being

particularly strong. Accordingly it is the ionic strength239, defined by

21
i i2

i

definition of

ionic strength
z c  2:36

that affects the activities of individual ions. For example, in a solution prepared by
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240 Like most salts, potassium sulfate is a strong electrolyte, fully ionized both in the solid state and in solution.
241 Peter Joseph Wilhelm Debye, 18841966, Dutch physicist and 1936 Nobel laureate.
242 Verify that the units of  are those of length and confirm the value of aq given in equation 2:37. See

Web#242.
243 Erich Armand Joseph Hückel, 18961980, German physicist, also known for his molecular orbital work.
244 A full treatment will be found in Web#244.

dissolving 0.174 grams (one millimole) of K2SO4 in water to make one liter of solution,

there will be the ionic240 concentrations: whence the2
4K SO2.00 mM and 1.00 mM,c c  

ionic strength is easily calculated as . The ionic2
4

2 2

K SO
[( 1) ( 2) ]/ 2 3.00 mMc c      

strength is one component of an important parameter that occurs repeatedly in the theory

of ionic solutions. This is known as the Debye length241 and is defined by242

o
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2 /
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th

m
naqRT

F


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2:37

For the aqueous potassium sulfate solution just discussed, the Debye length is 5.56 nm, a

small distance, but considerably larger than most ionic sizes.

A famous model, devised in 1923 by two European collaborators, is designed to

explain how the electrical interactions between ions lead to their less-than-unity activity

coefficients. In their treatment, Debye and Hückel243 considered a solution containing any

number of ions of various species, but focused on one ion only: the central ion, as

illustrated in Figure 2-6. All others are not treated as individuals, but as contributors to a

cloud-like ionic atmosphere surrounding the central ion. If the central ion is a cation,

coulombic forces cause the spherically symmetrical cloud to be more heavily populated by

anions than cations. The presence of this negatively charged cloud makes the central cation

more stable and therefore less active than it otherwise would be.

The mathematics of the Debye-Hückel theory is quite elaborate and is given in detail

elsewhere244. Here we shall merely sketch the salient steps in the treatment and cite the

results. The solution is at equilibrium and therefore the Boltzmann distribution formula

(page 38) holds for each species of ion
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245 Recalculate  and DH for acetonitrile, CH3CN, at 0.00oC. Compare with Web#245.
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where is the local electrical potential. By making plausible approximations, and( )r

recognizing that the charge density at any distance r from the central ion is caused by a

cation/anion disparity, so that

i i
i

local cha( ) ( rg) e densityr F z c r  2:39

Debye and Hückel established the result

2 2

( ) ( ) ( ) ( )r r r     
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2:40

This linear relationship between charge density and potential, coupled with the requirement

that the overall charge in the ionic atmosphere must balance the charge Q on the central ion,

2

0

charge bala4 ( nc) ed 0Q r r r


   2:41

is all that is needed to solve Poisson’s law, equation 1:15. The solution is

( ) exp
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Q r
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Without the ionic cloud, the potential would have been and so thenaked ( ) /(4 )r Q r  

potential cloud(r) due to the cloud is the difference . Therefore, at thenaked( ) ( )r r  

site of the central ion, the potential caused by the ionic cloud is found to be

cloud
0

(0) lim exp 1
4 4r

Q r Q

r

    
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Next, there is a need to assess the stabilization energy that the central ion possesses by

virtue of its ionic atmosphere. The calculation of this quantity resembles finding the energy

stored by a capacitor, which is one-half of the product of the charge stored and the potential

across the plates, being Q2/(8) in the case of the ionic atmosphere. This energy

stabilizes the central ion and represents external work W that must be supplied to overcome

the presence of the ionic atmosphere. As on page 32, external work subtracts fromG and

hence modifies the activity. The resultant effect emerges as the activity coefficient

     
322 2

i i DH DH Aexp / where 2 2 /z N RT F        2:44

DH is a constant that equals 727 mM for aqueous245 solutions at 25oC. For example,

equation 2:44 predicts that, in our exemplary potassium sulfate solution, and
K

0.938 

2
4SO

0.773. 
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246 The concentrations of its ions in a saturated solution of lead sulfate, PbSO4, are 0.14 mM. Assuming the

Debye-Hückel limiting law, calculate the mean ionic activity coefficient. Also calculate the solubility product

of lead sulfate and hence find the change in standard Gibbs energy that accompanies the reaction

. Does the table on page 391 confirm this? See Web#246.2 2
4 4PbSO ( ) Pb ( ) SO ( )s aq aq  

247 notably by Petr Vansek, in Handbook of Chemistry and Physics, CRC Press, annual edns.

Electroneutrality demands that anions always accompany cations, so we have no way

of measuring the properties of individual ions. Instead, for an electrolyte solution

composed of one anionic and one cationic species, we define a mean ionic activity by
1/( )

mean activity

z zz

z

a
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2:45

Here z+ and z are the charge numbers of the cation and anion, the latter being negative. For

our potassium sulfate solution, the relation is . Likewise, the mean2
4

2 / 3 1/ 3

K SO
( ) ( )a a a  

ionic activity coefficient is a composite defined in a similar way and therefore

  o

DH DHexp / 727 mM at 2
limiting Debye-

Hück
C

el law
5aqz z       2:46

generally, according to the simple Debye-Hückel model. The prediction for our millimolar

potassium sulfate solution example is ±  0.879. Notice that DH is the ionic strength at

which an aqueous solution of a z+z  1 strong electrolyte (such as NaCl) is predicted by

equation 2:46 to have a mean ionic activity coefficient of 1/e or 0.368. These ± values

may be measured by electrochemical and other246 methods and have been tabulated247. For

our millimolar K2SO4 case, the measured value of 0.885 is not too far removed from the

0.879 prediction, but at higher ionic strengths the divergence worsens. Examples of

experimental data for potassium fluoride KF and calcium chloride CaCl2 are graphed as

green and violet points respectively in Figure 2-7 and compared with the prediction of

equation 2:46, illustrated in red. Evidently the theory becomes increasingly unsuccessful

as increases. Nevertheless it does hold in the limit of sufficiently low ionic strengths and,

for this reason, equation 2:46 (or 2:44) is often known as the Debye-Hückel limiting law.

It is easy to level criticisms against the Debye-Hückel model and there have been many

attempts to improve it, or to adjust the limiting law empirically. One obvious flaw in the

model is that ions are accorded no size. It is unreasonable to have the ion cloud extending

to r  0. When an inner limit of r  Rc is placed on the ion cloud, as in Figure 2-8, the

treatment244 yields the Debye-Hückel extended law

 
DH

DH

c

extended

D-

/ 9.62nm
exp 727 mM ,

1 / /m l wM H a

aq aqz z

R

 



   
      

    
2:47

The difficulty with the extended law is in assigning a value to Rc. Should this be the radius

of the central ion? The mean of the radii of the cation and anion? With or without an

adjustment for solvation? In practice, Rc is often regarded as an adjustable parameter,
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248 The calculation of this diameter will be found at Web#248.

chosen to fit experimental data. Often a value close to 0.39 nm, about the diameter of a

water molecule248, is used for aqueous solutions of simple electrolytes. This was the choice

used in calculating the green and violet lines in Figure 2-7. As the figure illustrates, the

extended law provides a distinct improvement over the limiting law. At the highest ionic

strengths, the mean ionic activity coefficients of individual electrolytes behave

idiosyncratically, often increasing above unity.
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249 The stoichiometric equation of an electrochemical reaction, many of which will be encountered in future

chapters, differs from a chemical equation only in including electrons on one side of the equation or the other.
250 Some authorities define the stoichiometric coefficients of reactants as negative numbers; we do not.

Chemical Kinetics: rates and mechanisms of reactions

The study of a chemical reaction can be considered as a search for answers to four

questions: What reaction occurs? Why does it occur? How fast does it occur? How does

it occur? Stoichiometry is concerned with answering the first question, chemical

thermodynamics with the second. Study of the rates of reactions, chemical kinetics,

addresses the third question and also is the tool mainly used to answer the fourth.

The stoichiometric equation

A B Z YA B Z Yv v v v         2:48

describes a chemical reaction249 in which A, B, … are the reactants and Z, Y, … are the

products, each v being the appropriate stoichiometric coefficient250. “Balancing” a

chemical equation assigns these v coefficients to ensure that equal numbers of all atoms

occur on each side of the  symbol, as well as equal charges. The amounts of the species

consumed and created are interrelated by

A B Z Y

A B Z Y

amounts destroyed

or created

n n n n

v v v v

   
        2:49

where nA, nB, nZ, ... are changes in the amounts (moles) of A, B, Z, … during some

interval of time. In an infinitesimal length of time, we have

A B Z Y

A B Z Y

1 d 1 d 1 d 1 d

d d d d

n n n n

v t v t v t v t

 
          2:50

This equation, based on purely stoichiometric principles, provides the basis for the

definition of reaction rate.

Before leaving the topic of stoichiometry note that, although we usually think of

stoichiometric coefficients as being positive integers, equations 2:49 and 2:50 remain valid

if species are transferred, in whole or in part, from one side of the chemical equation to the

other, provided that a change of sign accompanies the transfer. For example, recognize that

the reactions described by the equations
1 1
2 2

2A B Z Y and 2A B Z Y B      2:51

are stoichiometrically equivalent in that both correspond to the requirement that 1
A2

n 

and are therefore “balanced” correctly. Later in this section, we shallB Z Yn n n    

make use of such transfers as a means of enriching stoichiometric equations so that they

also convey kinetic information.

Chemical reaction may occur in spaces having one, two or three spatial dimensions.

One-dimensional reactions occur on a line, a three-phase junction, but such reactions are
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251 Manfred Eigen (German physical chemist, 1967 Nobel laureate for his work on fast reactions) reported the

rate constant values of 2.5×105 s1 and 1.1×1011 L mol1 s1 for reactions 2:53 and 2:54 respectively. Are these

values consistent with the known ionic product of water? See Web #251.

among the least studied, and least understood, chemical processes. Two-dimensional

reactions, of which reaction 2:1 is an example, occur on surfaces or phase boundaries and

are referred to as heterogeneous reactions. The reactions leading to equilibrium 2:27

provide examples of a chemical reaction taking place in three spatial dimensions, a class

to which the name homogeneous reaction is applied. This latter class is the simplest and

the one on which, historically, the study of chemical kinetics has been based.

If reaction 2:48 is homogeneous, it will be occurring uniformly in some space of

volume V. Then, any of the terms in equation 2:50, divided by V, defines the reaction rate

v, which implies

A B Z Y

A B Z Y

1 d 1 d 1 d 1 d definition of

reaction rd d d d ate

c c c c

v t v t v t v t

 
            v2:52

Rates of homogeneous reactions thus have SI units of mol m3 s1.

As noted on page 33, reaction rates respond to the activities of the reactants. As an

example, one reaction and the corresponding rate law are251

2

2
H O

+
2 32H O( ) H O ( ) OH ( ) ka kaq aq   





v2:53

Here, the proportionality constant is an activity-based rate constant. In this case, thek


reactant activity in unchangeable, so the reaction rate is a constant. The rate of the

backward reaction

3H O OH

+
2 32H O( ) H O ( ) OH ( ) kq q aa a a  

 




v2:54

is proportional to the product of the activities of the reacting ions, through a second rate

constant Because activities are pure numbers, all activity-based rate constants for.k


homogeneous reactions take the SI unit mol m3 s1. When the reaction is at equilibrium,

the forward and backward rates are equal
+

2 32H O( ) H O ( ) OH ( )aq aq 


 


v v2:55

and it therefore follows that the ratio of the rate constants is equal to an activity quotient.

This ratio, by the law of chemical equilibrium (see equation 2:28), is the equilibrium

constant for the reaction

+
3

2

H O OH

2
H O equil

equilibrium
a ak

K
ak

 
  
 
 



2:56

in this case, the ionic product of water. This is a remarkable relationship in that it links two

major branches of physical chemistry: chemical thermodynamics and chemical kinetics.

The proton-exchange reactions 2:53 and 2:54 are particularly simple because the entire

reaction appears to occur in a single step; generally several steps are required. The
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252 The reaction could be explained by a termolecular step. Suggest an22NO( ) Cl ( ) 2NOCl( )g g g 

alternative mechanism that does not involve the simultaneous collision of three molecules? See Web#252.

253 The particles may be the same 1 2
1 1 AA A product(s)k k a  v

254 It is common practice to refer to the rate-determining step as the “slow step”, though the various steps in a

mechanism usually proceed at the same speed, just as do ships in convoy.
255 A second may be found at Web#255.

mechanism of a chemical reaction is an inventory of the elementary steps by which the

reaction is believed to proceed. Rarely is it necessary to invoke more than two types of

elementary step252. A bimolecular step, of which reaction 2:54 is an example, requires an

interaction between two particles253 and has the following model equation and rate law:
1

1 1 A BA B product(s) Step (1)k k a a   v2:57

and therefore two activities are pertinent. A unimolecular step
2

1 2 CC product(s) Step (2)k k a v2:58

involves a single particle (atom, molecule or ion). The number of activity terms entering

the rate law is called the reaction’s order; reaction 2:57 is of order two, reaction 2:58 of

order one. The possibility of the step, say Step (3), proceeding in both directions

simultaneously must usually be countenanced, as in

3

3
3 3 3 3 A B 3 ZA B Z Step (3)

k

k
k a a k a


    

 
v v v2:59

the rate law of which represents the net effect of a bimolecular forward component and a

unimolecular backward component. Mechanisms are, by their nature, putative, but an

acceptable mechanism must correctly predict the stoichiometric, kinetic, and equilibrium

properties of the overall reaction:

(i)satisfy the stoichiometry

(ii) predict the experimental rate la
a satisfactory mechani

w

(iii) be compatible w

sm

must meet thr
ith t

ee criteria
he equilibrium law


  
 
 


2:60

Multistep mechanisms generally involve one crucial step, known as the rate-determining

step. This is the “slow” step254 of the mechanism, other steps being rapid in comparison.

Rapid bidirectional steps are effectively at equilibrium. Thus if 2:59 is rapid, its effect is

to make the two terms large in comparison to their difference, so that3 A B 3 Zandk a a k a

and therefore the equilibriumconstant of Step (3).3 A B 3 Zk a a k a Z A B 3 3 3/ / ,a a a k k K 
The following is one example255 of a reaction with a stoichiometry that is far too

complicated for the reaction to occur in a single step

 

2

2 2 3
3

2 2 3

Br

H OBr H O
Br

2

H O

22Br ( ) H O ( ) 2H O Br ( ) 4H Oaq aq

a
ka a a a

aq

k a 
 

 

 

 
 

 

v
2:61
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256 The role of the activity of water in the rate law cannot be established experimentally, because water’s activity

is never significantly different from unity in aqueous solutions.
257 See Web#257 for an algebraic proof that criteria (ii) and (iii) are met, without invoking the stoichiokinetic

route. Thereby the stoichiokinetic approach is substantiated.

The arrows of unequal length signify that both the forward and backward reactions occur,

but at unequal rates. The experimental rate law256 of reaction 2:61, also bespeaks

mechanistic complexity. A four-step mechanism proposed for this reaction is

1

1

2

2

3

3

4

3 2

2 2 2

2

3

Br ( ) H O ( ) HBr( ) H O( ) Step (1), rapid

ˆHBr( ) H O ( ) HOBr( ) H O( ) Step (2), rate-determining

Br ( ) HOBr( ) Br ( ) OH ( ) Step (3), rapid

H O ( ) OH ( )

k

k

k

k

k

k

k

aq aq aq

aq aq aq

aq aq aq aq

aq aq







 

 

 

 

 

 







4
22H O( ) Step (4), rapid

k











 


2:62

Note our use of the circumflex, as in to indicate the rate-determining step. Species suchˆ(2),

as HBr and HOBr that appear in the mechanism, but not in the overall reaction, are known

as intermediates. Inasmuch as adding the four mechanistic steps in 2:62 yields equation

2:61, the first of the three criteria listed above in 2:60 is satisfied by this mechanism. That

criteria (ii) and (iii) are also met is less obvious, though it is true257. Accordingly 2:62 may

be the correct mechanism.

There is a concise method of predicting the kinetic consequences of a mechanism. The

method involves creating a so-called “stoichiokinetic equation” by implementing the

following rules. Mechanism 2:62 is used to illustrate the rules.

(a) Write the equations of all the steps that precede the rate-determining step by

transferring all species from the right- to the left-hand side, introducing negative signs on

transfer, and writing the reaction as an equilibrium. In the mechanistic example 2:62, only

Step (1) precedes the rate determining step and it becomes
+

3 2Br H O HBr H O Step (1)    2:63

(b) Write the rate-determining step unchanged. In the example, this is

2 2 2
ˆHBr H O HOBr H O Step (2) 2:64

(c) Modify all the steps that follow the rate-determining step by transferring all species

from the left to the right, introducing negative signs on transfer. Steps (3) and (4) in the

example become

2Br OH Br HOBr Step (3)   2:65

2 32H O H O OH Step (4)  2:66

(d) Leaving the rate-determining step unchanged, multiply or divide other equations, if
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258 What rate law is predicted by a mechanism identical with 2:62 except that Step (3) is rate determining?

Experimentally, how may this mechanism be discounted? Compare your answer with that at Web#258.

necessary, by a small integer (seldom other than 2), so that all intermediates disappear on

implementing rule (e). This is unnecessary in the example.

(e) Add the modified equations to generate the stoichiokinetic equation. Cancel terms

on addition, but do not combine terms from one side with those from the other.

The example of mechanism 2:62 is summarized in the following table:

Mechanistic equations Step Modified equations

+
3 2Br H O HBr H O   (1) +

3 2Br H O HBr H O    

2 2 2HBr H O HOBr H O  ˆ(2) 2 2 2HBr H O HOBr H O 

2Br HOBr Br OH   (3) 2Br OH

Br HOBr





 

 



+
3 2H O OH 2H O  (4)

2

3

2H O

H O OH 



 



2 2
2 2+

3

2Br H O
Br 4H O

+2H O

  



 sum

2 2+
3 2 2 2 +

3

3H O Br
Br H O H O H O

Br H O





   

 


The result of this exercise,

3 2 2 2

2 2 3

Br ( ) H O ( ) H O ( ) H O( )

3H O( ) Br ( ) Br ( ) H O ( )

aq aq aq

aq aq aq

 

 

  

  



 
2:67

is the stoichiokinetic equation of the mechanism. It earns this name because it not only

correctly displays the stoichiometry of the reaction, but it also reveals the overall kinetics

implicit in the mechanism. The link between the stoichiokinetic equation and the

mechanism is the correspondence between the stoichiometric coefficients and the powers

to which the activities are raised in the rate law. The implied rate law is

+ +
2 2 2 2 23 3

1 3 1 1
H O H O H O BrBr H O Br H O

ka a a a ka a a a 

     
  

v v v2:68

for our exemplary mechanism. Apart from the immeasurable dependences on water

activity, this mechanistic rate law agrees perfectly with the experimental finding in 2:61,

thereby satisfying criterion (ii)258. Moreover, imposing the equilibrium condition v  0

leads immediately to the conclusion that the equilibrium condition

2 2

H O2 2 3

4
Br H O

2 2
H OBr

equil

a ak
K

a a ak  

 
  
 
 



2:69
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259 So strong, in fact, that kinetics texts seldom mention activities at all.
260 Worse, concentration-based equilibrium constants, that we denote K, sometimes have units, sometimes not.
261 Not to be confused with the “surface (or superficial) concentration”, which is a quantity with the mol m2

unit used to quantify the extent of adsorption.

satisfies criterion (iii). Elsewhere257 you will find a proof that the rate law 2:68 is an

algebraic consequence of mechanism 2:62; the same source shows how the overall rate

constants and are related to those of the mechanistic steps.k


k


Unlike the foregoing discussion in terms of activities, chemical rate laws are

customarily written in terms of concentrations and some consider this to be a more accurate

description of kinetic behavior. Equation 2:59 would be replaced by

3

3
3 3 3 3 A B 3 ZA B Z

k

k
k c c k c




      
 

v v v2:70

for example, where each primed k is a concentration-based rate constant, which

incorporates an activity coefficient and the standard concentration. Thus the in 2:703k 

replaces and equals Chemical kineticists have a strong preference259 foro 2
3 A B /( ) .k c 

concentration-based rate laws because their use leads more easily to integrated rate laws.

One penalty paid for this is that the units of concentration-based rate constants depend on

the order of the reaction260; thus, whereas has units of s1, the SI unit of becomes1k


3k 

m3 mol1 s1. Though concentration-based k’s are not primed in the literature of chemical

kinetics, we shall do so in this book, because the distinction between k and k is important

in electrochemical kinetics.

During the last few paragraphs, we have been addressing homogeneous reactions.

Heterogeneous reactions, which include electrochemical reactions, differ in several respects

from the simpler homogeneous reactions. Apart from a few very special cases, reactions

occurring at surfaces require the transport of reactants to, and/or products from, the

surface. Thus, especially in electrochemistry, concern is for processes in which reaction

and transport are intimately linked. Whereas the rate of a second-order homogeneous

reaction is measured in the mol m3 s1 unit, this is replaced by mol m2 s1 for a

heterogenous reaction. Rate constants, therefore, also have different units. For a

first-order reaction involving the reactant A, the heterogeneous rate law is
s s
A A= or =ka k c

  
v v2:71

where the unit of is m s1. The superscript s serves as a reminder that it is the activityk


or concentration of the reactant at the surface that is relevant. This concentration at the

surface261 is often very different from the concentration at a more distant point.

Another phenomenon encountered in heterogeneous reactions that has no parallel in

homogeneous reactions is adsorption, illustrated in Figure 2-9 overleaf. Species reaching

the surface at which a heterogeneous reaction occurs may form a bond with the surface so

that a temporary “compound” – an adsorbate – is created.

A( or ) A( )g soln ads2:72
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262 sometimes usefully, as when corrosion (Chapter 11) is thereby inhibited.
263 or other solid. Carbon surfaces catalyze the C2H4(g) + H2(g)  C2H6(g) reaction, for example.

If the adsorbate is too strongly bonded, it will soon cover the surface preventing any further

event. Otherwise, the adsorbate may desorb or it may decompose or undergo some other

reaction, such as

A( ) Z( ) + Y( ) or A( ) A( or ) Z( )ads ads ads ads g soln ads 2:73

Again, it is necessary for a continuing reaction that the product of such a reaction not itself

adsorb too strongly, or the surface will become blocked262. The final step again involves

transport.

Z( ) Z( or )ads g soln2:74

Figure 2-9 shows some of the processes that may be involved. Reactions of this sort, often

occurring at a metal/gas interface, are of great importance, not only in electrochemistry but

also in the petrochemical industry where they are described as heterogeneous catalysis

because the metal263 plays the role of a catalyst in what would otherwise be a feasible, but

elusive, gas-phase homogeneous reaction. Enzymes, too, are heterogeneous catalysts.

Summary

The molar “chemical energy” of a compound or ion, compared with its elements, is

represented by its Gibbs energy. This equals its standard Gibbs energy plus a term that

reflects its activity:
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2:75

The activity coefficient of an ion may differ markedly from unity for reasons that the

Debye-Hückel theory helps us understand. The feasibility of a chemical reaction such as
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View supplementary web material at www.wiley.com/go/EST.

A B Z YA B Z Yv v v v        2:76

is determined by the sign of the Gibbs energy change, with G being zero at equilibrium.

The standard Gibbs energy change is related through activities to the equilibrium constant:

Z Y

A B

o
Z Y

A B

equilibriuexp m
v v

v v

a aG k
K

RT a a k

  
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 






2:77

Equilibrium is also characterized by the equality of the rates of the forward and backward

reactions. Those rates depend on the concentrations (or more precisely on the activities)

of the participants, A, B,..., Z, Y, ..., in the reaction, raised to powers that are not

predictable from the stoichiometry but which must conform to the requirements of

relationship 2:77. It is generally possible to rearrange the stoichiometric equation into a

stoichiokinetic equation that matches the kinetics of the forward and reverse reactions and

can suggest likely mechanisms. Chemical reactions may be homogeneous or

heterogeneous, the latter class including electrochemical reactions.



301 Some chemists analyze reactions, chemical and electrochemical, in terms of oxidation numbers. Read about

this approach at Web#301.

Electrochemical Science and Technology: Fundamentals and Applications, First Edition. Keith B. Oldham, Jan C. Myland, Alan M. Bond.
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3

Electrochemical Cells

Two classes of conductor – electronic and ionic – were identified in Chapter 1. The

junction between an ionic conductor and an electronic conductor is named an electrode and

it is here that the chemistry of electrochemistry occurs. Chemical processes that occur at

electrodes are termed electrochemical reactions or electrode reactions, and they are

described by equations that differ from ordinary chemical equations only by having

electrons, in addition to chemical species, as participants; equations 3:2 and 3:3 below are

examples. The simplest kind of electrochemical cell incorporates two electrodes.

Equilibrium Cells: two electrochemical equilibria generate an interelectrode voltage

When an electronic conductor is brought into contact with an ionic conductor, a

reaction may occur. If so, this is a heterogeneous chemical reaction as discussed in

Chapter 2. For example, when the electronic conductor lead, Pb(s), is placed in contact

with a solution of sulfuric acid, an ionic conductor containing principally the H3O
+(aq) and

ions, the reaction301
4HSO ( )aq

3 4 4 2 2Pb( ) H O ( ) HSO ( ) PbSO ( ) H O( ) H ( )s aq aq s g     3:1

which has a Go of 47.1 kJ mol1, occurs slowly. This is not usually treated as an

electrochemical reaction, though it could be regarded as the composite of the following two

electrochemical processes:
+

3 2 22H O ( ) 2e 2H O( ) H redu ti n( c) oaq g  3:2

4 2 4 3 oxidatiPb( ) + HSO ( ) H O( ) 2e PbSO ( ) ( ) nH oOs aq s aq     3:3

These occur simultaneously on the metal surface. A reaction such as 3:3, in which

electrons are generated is termed an oxidation; whereas reaction 3:2, in which electrons

are consumed, is an example of a reduction.
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302 other than internally. In corrosion reactions, of which 3:1 is an example, oxidation and reduction may occur

at different sites on the metal surface, with the electrons traveling through the bulk metal.
303 There is further discussion of the lead/acid cell on page 94. Write the equation 2PbO2(s) + 2H3O

+(aq) +

2HSO4
(aq)  2PbSO4(aq) + 4H2O() + O2(g) as two electrochemical reactions proceeding concurrently.

Compare your equations with those in Web#303.
304 “Hydrogen ion” or “proton” and “H+” are the names and symbol sometimes used to replace “hydronium ion”

and “H3O
+”. An alternative, and better, name for is “hydrogen sulfate” ion.4HSO

No electrical measurements can be made on a single electronic|ionic junction, such as

the one we have just discussed, because there is no electric current flowing302 and no pair

of sites between which an electrical potential difference might be measured. The minimal

configuration needed for an electrochemical measurement is an electrochemical cell, as

exemplified in Figure 3-1, in which a voltmeter measures the electrical potential difference

between two (different) electronic conductors, linked by a single ionic conductor. The

illustrated example is an electrochemical cell familiar to most of us: the lead-acid cell303.

Six such cells in series make up the common 12 V car battery. One of the electronic

conductors in the lead-acid cell is lead, Pb, the other is lead dioxide, PbO2. The ionic

conductor is a concentrated aqueous solution of sulfuric acid in which the dominant

species, apart from water, are the hydronium H3O
+ and bisulfate ions304. On4HSO

discharge, a layer of lead sulfate forms on each electrode. Beneficially, these lead sulfate

layers are porous, allowing the solution to penetrate to the underlying electrode.

Notice our inconsistent usage of the word “electrode”. Confusingly, electrochemists

use this word with diverse meanings. Depending on the context, electrode may refer to (a)

the two-dimensional interface between an electronic and an ionic conductor, (b) that

interface plus the adjacent layers of each conductor, (c) half of the cell, and (d) the

electronic conductor itself. Likewise, the term “electrolyte” is used with two meanings in

this book and elsewhere. As on page 41, electrolyte means a substance that dissolves to
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305 The convention adopted for electrode reactions at equilibrium is to write the electrons on the left-hand side.

Analyze reactions 3:4 and 3:5 in terms of changes in oxidation numbers301 and compare with Web#305.
306 Recall that the voltmeter measures an electrical potential difference without allowing the passage of

electrons. To achieve this goal in practice, a voltage follower is used; see Web #1029.
307 Use data from the table on page 391 to confirm the value of Go reported in 3:8. See Web#307.

form ions. However, as a contraction of “electrolyte solution”, it is also used to mean the

solution thus formed. Thus, “electrolyte” is often used as an alternative to “ionic

conductor” when the latter is a solution.

Figure 3-1 shows the chemical components of the lead-acid cell though not, of course,

the architecture of an automotive battery. As shown, the included voltmeter would read a

value close to 2.0 V, the PbO2 being positive with respect to the Pb. The sign of the voltage

reflects the greater activity of electrons on the lead electrode. The magnitude of the voltage

can, and will now, be explained using the principles addressed in Chapters 1 and 2.

Heterogeneous electrochemical equilibria are established at each electrode interface.

At the lead dioxide electrode the equilibrium is

2 4 3 2 4 2PbO ( ) HSO ( ) 3H O ( ) 2e ( ) PbSO ( ) 5H O( )s aq aq PbO s      3:4

while that at the lead electrode is305

4 3 4 2PbSO ( ) H O ( ) 2e ( ) Pb( ) HSO ( ) H O( )s aq Pb s aq      3:5

Any actual reaction would require electrons to cross the electrode interfaces and no such

motion is possible without a circuit being established306. In each case, the forward and

reverse processes are taking place at equal rates. So no net reactions occur; the equilibria

are undisturbed. Notice that we have written e(Pb) or e(PbO2) to indicate that the

electrons in question are “dissolved” in the parenthesized phase, though we shall

discontinue to do this later in the book.

We can conjoin equations 3:4 and 3:5 by subtracting the latter from the former and

then splitting the difference into a chemical part

2 4 3 4 2PbO ( ) Pb( ) 2HSO ( ) 2H O ( ) 2PbSO ( ) 4H O( )s s aq aq s     3:6

that we call the cell reaction, and an electrical part

22e ( ) 2e ( )PbO Pb 3:7

that shows an exchange of electrons between the two electrodes. Though we have written

them as equilibria, processes 3:6 and 3:7 cannot occur with the arrangement in Figure 3-1

because the voltmeter does not allow the passage of electrons.

The change in Gibbs energy accompanying the forward direction of process 3:6 can

be calculated307 according to the principles described in Chapter 2, as

2
2

+ +
2 4 3 3 4

2 4
o 4 4

H OPbSO H Oo 14

2 2 4 2 2
Pb PbO HSO H O H O HSO
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308 You might be concerned that, whereas in Chapter 1 we stated that electrical potential differences could only

be measured between phases of similar composition, here we appear to be measuring the potential difference

between two dissimilar electronic conductors: PbO2 and Pb in our example. In fact, what the voltmeter

measures is the electrical potential difference between its two terminals, both of which are copper! Our interest,

however, is in the activities of electrons and when two electronic conductors, such as lead and copper, are in

contact and at equilibrium, then the electron activities in (not the potentials of) the two conductors will be the

same.
309 Using data from the Appendix, page 391, follow this protocol to calculate the equilibrium voltage

of the cell in which the electrode reactions are Ag2O(s)+H2O()+2e(Ag) 2Ag(s)+2OH(aq) and
ZnO(s)+H2O()+2e(Zn) Zn(s)+2OH(aq), reporting which of the electrodes is positive. Explain why the
only data you need for this calculation are the standard Gibbs energies of silver oxide and zinc oxide. Compare

you answers with those at Web#309.

Under the conditions typical of the operation of a lead-acid battery, each of the two ions

has an average concentration of about 3000 mM and the final term in 3:8 has a value close

to 16 kJ mol1. Notice that, as is usual in such calculations, the Go term numerically

dominates the RT ln{ } term in leading to an overall G of about 387 kJ mol1. What is

the significance of “mol1” here? Per mole of what? It can be thought of as “per mole of

the reaction as written”. That is, in this case, per mole of lead destroyed or per two moles

of lead sulfate created.

Despite its thermodynamic favorability, the forward direction of reaction 3:6 cannot

occur unless 3:7 occurs in the reverse direction and this is thwarted by the absence of an

electron pathway between the two electrodes305. The eagerness of cell reaction 3:6 to occur

in the forward direction is manifested by the higher electron activity in the Pb compared

to the PbO2. Reaction 3:6 “wants” to go in the forward direction; reaction 3:7 “wants” to

go backwards. If these processes were permitted, work could be performed by the passage

of electrons from the Pb to the PbO2. How much work? The passage of two electrons, each

of which carries a charge of Q0, down a voltage drop of E could perform work of

2Q0E. Our choice of signs in Chapter 1 was that w represented the external work that

needed to be performed. Here no coercion is needed, w is negative and equal to 2Q0E.

On a molar basis, the external work would be

A A 02 2W N w N Q E F E      3:9

In accord with the equilibrium principles discussed on page 32, G  W and therefore
1

1

( 387 kJ mol )
2.01 V

2 2 (96485 C mol )

G
E

F





  
   


3:10

in agreement with experiment. Here E is the potential difference between the two

electrode potentials308.

The procedure for finding the voltage of a simple electrochemical cell at equilibrium

may be generalized as follows309:

(a) Write down the equilibrium reaction at electrode I, and that at electrode II, with

electrons on the left-hand side of each equation
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310 From this standard cell voltage reported in 3:13, calculate the equilibrium constant of reaction 3:6. What

are the equilibrium ion concentrations if samples of the three solids are brought into mutual contact under water?

Is this realistic? See Web#310.
311 The standard molar enthalpy change accompanying the cell reaction can be found as nFT 2d(Eo/T)/dT and

the corresponding standard molar entropy change is nFd(Eo)/dT.
312 An example of such a study is described in Web#312.

(b) If necessary, double or triple either equation to make the numbers of electrons match.

The matched number of electrons is n.

(c) After any such modification, subtract equation II from equation I, to obtain a purely

chemical equation. Calculate the Gibbs energy change accompanying that reaction,

allowing for any nonunity activities.

(d) Then the potential difference between the two electrodes is

I versus II I II cell voltage
G

E
nF


      3:11

where G is the Gibbs energy change accompanying the overall cell reaction.

Of course, the cell voltage depends on the activities of the chemicals participating in

the cell reaction. When these are all unity, the interelectrode potential difference is called

the standard cell voltage, denoted E o.
o

o standard cell voltage
G

E
nF


 3:12

For the lead-acid cell reaction, it follows that
1

o

1

( 371.4 kJ mol )
1.925 V

2 (96485 C mol )
E





 
  


3:13

This is the voltage that the lead-acid cell would develop if the hydronium and bisulfate ions

were in their standard states. Notice that the standard cell voltage, the change in standard

Gibbs energy, and the equilibrium constant310 of the cell reaction are equivalent concepts,

each of which is a way of expressing the equilibrium ratio of the activities of products and

reactants. The relationships that apply for the general reaction 2:48 are:

Z Y

A B

o
o Z Y

A B equilib

exp e equxp ilibrium
v v

v v

a anF G
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    
        

     
3:14

Even though there is no chemistry actually taking place, equilibrium cells are an

important source of chemical data. The measurement of cell voltages, which can be carried

out with great precision, has provided most of the exact thermodynamic data that chemists

need. Not only standard Gibbs energies, which are accessible directly from measured Eo

values, but also enthalpies and entropies can be found from the way in which E o changes

with temperature311. Moreover, activity coefficients are mostly measured by studying the

effect of concentration on cell voltages, a procedure that also yields E o values312.
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313 Electrons and anions, being negatively charged, circle counterclockwise; cations move clockwise. The

ammeter is assumed not to impede the flow of current. To achieve this in practice, a current follower is used.

See Web#1029.

Cells not at Equilibrium: interchanges of chemical and electrical energy

In the previous section, we saw that a lead-acid cell could potentially perform work if

an electron path were to be provided between the two electronic conductors. Figure 3-2

shows such a pathway established through a “load” and with an ammeter to measure the

resulting electric current. The load presents an opportunity to perform useful work, such

as starting your car; or the load could be a resistor, in which case energy is released as heat.

The ammeter measures the current flowing clockwise313 through a circuit that is partly made

up of electronic conductors and partly of the ionic conductor. Through the latter, electricity

flows by the migration of hydronium H3O
+ and bisulfate ions. The current crosses4HSO

each of the electronic|ionic junctions by virtue of electrochemical reactions.

The chemistry at the electrode surfaces is no longer in equilibrium. Interconversions

in both directions are still taking place, but they are no longer occurring at equal rates. A

convenient way of representing a departure from equilibrium is by using arrows of unequal

length in the equation. At the left-hand electrode, the process becomes

2 4 3 4 2PbO ( ) HSO ( ) 3H O ( ) 2e ( ) PbSO ( ) 5H O( )2s aq aq PbO s      3:15

with the forward process now outrunning the backward conversion. Therefore a net

reduction occurs. An electrode at which a reduction is occurring is termed a cathode.

Conversely, at the right-hand electrode, the backward process outruns the forward:



Cells not at Equilibrium 61

314 Read in thermodynamic texts about this limitation, which is encountered in converting heat to work.
315 Luigi Galvani, 17371798, Italian physician and physicist.

+
4 3 4 2PbSO ( ) H O ( )+2e ( ) Pb( ) HSO ( ) H O( )s aq Pb s aq    3:16

and a net oxidation occurs. An electrode at which an oxidation is occurring is described

as an anode. Electrons are consumed at a cathode, created at an anode. As Figure 3-2

illustrates, the cell voltage falls somewhat below its equilibrium value during this process

– the greater the current, the larger the drop – as a result of electrode polarization. This

is a phenomenon with several causes, as described in detail in Chapter 10.

As the two electrochemical reactions proceed, the Gibbs energy of the cell’s contents

steadily declines as chemical energy is converted into work or heat. The conversion of

chemical energy, through electrical energy, to work can approach 100% efficiency; there

is no Carnot limitation314,541.

An electrochemical cell, such as that we have been describing, in which chemical

energy is being destroyed is named a galvanic cell315. Conversely, when a cell captures

electrical energy and converts it to chemical energy, it is said to be acting as an electrolytic

cell. Figure 3-3 shows a lead-acid cell in electrolytic mode. Electrical current is being

forced by a d.c. voltage source through the cell, which adopts a voltage somewhat higher

than its equilibrium value. Many properties of the cell are now opposite to what they were

when the cell was behaving galvanically. The current flows counterclockwise. The left-

hand electrode, that was a cathode when the cell functioned galvanically, is now an anode

at which the reaction is



62 3 Electrochemical Cells

316 It can be argued that the cell is not at equilibrium; however, each of the electrodes is at equilibrium.
317 A cell contains two electrodes immersed in an aqueous solution containing Na+(aq) and Br(aq), each at a

concentration of 100 mM. One electrode consists of mercury, Hg, coated with mercury(I) bromide, Hg2Br2.

The second is a silver plate coated with silver bromide, AgBr. Under what conditions would this cell operate

in each of the three modes: galvanic? equilibrium? and electrolytic? See Web#317.
318 In the context of a lead-acid cell, or other secondary battery, the electrolytic phase of operation is described

as charging, the galvanic phase as discharging (Chapter 5).
319 Such curves are sometimes called voltammograms, but we reserve that name for current-voltage curves

resulting from voltammetry (Chapter 12).
320 also rest voltage, open-circuit voltage and reversible voltage.

2 4 3 4 2PbO ( ) HSO ( ) 3H O ( ) 2e ( ) PbSO ( ) 5H O( )2s aq aq PbO s      3:17

whereas the right-hand electrode, previously the anode, now functions cathodically:
+

4 3 4 2PbSO ( ) H O ( ) 2e ( ) Pb( ) HSO ( ) H O( )s aq Pb s aq     3:18

Of course, if the d.c. voltage source is carefully adjusted to the value 2.01 V, the

current will cease and equilibrium will be restored. Any lower applied voltage leads to

galvanic operation. There is a unique voltage at which the cell is at equilibrium316. Thus

we see that a single cell may function317 in three modes:
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all of which are useful318. Many practical applications of galvanic and electrolytic cells are

discussed in Chapters 5 and 4 respectively. For a variety of reasons, not all electrochemical

cells are able to function efficiently in both galvanic and electrolytic modes. When they

can, a useful way of describing the electrical properties of the cell is in terms of a

polarization curve319. This is a graph of the cell current I versus the cell voltage E, as

in Figure 3-4. The unique point on such a graph, where the current is zero, goes by a

variety of names320, including equilibrium cell voltage and null voltage, En. The

distinction between Eo and En is that the former relates to unity activities, the second to

whatever the activities happen to be in practice. Such current-voltage curves are useful

devices, but recognize that, more often than not, the shape of the curve may change with

time, for reasons and with consequences that will be explored later in this book.

We chose to base the foregoing exposition on a familiar example of an electrochemical

cell in which the ionic conductor is an aqueous solution and one of the electronic

conductors is a metal. This is a common circumstance, but any arrangement in which an

ionic conductor is sandwiched between two electronic conductors, as in Figure 3-5a is an

electrochemical cell. You may wonder whether the converse arrangement, illustrated in

Figure 3-5b, is not equally an electrochemical cell. Indeed, such an unusual arrangement
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321 The electronic conductor in such an arrangement is known as a bipolar electrode. See Figure 3-8 for an

example.

is possible321 but, without further junctions being introduced, electrical measurements

cannot be made with devices that are available. Yet a further junction of interest to

electrochemists is that between two immiscible liquids. Such interfaces, at which

electrochemical reactions may be performed without an electrode, are discussed in

Chapter 14, where certain other interfaces are also addressed.
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322 John Frederic Daniell, 17901845, English chemist. See also page 89.
323 Fritted glass, fine capillaries, filter paper, porous porcelain, gels and membranes of various kinds are used

as diaphragms, the object being to allow the passage of ions while inhibiting the mixing of the two solutions.

Cells with Junctions: two ionic solutions prevented from mixing

Early scientists turned to the Daniell cell322 as a source of electrical power. This

galvanic cell, illustrated schematically in Figure 3-6, employs electrodes of copper and

zinc, each metal being in contact with an aqueous solution of its sulfate. A porous

diaphragm323 separates the two portions of the ionic conductor. This barrier prevents the

so called “parasitic” chemical reaction
2 2Cu ( ) Zn( ) Zn ( ) Cu( )aq s aq s  3:20

that would otherwise occur. Equation 3:20 is, in fact, also the cell reaction, though it

occurs through the medium of the cathodic reaction
2 cathoCu ( ) 2e ( ) Cu de( )aq Cu s  3:21

and the anodic reaction
2Zn ( ) 2e anode( ) Zn( )aq Zn s  3:22

One might imagine that the null voltage of this cell could be calculated as
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3:23

in the standard way. This gives a value of about 1.102 volts if the activities of the two
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324 Check the voltage calculation using data from the table on page 391. Also use 3:23 to estimate the null

voltage after the Daniell cell is half discharged, so that, assuming equal volumes, the activity of the zinc ion will

have increased by about 50%, while that of the copper ion has halved. See Web#324.
325 often simply called a junction potential.
326 See the table of mobilities on page 388. You may be surprised that the small Li+ ions move more slowly than

the larger Br. This is because the former are strongly hydrated (page 41) and have to drag as many as four

water molecules along with them. Also see page 150.
327 also called a diffusion potential difference because the impetus for the motion of the ions is a concentration

gradient.
328 Lawrence Joseph Henderson, 18781942, U.S. chemist whose name is also associated with the Henderson-

Hasselbalch equation of titrimetry. See Web#328 for a derivation of equation 3:24.
329 Confirm this value and recalculate for potassium chloride, KCl, solutions. What significance has the sign

of your answers? See Web#329.

cations are equal324. This is close to the voltage of the Daniell cell, but equation 3:23 does

not tell the full story. There is a liquid junction potential difference associated with the

porous diaphragm. To understand the origin of this term, recognize that the flow of current

through the cell requires the transport of electricity from right to left through the porous

barrier and that two processes – the passage of Zn2+ ions from right to left and of ions2
4SO 

from left to right – contribute to this. A detailed examination of the voltage of the Daniell

cell must take account of this fact.

Liquid junction potential differences325 exist even

in the absence of current flow. Consider the nonelectro-

chemical arrangement shown here in which two aqueous

solutions of lithium bromide are separated by a

permeable barrier. The concentration difference will

cause ions to move from the left-hand compartment.

But Br anions migrate about twice as fast as Li+ cations326 and so have a tendency to arrive

earlier in the right-hand compartment. The electroneutrality constraint ensures that the

speedy Br ions do not significantly outrun their sluggish lithium counterions, but the small

effect is enough to give the right-hand compartment a significant negative potential with

respect to the left-hand solution. The magnitude of this liquid junction potential

difference327 depends somewhat on the geometry of the barrier’s pores and on the degree

of stirring of the two solutions, but in the simplest circumstance it is given by the

Henderson equation328
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3:24

for the case of a junction between two different concentrations, cL and cR, of a single

electrolyte. For the fivefold concentration disparity shown in the diagram, the Henderson

equation gives a 14 mV potential difference for lithium bromide329.

The Henderson equation predicts the absence of a liquid junction potential difference
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330 Ammonium nitrate, NH4NO3, is an alternative, in part because it is extremely soluble in water.
331 There is also an innocuous concentration-gradient-driven diffusion of KCl from the salt bridge.

between solutions of an electrolyte for which u+/u  z+/z; potassium chloride comes very

close to meeting that criterion329. For this reason, KCl is the most popular electrolyte330 for

use in a salt bridge. This device, which may adopt a variety of geometries, is used in cells

whenever it is desired to prevent contact between the two ionically conducting liquids. It

consists of a concentrated salt solution interposed between the half-cells and separated from

them by porous diaphragms.

Figure 3-7 shows a salt bridge linking two half-cells that differ only in their

concentration of copper(II) chloride. Despite there now being two barriers, liquid junction

potentials have been virtually eliminated by the near equality of the mobilities of the K+ and

Cl ions and because the high concentration of these dominant ions means that they carry

the majority of the current across the barriers. When this cell operates in the galvanic

mode, driven by the higher activities of the ions in the left-hand half-cell, electricity flows

around the circuit in a clockwise direction. The carriers of this electric current are diverse:

(a) across the right-hand electrode, by the oxidation Cu(s) 2e + Cu2+(aq, cR);

(b) leftwards through the right-hand half-cell, by migration of Cu2+(aq) ions and the

countermigration of Cl(aq) ions;

(c) across the right-hand barrier, largely by migration of Cl ions out of the salt bridge331;

(d) within the salt bridge by the migration of K+ and the countermigration of Cl ions;

(e) across the left-hand barrier, largely by migration of K+ ions out of the salt bridge331;

(f) leftwards through the left-hand half-cell, by migration of the Cu2+(aq) ions and

countermigration of Cl(aq) ions;

(g) across the left-hand electrode, by the reduction Cu2+(aq, cL) + 2e Cu(s); and
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332 In practice there is a further complication because copper(II) exists in aqueous solution to a significant extent

as Moreover, an appreciable concentration of copper(I) chloride is present on account of the2
4CuCl .

equilibria 2
4 2CuCl ( ) Cu( ) 2CuCl ( ) 2Cl ( ) 2Cu ( ) 4Cl ( ) .aq s aq aq aq aq       

(h) throughout the remainder of the circuit, by counterclockwise electron flow.

Such a cell is named a concentration cell without transference because the two half-cells

differ only in concentration, and because there is no transfer of electroactive species

between the two half-cells. Subtraction of the reaction described in (g) from that in (a)

gives
2 L 2 RCu ( , ) Cu ( , )aq c aq c 3:25

But that is not all! Additional chloride ions have also appeared in the left-hand chamber

and disappeared from its right-hand counterpart, so that the total stoichiometry is given

by332

2 L L 2 R RCu ( , ) 2Cl ( , 2 ) Cu ( , ) 2Cl ( , 2 )aq c aq c aq c aq c    3:26

Thus the chloride ions, too, contribute to the Gibbs energy change. The cell’s null voltage,

developed after the switch shown in Figure 3-7 is opened, lacks a “standard” term

(Go  0) and reflects only the activity disparity:
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This is the equilibrium voltage of the left-hand electrode with respect to the right and will

be positive if cL exceeds cR.

Figure 3-8 shows another way of preventing transference, dispensing with diaphragms
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333 Why does equation 3:27 apply to this cell? See Web#333.
334 See Web#334 for more details.
335 See pages 8183 for an application in electrodialysis and other industrial application.
336 See Footnote 129. For a sensor application, see page 173.

by interposing another electronic conductor between the two half-cells. Here a

silver-chloride-coated dual action silver electrode allows the transfer of chloride ions

between the two half-cells by virtue of the two reactions:

AgCl( ) + e ( ) Ag( ) + Cl right-hand( interfa e) cs Ag s aq 3:28

AgCl( ) e ( ) Ag( ) + Cl left-hand interface( )s Ag s aq  3:29

An electrode behaving in this way is termed a bipolar electrode333.

If the experiment shown in Figure 3-7 is repeated, but with the salt bridge replaced by

a single porous barrier, the null cell voltage is quite different. This is now a concentration

cell with transference, because ions from one half-cell must now migrate, through the

porous barrier, to the other half-cell. The null voltage is smaller than that given in equation

3:27 and involves the ionic mobilities334.

Semipermeable membranes are barriers that

allow the passage of some species but not others. Of

particular electrochemical interest are membranes

that allow the passage of only anions or only

cations335. They probably function by having small

pores with charged walls, the pores being accessible

only to ions of opposite sign. Their use in

concentration cells with transference has advantages

over less discriminating barriers. For example,

replacing the porous barrier of the Daniell cell by an

anion-selective membrane would be beneficial in

allowing the cell to be recharged, which is not

possible with a porous barrier because Cu2+ ions would enter the zinc half-cell and cause

the parasitic reaction 3:20. On the other hand, membranes of any kind detrimentally

increase the resistance of a cell.

Of course, there is no need to provide a barrier to the intermixing of half-cell

ingredients when the ionic conductor is solid. This is one of several advantages of

solid-phase cells. An example is provided by the high-temperature zirconia-based oxygen-

concentration cell336, in which the electrolyte is the solid ionic conductor ZrO2 though

which oxide ions, O2, can migrate. As shown in Figure 3-9, each electrode is porous

platinum through which oxygen from a gas stream can diffuse and establish the equilibrium
2

2O ( ) 4e ( ) 2O ( )2g Pt ZrO  3:30

The cell voltage responds to the discrepancy between the oxygen partial pressures at the
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337 Calculate the voltage of the concentration cell at 425oC if the oxygen partial pressure on the left-hand side

is 1000 Pa and the right-hand side is ambient air (21% oxygen). See Web#337.

left-hand and right-hand electrodes through the equation337
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Rather similar to this is a cell which uses hydrogen uranyl phosphate tetrahydrate,

HUO2PO44H2O, a waxy solid known colloquially as “HUP”, that allows proton migration.

The voltage of a cell in which HUP is sandwiched between two palladium electrodes

responds to differences in hydrogen partial pressure on its two faces.

Summary

The simplest electrochemical cells have an ionic conductor sandwiched between two

electronic conductors; the junctions serve as electrodes at which electrochemical reactions

occur. The sum of those two reactions is the cell reaction, the G of which is reflected in

the null cell voltage (the cell voltage at open-circuit):
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The magnitude of the cell voltage will exceed its null value when the cell operates in an

electrolytic mode, current being driven by an external source, but will be less than the null

value when the cell delivers current into a load and operates galvanically. To prevent

unwanted reactions with a liquid ionic conductor, it is often necessary to interpose a

diaphragm, thereby dividing the cell into two. This introduces a liquid junction potential,

which can be mitigated by means of a salt bridge or eliminated by a bipolar bridge. A

concentration cell is one in which the two half-cells differ only in the concentration of some
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View supplementary web material at www.wiley.com/go/EST.

electroactive ion i, the cell voltage being logarithmically related to the ratio of the two ionic

activities. Such cells may be with or without transference; in the latter case:
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where En is the difference in potential of the left-hand electrode with respect to the right.

Many sensors work on this principle; performance is enhanced if the barrier is replaced by

a membrane that selectively allows particular ions to pass through its pores.



401 This has much in common with the Hall-Hèroult process but uses chloride, instead of fluoride, salts.
402 Charles Martin Hall (18631914, U.S. chemist) and Paul Louis Toussaint Hèroult (also 18631914, French

metallurgist) independently invented the process in the 1880s.
403 Though cryolyte is a naturally occurring mineral, what is actually used is a mixture of NaF and AlF3. A small

percentage of calcium fluoride CaF2 is added to improve the conductivity.
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Electrosynthesis

When a cell operates in its electrolytic mode, the process is termed electrolysis and

chemicals are produced that have a greater Gibbs energy than the reactants. Many of these

electrolysis products have a high commercial value, or are of chemical interest. In this brief

chapter, examples are given of processes that are used to manufacture – often industrially

in huge tonnages, sometimes on a much smaller scale – products that are valuable

economically or scientifically. In several cases, such an electrosynthesis is the only known

route for making a particular element or compound.

Metal Production: many metals are made or purified electrolytically

The metals Li, Na, K, Mg, Ca, Sr, Ba, Ra, Al, and Ta, as well as the gases F2 and Cl2,

are manufactured almost exclusively by electrolysis of salts of these elements, either in the

fused (molten) state or in aqueous solution. For several other metals, including Cr, Mn, Co,

Ni, Cu, Ag, Au, Zn, Cd, Ga, In, and Tl, electrolytic methods compete commercially with

classical chemical methods of extraction. A metal is said to be “won” from its ore and the

electrolytic production of a metal from its ores is therefore known as electrowinning. As

the most important example, we firstly consider the electrowinning of aluminum.

Though the rival Alcoa process401 is also in use and other methods are being

researched, most of the 12 billion tons of aluminum produced annually still comes from the

original Hall-Hèroult process402. The raw material from which aluminum is made is the ore

bauxite, a mixture of Al(OH)3 and AlOOH. This is purified and converted to alumina,

Al2O3 which, in the Hall-Hèroult process, is then dissolved in molten cryolite403 Na3AlF6.
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404 Construct this overall equation as in Web#404.
405 Use data from the tables on pages 386 and 391 to confirm this. See Web#405.

The molten mixture is an ionic liquid containing a variety of ions, including AlF4

, F


, and

O2. Electrolysis is conducted at about 960oC, at which temperature both the electrolyte

and the aluminum product are liquid. The cathode reaction is probably

4AlF ( ) 3e ( ) Al( )+4F ( )fus Al fus    4:1

and it occurs on the surface of the pool of molten aluminum that rests on graphite at the

base of the electrolytic bath, as in Figure 4-1. Continuously formed in situ from pitch and

petroleum coke or anthracite, the anode consists of rods of baked carbon, which are

consumed by the reaction
2

22O ( ) C( ) 4e ( ) CO ( )fus s C g   4:2

The overall cell reaction is therefore404

2 3 22Al O ( ) 3C( ) 4Al( ) 3CO ( )s s g  4:3

with the applied voltage being about 4 V and the current density close to 5000 A m2. The

heat generated by the massive current flow helps maintain the temperature of the bath.

From the increase in standard Gibbs energy accompanying reaction 4:3, one learns that

about 20 MJ are required thermodynamically to generate one kilogram of aluminum405.

However, the electrical energy consumed by the cell is closer to 40 MJ per kilogram,
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406 Confirm this statement. Also calculate how much electricity (in coulombs and watts) is used in the

generation of one kilogram of aluminum. See Web#406.
407 The term “electroraffination” is also used (from the French raffiné, refined or cultivated).
408 What quantity of electricity is needed to purify one kilogram of copper? Compare your answer with that at

Web#408.

largely on account of the heat needed to sustain the high operating temperature. Aluminum

manufacture is the largest single user of electricity on the planet. The high electrical

demand means that it is more economical to site aluminum smelters close to sources of

electricity than adjacent to the bauxite mines. The Hall-Hèroult process is a serious source

of pollution, not only on account of the 1.2 kg of carbon dioxide produced406 for each

kilogramof aluminum, but also because of the unwelcome escape of hydrogen fluoride, HF,

and carbon monoxide, CO, from the smelters. For both environmental and economic

reasons, a better method of making aluminum is sorely needed.

Some copper is electrowon from low-grade ores, but this metal is mostly extracted by

traditional smelting. However, regardless of how the copper is won, it is invariably

subjected to electrorefining407. The process is, in principle, supremely simple. The impure

copper forms the anode of an electrolytic cell in which the ionic conductor (the

“electrolyte”) is an aqueous solution containing copper(II) sulfate and sulfuric acid. Pure

copper is formed at the cathode. The electrode reactions408 are
2Cu( , ) 2e Cu ( )s impure aq  4:4

and
2Cu ( ) 2e Cu( , )aq s pure  4:5

The impurities either remain in solution or fall to the floor of the electrolysis vessel as an

“anode sludge”. The latter is such a valuable source of silver and gold, that the copper

refining process pays for itself.

Similar electrorefining treatments, though with diverse electrolytes, are employed to

purify the metals cobalt, nickel, tin, and lead. Some forms of electroplating use cells

similar to refining cells in that metal is transferred from an anode and deposited on the

surface of the cathode, which is generally of a different metal. Electroplating is as much

an art as a science and unlikely additives are customarily added to the plating bath to

achieve desirable properties, such as smoothness, abrasion resistance, and luster, in the

electroplated layer or on its surface.

Notice that, because the reactant and product of the cell reaction are almost identical,

a refining cell has a null voltage of virtually zero. Nevertheless, some voltage must be

applied, primarily to provide the energy for migration. The name overvoltage is given to

electrical potential differences in excess of those required to overcome the positive Gibbs

energy demand of an cell. There are three phenomena that lead to overvoltages: they are

called polarizations  ohmic, kinetic, and transport  and are examined in detail in

Chapter 10.
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409 Read about the other two at Web#409.
410 Use the table on page 391 to estimate the Gibbs energy change for the net cell reaction. Make reasonable

assumptions about the activities of the species involved in the chloralkali cell. Check with Web#410. Then

calculate the cell’s null potential and interpret its sign.
411 More about selectively permeable membranes will be found on pages 7983. Membranes manufactured by

E. I. du Pont de Nemours and Company use the trade-name Nafion.
412 Some cells operate without a membrane separator, allowing reaction 4:9 to occur, so that hypochlorite is

produced in situ.

The Chloralkali Industry: a bounty of products from salt and water

One of the world’s major industries is based on the electrolysis of brine, a concentrated

aqueous solution of sodium chloride. There are three rival processes409, but newer

electrolyzers are all of the membrane cell type, in which the electrode reactions are410:

22Cl ( ) 2e Cl ( )aq g  anode :4:6

2 22H O( ) 2e H ( ) 2OH ( )g aq   cathode : 4:7

The chloralkali membrane cell, diagrammed in Figure 4-2, operates continuously with

liquid streams of the compositions shown, and with the anode and cathode compartments

separated by a selectively cation-permeable membrane411. By inhibiting the migration into

the anode compartment of hydroxide ions, the membrane prevents their reaction412 with the
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413 This voltage is to be compared with the null cell voltage of 2.20 V calculated in Web#410.
414 Use these data, and the assumption of 100% yield, to calculate the rate of chlorine generation in the

mol m2 s1 unit. Also compare the energy consumed in generating one mole of chlorine with that calculated

in Web#410. Check your answers at Web#414.
415 known industrially as caustic soda or simply “caustic”.
416 Demonstrate that reactions 4:8, 4:9, and 4:10 are thermodynamically feasible. See Web#416.

chlorine. The cathode is iron or steel. Traditionally, graphite was used for the anode, but

so-called dimensionally stable anode materials offer advantages; these contain ruthenium

and titanium oxides which are electrocatalytic for chlorine evolution and thereby diminish

the amount of oxygen that is produced by the unwelcome anodic side reaction

. To decrease cell resistance, the electrodes are2 24OH ( ) 4e 2H O( ) O ( )aq g   

positioned close to either side of the membrane. The cell operates at a voltage413 close to

3.3 V and a current density414 of about 4.0 kA m2.

The primary products of the chloralkali process are chlorine gas, hydrogen gas and

sodium hydroxide solution415, for each of which markets exist. The uses of chlorine include

water disinfection and remediation, as discussed in Chapter 9. In addition to these,

however, there are many other subsequential products of the industry416. High purity

hydrogen chloride is produced by the mutual combustion of the gaseous products

2 2H ( ) Cl ( ) 2HCl( )g g g 4:8

Much of the produced chlorine is reacted with the sodium hydroxide solution:

2 2Cl ( ) 2OH ( ) Cl ( ) OCl ( ) H O( )g aq aq aq      4:9

to produce a solution of mixed sodiumchloride NaCl and sodiumhypochlorite NaOCl salts,

sold as laundry bleach. Sodium hypochlorite, in turn, is anodically oxidized to sodium

chlorate NaClO3 for which there is a large market in the pulp and paper industry. This salt

is also generated chemically in aqueous solution by the disproportionation of sodium

hypochlorite:

33ClO ( ) ClO ( ) 2Cl ( )aq aq aq   4:10

a reaction which is very slow in basic solution, but which is catalyzed by hydronium ions.

Furthermore, sodium perchlorate NaClO4 is produced electrochemically by anodic

oxidation of acidic solutions of sodium chlorate:

3 2 4 3ClO ( ) 3H O( ) 2e ClO ( ) 2H O ( )aq aq aq      4:11

hydrogen being formed at the cathode.

Organic Electrosynthesis: nylon from natural gas

Though production volumes are small in comparison with those of the large inorganic

electrosynthetic enterprises, many electrosyntheses of organic compounds are currently
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417 see Chapter 6 in D. Pletcher and F.C. Walsh, Industrial Electrochemistry, 2nd edn, Kluwer, 1990.
418 Manuel M. Baizer, 19141988, organic electrochemist.
419 The number 66 indicates that there are six carbon atoms in the diacid comonomer and six in the diamine.
420 Predict the product of the electroreduction of the compound C(CH2Br)4. See Web#420.
421 Adolph Wilhelm Hermann Kolbe, 18181884, German organic chemist, who followed up earlier

observations by Faraday on the electrolysis of acetate solutions.

being exploited commercially worldwide417. The Baizer418-Monsanto process for

conversion of acrylonitrile to adiponitrile is the most noteworthy example. The cathodic

reaction is both a reduction (adding hydrogen atoms into the organic structure) and a

dimerization (combining two acrylonitrile molecules into a single adiponitrile molecule)

2 3 2 2 2 2 22CH CHCN 2H O 2e NCCH CH CH CH CN 2H O    4:12

The reaction, the mechanism of which is not firmly established, occurs at a cadmium

electrode in an aqueous emulsion containing, in addition to the reactant and product,

sodium phosphate and a quaternary ammonium salt.

This electrosynthesis is a key step in the synthesis of nylon from natural gas. The

propane CH3CH2CH3 fraction of the gas is dehydrogenated to propene CH2CHCH3 before

being converted to acrylonitrile CH2CHCN. Following the electrochemical step,

adiponitrile is converted in part to adipic acid HOOC(CH2)4COOH and in part to

1,6-diaminohexane H2N(CH2)6NH2. These are the two components from which the

nylon-66 polymer419 [OOC(CH2)4COONH(CH2)6NH] is formed.

Among smaller scale processes, the electrochemical reduction of bromides is used by

organic chemists as a means of synthesis. With R denoting an organic group, the first step

in such reductions probably yields a radical

RBr( ) e R ( ) Br ( )soln soln soln    4:13

Depending on the nature of R and of the solvent, the radical may dimerize to R2, further

reduce and abstract a proton from the solvent to form RH, or even attack the electrode

(giving HgR2 or RHgBr with a mercury electrode). With dibromides, double bonds or rings

may form, as in the examples420

3 3 3 3CH CHBrCHBrCH ( ) 2e CH CHCHCH ( ) 2Br ( )soln soln soln   4:14

or

2 2

2 2 2 2

2 2

CH CH
BrCH CH CH CH Br( ) 2e | | ( ) 2Br ( )

CH CH
soln soln soln 


  


4:15

Another electrosynthetic route of interest in organic chemistry is the Kolbe

synthesis421, in which the electrooxidation of carboxylates at a platinum anode yields

dimeric hydrocarbons and carbon dioxide:
1

2 2 2 2 22RCO ( ) e RCO ( ) R ( ) CO ( ) R ( ) CO ( )soln ads ads ads soln g        4:16

Discovered in 1843, this synthesis was the first important organic electrosynthetic reaction.
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422 This is the concept in which hydrogen, H2, plays a role similar to that of electricity as an “energy currency”,

being generated at one site, then transported to a remote energy-needful site (such as a home or an automobile

engine) where it is combusted with air to liberate energy with the formation of water.
423 These equations, which of course make no pretense of depicting the mechanisms of the electrode reactions,

are applicable to the electrolysis of acidic water. The overall reaction 4:19 applies irrespective of the pH.
424 This is the catalyzed reaction of methane CH4(g) with steam H2O(g) to give hydrogen and oxides of carbon.
425 As in the prolonged electrolysis of water with a view to increasing its heavy water content. D2O electrolyzes

more reluctantly than H2O and therefore accumulates in the residual electrolyte solution.
426 Confirm this from the table on page 391 and go on to check the cited null voltage. Rationalize the fact that

your calculation resulted in a negative voltage. See Web#426.

It is used to construct higher saturated hydrocarbons. “Mixed” product formation by

joining two different R groups can be accomplished by having one of the reactant

carboxylates in excess.

Electrolysis of Water: key to the hydrogen economy?

Proponents of the hydrogen economy422 see the electrolysis of water, in which the

electrode reactions are423

2 2 36H O( ) 4e O ( ) 4H O ( )g aq   anode : 4:17

and

3 2 24H O ( ) 4e 2H ( ) 4H O( )aq g   cathode : 4:18

as the “green” method of generating hydrogen from electricity. Presently, the so-called

“reforming” of natural gas424 is a more cost effective process for manufacturing hydrogen.

Accordingly, hydrogen is made electrolytically only in niche applications425. It is to be

expected, however, that the depletion of fossil fuel reserves will one day tip the economic

balance in favor of the electrosynthesis of hydrogen.

As the table on page 384 confirms, water is a poor conductor and therefore a strong

electrolyte must be added to the water to provide sufficient conductivity. The identity of

the ions provided by this electrolyte is largely immaterial, provided that they do not

themselves undergo any competitive electrode reaction; H2SO4 is often used as the

electrolyte.

The Gibbs energy change accompanying the cell reaction

2 2 22H O( ) 2H ( ) O ( )g g 4:19

is positive and equal to426 474.2 kJ mol1, from which a null voltage of magnitude 1.229 V

may be calculated. It might therefore be expected that if the voltage source shown in

Figure 4-3 overleaf is adjusted to any positive value in excess of 1.229 V, current will flow

and the reactions 4:17 and 4:18 will occur at the left and right-hand electrodes respectively.

In fact, these reactions do not occur significantly until the applied voltage reaches about
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2 V. A phenomenon impeding an electrode reaction is known as a polarization and three

of these are the subject of Chapter 10. In the case of water electrolysis, the polarization can

be attributed primarily to the slow kinetics of reaction 4:18 and, especially, reaction 4:17.

Reaction 4:18 provides a powerful example of the finding that the nature of the

electrode can profoundly affect the electrochemistry of a reaction even though the electrode

material is not stoichiometrically involved in the electrode reaction. Study of the kinetics

of this reaction (Chapter 7 and Web#743) shows that the hydrogen-evolution reaction

proceeds by three distinct mechanisms, depending on the metal at which the reaction

occurs. For most metals, including Hg, Ag, Pb, Cu, and Fe, the mechanism is believed to

involve the formation of an adsorbed hydrogen atom in the rate-determining step

3 2

3 2 2

ˆH O ( ) e H( ) H O( ) Step (1), slow

H( ) H O ( ) e H ( ) H O( ) Step (2), fast

aq ads

ads aq g

 

 

   


   




4:20

On the metals Mo, W, Ti, and Ta, the kinetics can be explained on the basis of the same

two reactions, but with the second step now being rate determining:

3 2

3 2 2

H O ( ) e H( ) H O( ) Step (1), fast

ˆH( ) H O ( ) e H ( ) H O( ) Step (2), slow

aq ads

ads aq g
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 

   


   




4:21

The mechanism for Pd, Rh, and Ir is believed to be

3 2

2

H O ( ) e H( ) H O( ) Step (1), fast

ˆ2H( ) H ( ) Step (2), slow

aq ads

ads g

    





4:22
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It is the principles described in Chapter 7 that permit us to speculate on the mechanisms

that apply in each case. Several examples are provided there and mechanisms 4:20, 4:21,

and 4:22 are referenced elsewhere743.

Mechanistically, the anodic reaction 4:17 is no more straightforward than the cathodic

reaction 4:18, and it is inherently slower. The mechanism at some metal anodes is believed

to involve the following steps:

2 32H O( ) e HO ( ) H O ( )ads aq    4:23

2 3HO ( ) H O( ) e O( ) H O ( )ads ads aq     4:24

22O( ) O ( )ads aq4:25

On other electrodes, hydrogen peroxide may be involved, because this is known to be an

intermediate in the reduction of oxygen.

The speed, and even the products, of the reactions described in this section, are

determined by the nature of the electrode material, even though the latter is not part of the

reaction’s stoichiometry. Because of this, such reactions are often described as examples

of electrocatalysis.

Much research is being conducted aimed at diminishing the voltage needed to effect

water electrolysis. Voltages as low as 1.6 V have been achieved by the use of catalytic

electrodes. A related research endeavor is to use illuminated semiconductor electrodes.

Under suitable conditions, the energy of captured photons can augment the electrical

energy (page 291).

The electrolysis of water can yield other products. An electrosynthesis perfected by

the Dow company is used to manufacture hydrogen peroxide H2O2. The electrolysis is

conducted in oxygenated basic solution and electrode reactions are
1

2 222OH ( ) 2e H O( ) O ( )aq g   anode : 4:26

and

2 2 2H O( ) O ( ) 2e HO ( ) OH ( )g aq aq     cathode : 4:27

with the overall reaction being
1

2 22cel OH ( ) O ( ) HO ( )l: aq g aq  4:28

The hydroperoxide ion is a weak base and, on neutralization, hydrogen peroxide is2HO

formed by the proton-transfer reaction
+

3 2 2 2 2H O ( ) HO ( ) H O( ) H O ( )aq aq aq  4:29

Selective Membranes: a quiet revolution in small-scale inorganic electrosynthesis

The migration of ions through electrosynthetic cells generates heat. Sometimes, as in

the Hall-Hèrault cell, this heat provides a valuable contribution to raising the temperature
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427 The term “permeability” has several different meanings in other areas of science and technology. For

example, see Goldman permeability on page 188.
428 Confirm this allocation of an SI unit. See Web#428.
429 This is the name the DuPont Company gives to its sulfonic acid ionomer (a polymer with charged groups).

of the ionic conductor. More often, however, it represents wasted energy, and accordingly

it is diminished as much as possible. Two ways in which this can be done are to maximize

the conductivity and to minimize the distance between the anode and cathode. Of course,

if the electrodes are placed too close together, there is a danger of their inadvertently

touching and, to prevent this, porous barriers are used, in both electrolytic and galvanic

cells. Though the strict distinctions in meaning are not always maintained, it is useful to

distinguish between three types of barriers, according to the function they serve:

separator: to physically contain or separate the electrodes

diaphragm: to impede the mixing of two solutions within a cell

membrane: to preferentially allow the passage of certain solutes

To emphasize their selective permeability, membranes are often said to be

“semipermeable”. The word “membrane” is, of course, also used to describe many

different kinds of biological barrier; these too are often discriminatory in their behavior

towards ions. Certain biological membranes have “gates” that only specific ions can easily

transit; these may be “active” or “passive” according to whether or not the organism needs

to expend metabolic energy to “pump” the ions through the gate (page 189). Sadly, we

have far to go to even begin to match nature’s membrane selectivity.

One characteristic that can be ascribed to barriers of most types is their permeability.

This is defined as the rate at which a solute i crosses unit area of the barrier in unit time

under a unit concentration gradient. Symbolically, the definition of permeability427 is

i
i

i

d

d

nL
P

A c t



4:30

where L and A are the thickness and area of the barrier, and dni/dt is the rate at which the

solute crosses the membrane under a concentration differential of ci. Its unit428 is m2 s1.

That Pi for a diaphragm is largely independent of the identity of i, could be considered the

distinction between a diaphragm and a membrane.

The prototypical synthetic membrane is Nafion429. This is the generic name of a series

of polymeric products in which side chains bearing sulfonic (and sometimes also carboxylic

CO2H) acid groups have been introduced into a poly(tetrafluoroethene) backbone.

Because the SO3H groups ionize in the presence of water, the membrane is hydrophyllic

and imbibes water. The tethered groups strongly repel anions, so that nafion3SO ( )aq

acts as a cation-only permeable membrane. There are alternative membranes with

groups, with R denoting an organic moiety such as CH3, that are preferentially3NR ( )aq
anion permeable, though these have yet to achieve the robustness of their Nafion cousins.

The electrosynthetic use of membranes was noted in an earlier section in the context of the



Selective Membranes 81

430 “Brackish” means mildly salty, and thereby unfit for drinking or irrigation. Analyze the chemistry involved

in the technique illustrated in Figure 4-4. Ideally, how much electricity per cubic meter would be needed to

remove all the sodium chloride from a 10 mM input stream. See Web#430.
431 Viscose is dissolved cellulose, made from wood or cotton and used to make rayon and cellophane.

1
2 3 223H O( ) 2e 2H O ( ) O ( )aq g    2 22H O( ) 2e 2OH ( ) H ( )aq g   

chloralkali industry, but the increasing availability and refinement of selectively permeable

membranes has considerably enhanced the repertoire of inorganic electrosynthesis.

Frequently these cells are of small scale and are sited where a need exists for their product,

reducing the cost and hazards of transportation.

Electrodialysis uses an alternating array of anion-permeable membranes and

cation-permeable membranes, as in Figure 4-4, to remove most of the salt from

brackish430 water. The process is not economically competitive with reverse osmosis for

the desalination of ion-rich waters such as seawater.

A salt is formed spontaneously from the interaction of an acid and a base. The

converse process, carried out in an electrosynthetic cell, is called salt splitting or

electrohydrolysis. There are several strategies, illustrated overleaf in the three diagrams

of Figure 4-5. Though almost any soluble salt may be split, our illustration uses the

example of sodium sulfate. This salt is a valueless byproduct of the viscose431 process, and

of the pulp-and-paper industry, that presents a disposal problem; it can be electrochemically

split into sulfuric acid and caustic soda, for both of which a market exists. The first
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2 32H O( ) H O ( ) OH ( )aq aq  

diagram shows a dual-compartment cell with a single membrane. Pure sodium hydroxide

is produced by this cell, but the sulfuric acid retains some salt that must be removed by

subsequent crystallization. In the second diagram two membranes are used, but the

imperfection of the anion-selective membrane, in allowing the passage of some hydronium

ions, prevents high concentrations of sulfuric acid being allowed to build up. There are

three compartments also in the third diagram, in which the membranes are both cation-

selective.

A rather recent innovation in membrane

technology is the perfectingof bipolar membranes.

These are dual membranes with one half being

anion permeable, the other cation permeable. Thus,

at least in theory, all ions are blocked from passing

through the bipolar membrane. However, the

immersed membrane readily imbibes water, so that

when an electric field of the appropriate polarity is

applied, the water ionizes and hydronium ions

stream out from one face, with hydroxide ions exiting the other. A salt-splitting cell design

incorporating both bipolar and monopolar membranes is illustrated in Figure 4-6. Salt

solution, S, enters the compartments so marked. Water enters the compartments marked

W. The anion of the salt remains within its compartment, becoming partnered by

hydronium ions from the bipolar membrane on its left, and exiting as the acid A. The salt’s

cation travels through the monopolar cation-selective membrane into the adjoining

compartment, where it becomes partnered by hydroxide ions from the bipolar membrane
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432 T.A. Davis, J.D. Genders, and D. Pletcher, A First Course in Ion Permeable Membranes, Alesford Press,

1997.

View supplementary web material at www.wiley.com/go/EST.

on its right, and exits as the base B. A cell of similar design is used in Japan for reclaiming

lactic acid from sodium lactate solutions.

Ion-selective membranes are not without their problems, but electrochemistry aided

by such membranes appears to have a bright future432. The use of membranes tailor-made

for a specific application will speed the adoption of these economical and eco-friendly

techniques.

Summary

Major industrial enterprises, notably aluminum electrowinning and the chloralkali

industry, employelectrosynthetic methods to manufacture commercially valuable materials.

Electrochemical methods circumvent the thermodynamic G < 0 requirement imposed on

purely chemical processes, making electrosynthesis the preeminent route to high-energy

chemicals. On a much smaller scale, organic chemists make use of electrolytic steps as

components in longer synthetic enterprises. Not presently economical, electrolytic

hydrogen, possibly with sunlight contributing some of the required 237.1 kJ mol1 of Gibbs

energy, is foreseen by some as filling energy transportation needs of the future. Recent

trends are toward the electrosynthesis of valuable chemicals at their point of use, often in

cells employing selective membranes.



501 Strictly “battery” refers to several interconnected galvanic cells in a single unit (they were so named by

Benjamin Franklin, 17061790, one of the founding fathers of the United States, by analogy to a battery of

cannons), but nowadays the term is applied also to a single cell.
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5

Electrochemical Power

In contrast to the electrolytic cells discussed in the previous chapter, which convert

electrical energy into chemical energy, the cells addressed here make the reverse

conversion: they generate electrical energy from the net Gibbs energy liberated by the

reactions at the two electrodes of a galvanic cell.

Types of Electrochemical Power Source: primary or secondary batteries, fuel cells

Batteries501 and fuel cells are galvanic cells designed to be efficient sources of electric

power. Whereas a battery is self-contained, a fuel cell employs reactants that are supplied

as fluids from outside the cell. Batteries are of two main types: primary cells and

secondary cells; the former operate solely in the galvanic mode, whereas secondary cells

also operate electrolytically, and can thereby be “recharged”.

primary cell

secondary cell
battery

fuel cell

electrochemical power source

 
 
 



Secondary cells are also called storage cells, accumulators or rechargeable batteries.

When a primary battery’s initial supply of reactants is exhausted, its useful life is over

and it is discarded. A fuel cell, on the other hand, has the advantage that its fuel (the

chemical consumed at the anode) and the oxidizer or oxidant (consumed at the cathode)

are supplied from outside the cell and the products of the electrode reactions are removed

continuously, so the cell can be used almost indefinitely. Though a secondary cell may be

discharged and recharged repeatedly, such cells do have a finite cycle life, for a variety of

reasons. Many batteries also have a limited shelf life; that is, their useful life slowly

deteriorates even when they are unused.
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502 Calculate the voltage of the cell that has an overall reaction as in 5:15 on page 93. Check at Web#502.
503 That is, whether the load is constant or changing, is applied continuously or intermittently, and so on.

You will be acquainted with the many uses to which batteries and fuel cells are put:

starting internal combustion engines, powering vehicles and spacecraft, providing

emergency lighting, load leveling by electric utilities, powering pacemakers and hearing

aids, energizing all manner of power tools and electronic devices, and so on. Each of these

applications has a different electrical requirement and, in response to this variety of needs,

a wide array of battery and fuel cell types has been developed, with new ones appearing

frequently. The technology of electrochemical power sources is a sophisticated blend of

science and engineering; the scientist identifies what might be possible, while the engineer

brings that possibility to fruition.

Battery Characteristics: quantifying the properties of batteries

The words “anode” and “cathode” are ambiguous when applied to the electrodes of a

secondary battery because what is the anode when the battery is charging becomes the

cathode on discharge and is neither when the battery is idle. Therefore the descriptors

positive and negative, even used as nouns, are employed to distinguish the two electrodes

of secondary batteries, and this usage often spills over into primary battery terminology too.

For example, the lead dioxide of a lead-acid battery is said to be its “positive electrode” or

its “positive plate” or simply its “positive”. The term active material is used to signify the

chemicals that are consumed as a battery discharges.

The nominal voltage cited for a primary cell (or a fully charged secondary cell) is

close to its null (open-circuit) value. As described in Chapter 3, this can often be calculated

from standard Gibbs energies and the activities of the species involved502. Because of

polarization (Chapter 8), the voltage will be less when the cell is delivering charge and,

moreover, the voltage will usually decline somewhat with time as the relevant activities

within the cell change. The end of the useful life of a primary cell (recharge becomes

needed for a secondary cell) occurs at some chosen cut-off voltage as shown in Figure 5-1.

The quantity of electricity that a charged battery can deliver before becoming

exhausted is known as its capacity (not to be confused with capacitance, page 12). This

is not a well characterized quantity because the charge delivered depends on the magnitude

of the load, the duty cycle503, the cut-off voltage, and the temperature; for specified battery

types and uses, protocols govern these factors in the battery industry. The capacity could

be expressed in coulombs, but the usual unit in battery parlance is the ampere-hour (A h).

1 A h 3600 C5:1

The total electrical energy (in joules or watt hours) delivered by a battery is the product of

its voltage and its capacity.
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504 though you may encounter the term “energy density” incorrectly used as a synonym for specific energy. The

terms “gravimetric capacity” and “volumetric capacity” are also in use.
505 A distinction is that, whereas batteries maintain a more-or-less constant voltage as they discharge, the

potential difference between the plates of a capacitor steadily declines as it discharges. The name electrolytic

capacitor is given to a commercial capacitor with plates of Al, Ti or Ta, and an oxide dielectric, formed

electrolytically. Despite their unfortunate name, there is nothing faradaic about these devices.
506 Ultracapacitors are used to store energy from regenerative braking to provide a burst of power for subsequent

acceleration. They have also found applications in hybrid vehicles and have been used as the sole power source

in some Chinese buses.
507 The distinction between a supercapacitor and an ultracapacitor is not always made. The name

electrochemical capacitor is also encountered.

For a particular battery application, the important parameter may be the energy

delivered by a given mass of battery or that can be fitted into a given space. These criteria

are expressed as the specific energy of the battery (watt hours per kilogram) or its energy

density (watt hours per liter)504. For other applications, however, such as starting an

engine, it is not so much the energy that is important as how much power the battery can

deliver in a brief time period. This is expressed by the specific power (watts per kilogram)

or power density (watts per liter).

Recall from Chapter 1 that capacitors store electrical energy, as batteries do505. Which

does the job better? From the standpoint of specific energy, batteries are greatly superior,

whereas capacitors perform extraordinarily better in terms of specific power. Capacitance

is a property of any electrode (page 18 and Chapter 13) and therefore batteries have

capacitance too, though the electric charge stored capacitively is generally insignificantly

small. Some specialty batteries, however, use highly porous electrodes of abnormally large

surface area with surface-confined active materials. Such a device, sometimes called an

ultracapacitor506, represents a hybrid between a battery and a supercapacitor507 (page 18),

storing energy both faradaicly and capacitively. The table overleaf provides a crude
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508 The “2.00 mol” arises because 2 electrons were cancelled in creating cell reaction 3:6 (or 5:2) from electrode

reactions 3:4 and 3:5.
509 Of course, it is essential for there to be excess sulfuric acid, beyond that required by the stoichiometry, as

otherwise the ionic conductor would have no conductivity at full discharge.

energy density

/ W h L1

power density

/ kW L1

discharge time

/ s

cycle life

secondary battery 100 0.1 104 100

ultracapacitor 10 1 10 105

supercapacitor 1 10 1 106

capacitor 0.1 105 0.01 

order-of-magnitude comparison of characteristics of these various energy storage devices.

The theoretical capacity and specific power of a battery are rather easily calculated

when simplifying assumptions are made. For example, in a fully charged lead-acid cell

(diagramed and discussed on pages 5657), 0.239 kg of PbO2 at the positive and 0.207 kg

of Pb at the negative (one mole of each) would theoretically require only 0.385 liters

(weighing 0.499 kg) of 5.2 molar aqueous sulfuric acid to permit the cell reaction
discharge

2 4 3 4 2PbO ( ) Pb( ) 2HSO ( ) 2H O ( ) 2PbSO ( )+4H O( )s s aq aq s     5:2

to proceed to completion. This galvanic process would produce508

1 5(2.00 mol) (96485 C mol ) 1.93 10 C 53.6 A h   5:3

of electricity, so that our ideal lead-acid cell would have a capacity of 53.6 ampere hours

and a mass of (0.239 + 0.207 + 0.499) kg = 0.945 kg. With a cell voltage of 2.01 V, as

calculated in equation 3:10, we compute a specific energy of

1(53.6 A h) (2.01 V)
114W h kg

0.945 kg


5:4

These calculations make no allowance for incomplete utilization of the electroactive

materials509, for voltage losses arising from polarization, or for the masses of current

collectors, terminals, separator, and the battery case; so it comes as no surprise that, in

practice, lead-acid batteries have specific energies of only one-quarter to one-third of this

theoretical value.

Primary Batteries: the Leclanché cell and its successors

A primary battery generally comprises a negative electrode consisting of a metal low

in the electrochemical series (page 113), in contact with an electrolyte, often in the form
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510 The metal is one that has several oxidation states (page 29), the oxide in question being in a higher state.
511 Read about the Baghdad “battery” at Web#511.
512 Georges Leclanché, 18391882, French inventor.
513 so called following the 1886 invention of the dry cell by Carl Gassner Jr., 18391892, German scientist.

of a paste or held within the pores of a separator. The

positive electrode is either a metal higher in the

electrochemical series or a metal oxide510. A primary

battery of the latter type is illustrated in the generic

diagram to the right. Metal oxides are generally poor

electrical conductors and, to overcome this handicap, a

current collector is often provided in the form of carbon

either mixed with the oxide or as a rod providing a

conduction path to the battery’s positive terminal.

Current collectors play no role in the cell’s chemistry.

Although archeological finds suggest that batteries may have existed in antiquity511,

it was Volta’s119 pile, consisting of a stack of alternating zinc and copper disks, each pair

being separated from its neighbors by pieces of brine-soaked cloth, that is the first

documented device capable of producing a steady flow of current. That was in 1800 but,

36 years later, the Daniell cell (pages 6465) replaced it as a more convenient laboratory

device. Primary cells entered commerce in 1868 after Leclanché512 patented the zinc-

carbon wet cell513, many thousands of which were used to power early telegraph lines.

Each cell contained a carbon rod serving as the positive current collector, surrounded by

crushed manganese dioxide in a porous pot beaker. This assembly was immersed in a jar

containing an aqueous solution of ammonium chloride, NH4Cl, into which dipped a zinc

rod, the negative electrode. The reaction at the negative electrode is the electrodissolution

of the zinc:
2+Zn( ) 2e Zn ( )s aq negative :5:5

while at the positive electrode the manganese dioxide is reduced to an oxyhydroxide in a

lower oxidation state
+

2 4 3MnO ( ) NH ( ) e MnOOH( ) NH ( )s aq s aq   positive :5:6

The ammonia produced in this cathodic reaction subsequently complexes the zinc ions, to

form an ammoniated zinc cation, which precipitates as its chloride, so that the overall cell

reaction is
+

2 4 3 2 2Zn( ) 2MnO ( ) 2NH ( ) 2Cl ( ) 2MnOOH( ) Zn(NH ) Cl ( )s s aq aq s s    5:7

The wet cell’s voltage is close to 1.55 V when the cell is new but, during discharge, it

gradually falls to about 1.0 V, beyond which it is exhausted.

The inconvenience of a liquid electrolyte ended, twenty years later, with the invention

of the dry cell in which the ammonium chloride solution was immobilized in a starch-based
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514 Mercury, which also lessens corrosion, was used for this purpose until environmental concern led to

prohibition.
515 A modern “D size” dry cell has a capacity of 7 A h when slowly discharged to a cut-off voltage of 0.75 V.

Calculate the mass of zinc utilized and estimate the total energy delivered. See Web#515.

paste and the zinc became the outer casing. A problem with this cell, the so-called zinc-

carbon cell, is that the acidic character of the ammonium chloride electrolyte leads to a

slow corrosion of the zinc casing, causing a decrease in shelf life. As well, the hydrogen

generated by the corrosion reaction
2

4 3 2Zn( ) 2NH ( ) Zn ( ) 2NH ( ) H ( )s aq aq aq g    5:8

produces an internal pressure, sometimes leading to rupture of the case and leakage of the

solution. Moreover, the cell’s ability to delivery its full power is jeopardized if it is called

on to provide heavy bursts of electricity. These shortcomings have been overcome in

various ways. Carbon powder is added to supplement the conductivity of the manganese

dioxide. The corrosiveness of the electrolyte is decreased by replacing much of the

ammonium chloride by the less acidic zinc chloride ZnCl2. Organic additives are

incorporated514 to lessen corrosion. Modern dry cells515 have an initial voltage of 1.6 V and

maintain a higher voltage throughout their active life than did their forebears. In the

battery world, such a cell, illustrated in Figure 5-2, is known as the zinc chloride cell.

The active materials remain zinc and manganese dioxide in the cell that is commonly

called the alkaline battery. This cell, which goes by the technical name of “alkaline

manganese-zinc”, is shown in Figure 5-3. This primary cell has evolved greatly from the

dry cell’s original design. It has been turned “inside out”, with the zinc negative now

occupying the axis of the cylindrical cell, in the form of a gelled core of powdered zinc,

held within a sleeve of cation-selective separator. The active material for the positive –

manganese dioxide mixed with carbon – is pressed into the space remaining between the
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516 KOH is used in preference to the cheaper NaOH because of the higher conductivity of its aqueous solutions.
517 Construct the cell reaction and write the equation expressing the null voltage (open-circuit voltage) in terms

of standard Gibbs energies and activities. See Web#517.

separator and the nickel-plated steel can, which also serves as the positive current collector.

A concentrated aqueous potassium hydroxide516 solution serves as electrolyte and

permeates throughout the battery. The anodic and cathodic reactions are

2Zn( ) 2OH ( ) 2e ZnO( ) H O( )s aq s    negative : 5:9

and

2 2MnO ( ) H O( ) e MnOOH( ) OH ( )s s aq    positive : 5:10

respectively517. The nominal cell voltage of the zinc-manganese-dioxide cell is 1.5 V,

though this drops to about 1.2 V under moderate load. The capacity of a typical AA sized

alkaline battery is cited as 2.85 A h, equivalent to a specific energy of 143 W h kg1. The

performance is substantially worse, however, when the battery is called on to provide brief

heavy discharges, as in a flash camera. Nevertheless, the alkaline battery represents a

considerable advance on its Leclanché cell ancestors.

It is not only in the cell described above that an aqueous solution of potassium

hydroxide serves as the electrolyte; several other primary batteries use it too, with zinc

retained as the active negative material. Replacing the manganese dioxide as the oxidizer

may be mercury(II) oxide, silver oxide, or the oxygen from the air. The reaction at the

positive electrode is then one of the following:

2

2 2

1
2 22

HgO( ) H O( ) 2e Hg( ) 2OH ( )

Ag O( ) H O( ) 2e 2Ag( ) 2OH ( )

O ( ) H O( ) 2e 2OH ( )

s aq

s s aq

g aq

 

 

 

    


   


  

positives :

 





5:11



92 5 Electrochemical Power

518 Write the cell reaction for each, then, via the reaction’s G, calculate the three null cell voltages at 25oC.

See Web#518.
519 They are called zinc-mercury-oxide, silver-zinc, and zinc-air batteries. Notice that little consistency attends

the naming of batteries.
520 Inasmuch as the oxidizer comes from outside, it could be argued that a zinc-air cell is, in part, a fuel cell.
521 Though a downside is that the voltage does not provide information on the battery’s state of charge.
522 Confirm these masses. See Web#522.

Each of these positives, partnered by reaction 5:9 at the negative electrode, provides a cell

reaction518 that has been, or is being, used in so-called button cells519. Such primary

cells520, which come in a variety of sizes, have a profile similar to that shown in Figure 5-4

and find many applications, such as powering calculators, alarms, watches, car-access

remote controls, and liquid crystal displays. The power demands of these devices are so

modest that cost ceases to be the prime consideration. Look for small holes in the casing

of the zinc-air cells used to power hearing aids; these admit air to the cell but are covered

by adhesive tape on a new cell to prevent atmospheric CO2 reacting with the KOH

electrolyte. The voltages of these three cell types beneficially521 remain virtually constant

throughout their useful lifetime because the chemicals participating in their reactions

remain at constant activity309. As well, they are robust, have excellent shelf-life, an

acceptable energy density for many tasks, and they perform well at low temperatures.

Zinc has served as the negative in all the primary batteries discussed above but, since

the 1960s, lithium has been steadily replacing zinc in this role, with over 100 battery

systems having been patented. Not only does lithium command a higher voltage [ foro
nE

the 4Li(s) + O2(g)  2Li2O(s) cell reaction being 2.91 V compared with 1.66 V for the

corresponding Zn reaction], but the mass of lithium required to generate one ampere hour

of electricity is only 0.259 grams compared with 1.22 g for zinc522. These advantages are

offset by the incompatibility of lithium metal with water. Lithium reacts also with most

other liquids but with some of these (as with air) it forms a thin passivating layer that

prevents further attack. For some organic and inorganic liquids, such as 1,2-dimethoxy-

ethane CH3OCH2CH2OCH3 and thionyl chloride SOCl2, the ionic conductivity of the layer

is adequate enough for it to serve as a separator, with a salt dissolved in the liquid

constituting the electrolyte solution. The poor conductivity of the passivating layers
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523 What mass of each reactant must be provided for a seawater battery to power a 500 mA flashlight bulb for

12 hours? See Web#523.

necessitates thin electrodes of large area and most commercial lithium primary batteries

have either the flat geometry of “coin” cells or consist of pasted lithium foil spirally wound

into a “swiss roll” (or “jellyroll”) configuration. Most lithium batteries have a voltage close

to 3.0 V, about twice that of their zinc-based competitors.

Scant logic attends the naming of battery types. One convention when designating a

cell is to cite the negative electrode first, as in zinc-air, sodium-sulfur, and lithium-

manganese-dioxide. A different convention, however, applies to cells that employ metal

oxide positives; for these, it is traditional to reverse the order and omit the word “oxide”.

Thus the technical term for the common alkaline battery is alkaline-manganese-zinc. The

names of newer, lithium-containing batteries have yet to be standardized.

The reactions occurring in the lithium-manganese-dioxide cell are

Li( ) e Li ( )s soln  negative :5:12

and
1

2 2 2 42
MnO ( ) Li ( ) e Li Mn O ( )s soln s   positive :5:13

The formula Li2Mn2O4 represents an intercalation compound (page 97) in which lithium

ions enter the MnO2 lattice, with manganese thereby undergoing a progressive change in

oxidation state. The lithium-thionyl-chloride cell is perhaps unique in that the SOCl2

serves both as an oxidizer and as the solvent for the LiAlCl4 supporting electrolyte. The

reaction at the negative lithium electrode is again 5:12; the reaction at the positive is a

multistep process with
2

2 2 44SOCl ( ) 10e 2S( ) S O ( ) 8Cl ( )s soln soln     positive : 5:14

as the overall equation. With a nominal voltage of 3.4 V and excellent power density,

shelf-life, and low-temperature characteristics, it has filled military and spacecraft needs.

To conclude this brief exposition on primary batteries, we mention two specialized

applications. Life vests and life rafts for support in case of disasters at sea are equipped

with rescuer-attracting lamps operating from batteries that function only on submersion in

the ocean; seawater serves as the electrolyte solution. In the most common design,

magnesium is the negative electrode, with silver chloride as the positive. The cell reaction

for this seawater-activated battery523,
2Mg( ) 2AgCl( ) Mg ( ) 2Ag( ) 2Cl ( )s s aq s aq    cell :5:15

provides more than enough voltage for a 1.5 V flashlight bulb. The second application also

saves lives, but in a very different context. Implantable pacemaker batteries experience

only a modest drain, but must be compact, safe and totally reliable. Moreover, a lower limit

to their lifetime should be long and predictable. An all-solid battery is desirable and one

is provided by the lithium-iodine battery. The underlying cell reaction is
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524 Gaston Planté, 18341884, French physicist. His studies extended earlier work by Karl Wilhelm (later Sir

Charles William) Siemens, 18231883, a German-born British inventor, and by Wilhelm Josef Sinsteden,

18031891, German physician and physicist.

525 The equilibria occur but, under lead-acid cell2
2 4 2 4 3 2 4 3H SO 2H O HSO H O H O SO 2H O       

conditions, the first dissociation is virtually complete and the second occurs to only about 1%.
526 How much electricity, and how much energy, can a typical automotive lead-acid battery (84 A h, 12 V)

supply? What mass of PbO2 is destroyed, per cell, during this discharge? See Web#526.

22Li( ) I ( ) 2LiI( )s s s cell :5:16

but the iodine is in the form of its charge-transfer adduct with poly-2-vinylpyridine,

mentioned on page 9. The battery comprises a layer of this adduct on lithium foil. Lithium

iodide salt forms at the junction and deleteriously increases in thickness over time.

Nevertheless, the layer has sufficient conductivity to provide guaranteed performance for

8 years.

Secondary Batteries: charge, discharge, charge, discharge, charge, ...

The requirements for a secondary battery are much more stringent than those for a

primary battery, so it is surprising that Planté’s524 invention of the lead-acid secondary cell

in 1860 predates the Leclanché primary cell. Even more surprising is that the lead-acid

battery remains by far the most important and widespread secondary battery to this day.

The chemistry525 and electrochemistry of this remarkable cell were described in Chapter 3.

To review, the positive, negative and net cell reactions are526

discharge+
2 4 3 4 2recharge

PbO ( ) HSO ( ) 3H O ( ) 2e PbSO ( ) 5H O( )s aq aq s      5:17

discharge +
4 2 4 3recharge

Pb( ) HSO ( ) H O( ) 2e PbSO ( ) H O ( )s aq s aq    5:18

and
discharge+

2 3 4 4 2recharge
Pb( ) PbO ( ) 2H O ( ) 2HSO ( ) 2PbSO ( ) 4H O( )s s aq aq s     5:19

The standard cell voltage, as calculated on page 59, is 1.925 V, but the Nernst equation

+
3 4

4

H O2
n 2 2

H O HSO

(1.925V) ln
2

a
RT

E
F a a 

 
 

    
  

5:20

shows the null voltage to depend on the sulfuric acid concentration. For a fully-charged

concentration of 5.2 M, the voltage is about 2.13 V at 25oC, but this declines on discharge

as the ions are consumed to reach a cut-off voltage of about 1.8 V.

Though the electrochemistry remains unchanged, there have been many modifications

to the lead-acid cell since Planté’s time. Nowadays, the electrodes are usually prepared in
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527 The antimony adds stiffness to the lead; it plays no chemical role.
528 Securely sealing the batteries would be dangerous; in fact they are provided with pressure-actuated relief

valves. The apt description “valve regulated” is often used.

the discharged state by pressing a paste of powdered lead oxides in sulfuric acid onto a grid

of lead-antimony527 alloy, which serves both as a mechanical support and as a current

collector. During a “curing” process, the paste converts to an adherent porous mass of

basic lead sulfates, and . Finally, the electrodes are4 23PbO PbSO Η O  44PbO PbSO
“formed” by charging electrochemically in sulfuric acid solution to produce lead dioxide

PbO2 at the positive and spongy lead metal at the negative.

There are four extraneous reactions that concern designers of lead-acid batteries:

corrosion of the positive electrode

2 2 3Pb( ) 6H O( ) 4e PbO ( ) 4H O ( )s s aq    positive : 5:21

oxygen evolution from the positive electrode
1

2 2 323H O( ) 2e O ( ) 2H O ( )g aq   positive : 5:22

hydrogen evolution at the negative electrode
+

3 2 22H O ( ) 2e H ( ) 2H O( )aq g  negative : 5:23

and oxygen reduction at the negative electrode
+1

2 3 22 O ( ) 2H O ( ) 2e 3H O( )g aq   negative : 5:24

Reactions 5:22 and 5:23 compete with the charging reactions 5:17 and 5:18 and these

competitive processes take over completely when recharge is complete, leading to loss of

water from the cell and necessitating periodic “topping up” of the cells with pure water.

On newer “sealed” batteries528, no topping up is needed. Moreover, whereas earlier designs

had to be used upright, this is no longer essential. On charging, oxygen is formed before

hydrogen is liberated. The oxygen, formed at the positive, then diffuses to the lead

electrode, where it undergoes reaction 5:24, replenishing the lost water.

Of course, the major use of the lead-acid cell is for internal-combustion-engined road

vehicles where, assembled into a six-cell battery, it serves two purposes: to provide the very

large power demanded for starting the engine, and to provide a prolonged supply of modest

current for such tasks as illuminating parking lights and powering the radio. The design of

lead-acid automotive batteries thus represents a compromise between the competing

demands for high specific power and high specific energy. Such batteries degrade from

loss of active material from the positive plates and, especially if left discharged for long

periods, by “sulfation” – the recystalization of lead sulfate into larger, electrochemically

inactive, crystals.

Relieved of the need to provide high power, the so-called “deep cycle” batteries are

more suitable for such applications as electric cars and long-term storage. Deep cycle lead-

acid batteries are much more robust, both mechanically and electrically, largely because

they employ thicker positive plates and separators of more sturdy design.
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529 The specific energy decreases with discharge rate for all batteries, but the decrease is unusually large for lead-

acid types.
530 and may even be advantageous, as in forklift trucks where they provide a convenient counterweight.
531 largely due to the increasing viscosity of the sulfuric acid, which lowers the mobilities of the ions and hence

increases cell resistance.
532 though “NiCad” is the registered trademark of the SAFT Corporation. The nickel-cadmium cell was invented

in 1899 by Waldemar Jungner, 18691924, Swedish inventor.
533 unit activity, in fact, except for water, which is the solvent of a very concentrated solution.

Lead-acid batteries are heavy, with a low specific energy529 of about 40 W h kg1, but

this is a serious disadvantage only in mobile applications530, and the reliability, longevity,

and low production costs are offsetting advantages of this enduring battery type. Lead is

sometimes viewed negatively as an environmental hazard; on the other hand, it is easily

recycled, much of the lead in today’s batteries having had a previous life. Other

disadvantages of the lead-acid battery are its reluctance to charge rapidly and its poor

performance at very low temperatures531.

There are several secondary batteries that employ nickel oxyhydroxide positives. The

so-called nickel-cadmium secondary cell, often referred to as the “nicad battery”532 is

probably the best known. The plates of a nickel-cadmium cell are usually spirally wound

in a “swiss roll” configuration and packed into a steel can, using nylon cloth as the

separator and 9 M potassium hydroxide KOH aqueous electrolyte. The electrode reactions

are
discharge

2 2recharge
NiOOH( ) H O( ) e Ni(OH) ( ) OH ( )s s aq   positive : 5:25

and
discharge

2recharge
Cd( ) 2OH ( ) 2e Cd(OH) ( )s aq s  negative :5:26

Notice from the cell reaction
discharge

2 2 2recharge
Cd( ) 2NiOOH( ) 2H O( ) Cd(OH) ( ) 2Ni(OH) ( )s s s s  cell : 5:27

that there is no net consumption of electrolyte and that only species at constant activity533

are involved, suggesting that the cell voltage remains constant, though in practice the

voltage falls from a fully-charged value of about 1.35 V to a cut-off of about 1.05 V. Even

though their 1.2 V average voltage compares poorly with the 2.0 V of lead-acid

competitors, nickel-cadmium batteries have a superior specific energy. Because of the

toxic nature of cadmium, nickel-cadmium batteries require careful disposal.

The nickel-hydrogen cell is similar to the nickel-cadmium cell in its positive electrode

and electrolyte, but it uses hydrogen gas in the reaction
discharge

2 2recharge
H ( ) 2OH ( ) 2e 2H O( )g aq  negative : 5:28

at the negative. The difficulty of storing gaseous hydrogen inhibits the adoption of this
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534 an unresolved mixture of lanthanum and rare-earth elements.
535 or, to save cost while retaining performance, by alloying with nickel and other metals.

battery, but it has found a niche application in space vehicles. However, by making use of

solid metal hydrides, in which hydrogen is combined with metals, the difficulty of storing

elemental hydrogen is overcome in nickel-metal-hydride secondary batteries, which use

the same electrochemistry as in reactions 5:25 and 5:28. Representing the metal hydride

as MH, the overall reaction becomes simply
discharge

2recharge
MH( ) NiOOH( ) M( ) Ni(OH) ( )s s s s cell :5:29

MH is, in fact, an alloy of several metal hydrides, designed to have a hydrogen vapor

pressure sufficient to provide viable electrochemistry at all states of charge, but low enough

not to endanger the integrity of the cell casing at full charge. The components of the alloy,

which also serves as the current collector for the negative, are proprietarily secret but

appear to include various proportions of two components: (a) metals such as Zr, Ti, La, and

misch metal534 that avidly take up hydrogen, and (b) metals such as Ni, Co, and Al, that

formweak hydrides. Though sharing the same voltage characteristics, nickel-metal-hydride

cells are 70% better in capacity than nickel-cadmium cells, which they seem destined to

replace.

The surge in portable consumer electronics has spurred a need for a robust secondary

battery that can be conveniently packaged in various sizes and shapes. This need has largely

been met by the lithium-ion cell. Intercalation was mentioned earlier in the context of the

lithium-manganese-dioxide primary cell and it is crucial in the lithium-ion cell. When a

small cation intercalates a crystalline solid, it forces its way into the crystal lattice of its

host. Because electroneutrality must be preserved, intercalation, or insertion as it is

sometimes called, requires an inflow also of electrons, thereby changing the oxidation state

of the host, but having little effect on the size of the crystals. The change in oxidation state

is seldom by a whole number because intercalation compounds are generally non-

stoichiometric301.

In the positive of the lithium-ion cell the active material is a metal oxide, usually of

cobalt535, intercalated by lithium ions. The reaction is sometimes written
discharge

2 2recharge
Li ( ) CoO ( ) e LiCoO ( )soln s s    positive :5:30

but this is misleading in two respects. Firstly, the lithium content progressively decreases

during the deintercalation that accompanies charging, so an appropriate formula would be

LixCoO2, where x  1 only at full discharge. Secondly, though x decreases on charge, it

cannot decrease as far as equation 5:30 suggests. In practical cells, the lithium content of

the intercalation solid is not allowed to decrease below a mole fraction of 0.55, as otherwise

irreversible changes occur. The most appropriate stoichiometric equation might therefore

be
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536 What oxidation number does carbon have when the lithium-ion cell is partly charged? See Web#536.
537 They may be said to “rock” or “shuttle” back and forth, leading imaginative publicists to coin the names

“rocking-chair battery” and “shuttlecock battery” for the lithium-ion cell.

discharge9 9
11/ 20 2 1 220 20 recharge

Li ( ) Li CoO ( ) e Li CoO ( )soln s s    positive :5:31

with the understanding that the lithium content progressively increases, 0.55  x  1, during

discharge. Equation 5:31 describes the overall reaction, from full charge to total discharge;

at intermediates states of charge, the active material has the formula LixCoO2, with cobalt

having an effective oxidation number of (4x).

Lithiumions will intercalate graphitic carbons, too, forming an intercalation compound

LiyC with a lithium content of up to a mole fraction of one-sixth. This serves as the

negative electrode in the lithium-ion battery, for which the reaction may be written
discharge

1 1
1/ 6 06 6recharge

Li C( ) e Li C( ) Li ( )s s soln   negative :5:32

with the caveat that the lithium content of the intercalation solid decreases progressively,

0  y  0.17, during discharge536. The overall stoichiometry of the cell reaction,

corresponding to the exchange of one electron and a single lithium Li+ ion, may be

represented
discharge20 20

11/ 20 2 1/ 6 1 2 09 9recharge
Li CoO ( ) 6Li C( ) Li CoO ( ) 6Li C( )s s s s cell :5:33

In use, the lithium ions pass from the negative to the positive electrode, just as the electrons

do, though by a different route. The ions make the converse journey537 on recharge. The

lithium ions do not change their oxidation state: there is no lithium metal in this battery.

The electrolyte used in most lithium-ion cells is a solution of lithium perchlorate

LiClO4 or lithium hexafluoroarsenate LiAsF6 in a mixture of organic carbonates, absorbed

in a microporous polyolefin separator. Such an electrolyte has sufficient conductivity and,

though it does slowly react with the negative electrode, the lithium carbonate so formed

soon establishes a protective conductive layer.

The lithium-ion battery operates over a voltage range falling from about 4.0 V to a cut-

off at 2.5 V. Its high specific energy and energy density (about 150 W h kg1 and 400

W h L1), coupled with high reliability and cycle life, make this a very successful secondary

battery. However, it has two main drawbacks. One is its unattractive shelf-life which

causes its performance to deteriorate from the instant of its manufacture, whether or not it

is used. The second is that, to maintain the battery safe and operative, its voltage must

never be allowed to rise above 4.2 V or fall below 2.0 V. This means that circuitry must

accompany the battery to open the circuit at low voltages and to ensure a safe but

reasonably rapid recharging protocol (constant current until the voltage reaches 4.0 V;

constant voltage thereafter). Because high temperatures must be avoided, measures to

prevent over-heating are incorporated, as well as a pressure-relief valve. Moreover, if
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538 There is a further cathodic step on prolonged discharge, but it is accompanied by a lessening of cell voltage.

lithium-ion cells are configured in parallel (to provide more current) or series (for more

voltage), it is necessary to ensure that the malfunction of one cell does not lead to a

(possibly dangerous) fault in others. The need for all this protective circuitry is the reason

that lithium-ion cells are not offered for sale as such, but only as engineered units, each for

a specific purpose.

The sodium-sulfur secondary battery should be placed, perhaps, in the “glorious

failure” category. Sodium and sulfur are abundant and cheap materials. The electrode

reactions, which proceed at the surfaces of the separator in the sodium-sulfur cell, are

simply538:
discharge

2 5recharge
2Na ( ) 5S( ) 2e Na S ( )sep    positive :  5:34

discharge

recharge
Na( ) e Na ( )sep  negative : 5:35

The cell operates at temperatures in the 300400oC range, at which temperature the sodium

is molten and the positive active material consists of liquid sulfur and immiscible liquid

sodium pentasulfide in a porous carbon current collector. Sodium ions travel through the

separator, which is a ceramic known as beta alumina or, specifically,  alumina. Its
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539 A variant, by the name of ZEBRA battery, has met with limited success. Its name echoes the South African

roots of the battery.
540 See Daniel H. Doughty et al., Batteries for Large-Scale Stationary Electrical Energy Storage, Interface, The

Electrochemical Society, Vol. 19(3), 4953 for a description of the status of such installations in 2010. Other

electrochemical methods of energy storage are also discussed in this article and in the one that follows it.
541 Nicolas Léonard Sadi Carnot, 17961832, French physicist and military engineer. The fraction in question

depends on the temperatures experienced by the engine’s fluid and cannot exceed (Thot  Tcold)/Thot.
542 or in other nonthermal conversions, such as mechanical energy to electricity or vice versa.
543 The difference of 5.8 kJ  229.2 kJ  235.0 kJ arises from the oxygen in air not being at standard pressure.

Confirm the magnitude of this correction; as in Web#543.
544 Invented independently in 1839 by Christian Friedrich Schönbein, 17991868, a prolific German scientist,

and contemporaneously by William Robert Grove, 18111896, a Welsh lawyer, judge, and amateur scientist.

composition is Al2O3, with about 0.16 mole fraction of sodium oxide Na2O, and it has a

healthy conductivity of about 20 S m1 at 350oC. Prototype cells of the design shown in

outline in Figure 5-5 have performed satisfactorily but, despite major efforts being devoted

to this battery since the 1980s, it has never been successfully commercialized539 as a small

unit. Difficulties surround the integrity of the separator and of the seals between the

various cell components. However, the sodium-sulfur battery has found application for

large-scale stationary energy storage540.

Fuel Cells: limitless electrical energy in principle, many problems in practice

Carnot541 proved that when fuels are burned in a heat engine, such as the motor of a

car, only a fraction of the Gibbs energy of combustion can be converted to mechanical

energy; and, in practice, the conversion efficiency rarely exceeds 30%. No such limitation

applies to the conversion of a fuel’s chemical energy into electricity in a fuel cell542. For

example, the energy liberated when 32.0 g (1.00 mol) of methanol is “burned” with air in

a fuel cell by the reaction
o 13

3 2 2 22
CH OH( ) O ( ) 2H O( ) CO ( ) 235.0 kJ molg g G      5:36

is543 229.2 kJ and all of this can, in principle, by converted to electrical energy. Moreover,

unlike a battery, a fuel cell can operate continuously, as long as fuel and oxidizer are

supplied.

Fuel cells predate batteries. The first examples544 employed hydrogen and oxygen, the

same fuel and oxidizer as in the fuel cell perfected by NASA in the1960s and used aboard

spacecraft. The NASA cell used pure gases in the reactions

2 2O ( ) 2H O( ) 2e 4OH ( )g aq   cathode : 5:37

and

2 2H ( ) 2OH ( ) 2e 2H O( )g aq   anode : 5:38
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545 The “direct” in this name distinguishes it from other fuel cell schemes in which methanol is first decomposed

and its decomposition products used as fuel.

with an aqueous KOH electrolyte and catalyst-loaded electrodes. An energy efficiency of

70% was claimed. For earthbound operation, it would clearly be more economical to use

air instead of oxygen. However, this is not possible because the CO2 in the air reacts with

the KOH. This exemplifies one of the fundamental problems with fuel cells: because fuel

and oxidizer are delivered continuously into the cell, there is a danger of impurities

accumulating in the cell and ultimately impairing its operation. Ensuring that the

consumables are of high purity is, of course, an added expense.

Reaction 5:36 describes the overall chemistry of the direct-methanol fuel cell545, the

component electrode reactions being:

2 3 23O ( ) 12H O ( ) 12 18H O( )air aq e   cathode : 5:39

3 2 2 32CH OH( ) 14H O( ) 12e 2CO ( ) 12H O ( )aq g aq    anode : 5:40

The fuel is an aqueous solution of methanol of not more than 2 molar concentration. The

electrolyte is acidic and the electrodes are separated by a proton-selective membrane. Only

about 50 kJ of electrical energy per mole of methanol is presently obtainable from this fuel

cell, which faces two serious problems. Firstly, reaction 5:40 is slow, even when catalyzed

by an expensive 50:50 alloy of platinum and ruthenium and operated at temperatures in the

90140oC range. Secondly, methanol slowly diffuses through the membrane, interfering

with the cathodic reaction.

To be economically viable as electricity generators, fuel cells must use cheap fuels and

oxidizers. Air fills the latter need and the former has been met by natural gas, which is

mostly methane CH4. Fuel cells do not use methane directly; instead the methane is

“reformed” by high-temperature reaction with steam

o

Ni
4 2 2 2900 C

CH ( ) H O( ) CO ( ) 3H ( )g g g g  5:41

The hydrogen-rich mixture from reforming could be used as a fuel in several types of fuel

cell. There are problems, however. Natural gas has a significant content of sulfur-

containing compounds and, without their removal, these compounds can poison the

catalysts needed for the anodic hydrogen reaction. Moreover, a large concentration of

carbon monoxide, also a catalyst poison, is present. Dropping the temperature after this

reforming reaction to about 300oC favors the right-hand side of the water-gas equilibrium,

2 2 2CO( ) H O( ) CO ( ) H ( )g g g g 5:42

but also slows the interconversion rate. Subsequent purification can further reduce the CO

content but the upshot is that hydrogen made by reforming always contains some catalyst

poison. The relative success of the various fuel cells is largely a question of how well they

can tolerate poisoning, rather than their innate electrochemistry.

A brief description of five fuel-cell designs that use air as the oxidizer, and hydrogen

or other gases as fuel, follows:
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546 The acronym stands either for polymer electrolyte membrane or proton-exchange membrane, both names

being equally appropriate. Another name is solid polymer electrolyte fuel cell.

(a) PEM546 fuel cells. These operate at temperatures ranging from ambient to 90oC. A

solid proton-conducting polymer (such as Nafion®) serves as electrolyte. Electrodes are

carbon with platinum catalyst.

(b) Alkaline fuel cells, similar to the NASA cell, operating in the vicinity of 100oC. The

electrolyte is 10 molar potassium hydroxide, with OH as the charge carrier. Electrodes are

catalyst-loaded carbon. CO2 must be removed from the hydrogen fuel and from the air

oxidizer.

(c) Phosphoric acid fuel cells, operating close to 180oC. Employing proton conduction,

the electrolyte is a very concentrated aqueous solution of H3PO4 held within a porous

silicon carbide separator. Electrodes are platinum-loaded graphite.

(d) Molten carbonate fuel cells, operating at about 625oC. The electrolyte, through

which charge is carried by the carbonate anion is a molten mixture of carbonate2
3CO ,

salts held within a porous matrix of LiAlO2. The electrodes are porous non-precious

metals, with nickel serving as the catalyst. Carbon monoxide, as well as hydrogen, can fuel

this cell; methane, too, with reforming taking place within the cell.

(e) Solid oxide fuel cells, operating at about 850oC. Oxide ions O2 carry the charge

through a solid electrolyte of yttria-stabilized zirconia ZrO2. The cathode is strontium-

doped lanthanum manganite LaMnO2; the nickel content of the anode serves as catalyst.

Carbon monoxide is an alternative fuel.

Figure 5-6 is a schematic diagram of the

operation of a hydrogen-air fuel cell, but it comes

nowhere near portraying the actual geometry of such

cells. Generally, these fuel cells employ a stack of

very thin anode*electrolyte*cathode layers, with

interlayer channels incorporated through which the

fuel, oxidizer, and water vapor can flow. Additional

tubes for coolant may be needed to maintain an

optimum temperature. Careful pressure regulation

is required too, to ensure that the liquid*gas

interface remains within the pores of the porous

electrodes.

Though engineering and materials problems

escalate, fuel-cell efficiency improves with

increasing operating temperature because the electrode reactions are then faster and

because poisoning is less troublesome. A vast amount of effort has been expended in

getting fuel cells to their present stage of development. Whether eventual widespread

commercialization will vindicate this investment remains to be seen.
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V IVV V
II IIIV V

Although they have been touted as mobile power sources, and even for such miniature

applications as in mobile phones, it seems likely that if fuel cells prosper, it will first be as

stationary installations generating electricity at times of high demand. Indeed, such

applications are already at the stage of being evaluated.

Because demand for electricity varies with the time of day, power utilities welcome

satisfactory means of storing power. One electrochemical way of doing this is with a redox

battery, flow battery, or redox flow battery, though “secondary fuel cell” might be a

more descriptive name. As in a fuel cell, the reactants are fed into the cell from the outside.

In this case though, the electroreactants are dissolved in the electrolyte solution, which

flows into the cell. The products are also soluble in the electrolyte and are removed by the

flowing stream. The reaction is reversible, permitting “secondary” operation. There are

no solid phases to degenerate, giving the cell an almost indefinite lifetime. One

manifestation of this principle is the vanadium redox battery, illustrated schematically

in Figure 5-7. Each half-cell contains a carbon-felt electrode and the two are linked by a

proton-conductive membrane. The cell exploits vanadium’s ability to exist in four

oxidation states: VII, VIII, VIV, and VV, all of which are soluble in the sulfuric acid

electrolyte. The reactions at the electrodes are
discharge+ + 2

2 3 2recharge
VO ( ) 2H O ( ) e VO ( ) 3H O( )aq aq aq   positive : 5:43

and
discharge2+ 3+

recharge
V ( ) e V ( )aq aq negative :5:44

Though the voltage of this cell is rather low, with an open-circuit value averaging 1.4 V,
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547 See Web#547 for a discussion of how the open-circuit voltage of the vanadium flow cell changes with its

state of charge.

View supplementary web material at www.wiley.com/go/EST.

and is dependent on its state of charge547, its capacity is limited only by the size of the tanks

that contain the VIV,V and VII,III solutions. There are no impurities to worry about and even

leakage through the membrane is not a serious problem because the cross contaminants

soon get converted to the appropriate oxidation state. Deterioration of the membrane with

use, and the high capital cost of vanadium are, however, deterrents. Cells of this type are

suitable for large stationary situations, such as load leveling at a power plant and temporary

energy storage adjacent to wind and solar farms.

Summary

All three categories of electrochemical power source – primary cells, secondary

batteries, and fuel cells – are rapidly developing fields of electrochemical technology.

Notwithstanding the hyperbole from environmentalists and battery fabricators – and,

of late, from governments and car manufacturers – it is most unlikely that electrochemical

power sources will ever rival the internal combustion engine in power density. Never-

theless, it seems certain that environmental and economic constraints will increasingly

force the replacement of many internal combustion engines by rechargeable power sources.

At the time of writing, the lead-acid, nickel-metal-hydride, and lithium-ion secondary

batteries are all competing for the potentially lucrative electric car market. All have

disadvantages, as have other contending secondary batteries and fuel cells. Sadly, the

paragon secondary battery remains elusive.



601 or sometimes, especially in the context of potentiometry (page 119), the indicator electrode.
602 though a non-thermodynamic assignment can be made on the basis of a plausible model (see A.J. Bard,

G. Inzelt and F. Scholtz, Electrochemical Dictionary, Springer, 2008, page 528). An electrode potential on this

Kanevskii scale is more negative by 4.44 volts than the SHE-based electrode potential described overleaf.

Electrochemical Science and Technology: Fundamentals and Applications, First Edition. Keith B. Oldham, Jan C. Myland, Alan M. Bond.

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

6

Electrodes

Two is the minimumnumber of electrodes needed for an electrochemical cell although,

for reasons that will be appreciated after reading Chapter 10, three are commonly

employed. An electrode cannot be studied in isolation but, nevertheless, one often seeks

to investigate the properties of a single electrode, rather than to study an electrochemical

cell as a whole. Whenever interest is in a single electrode, that electrode is named the

working electrode601 (WE); the second electrode, the role of which is merely to complete

the cell, is called the reference electrode (RE). In other circumstances, as in the cells

discussed in the previous chapter, both electrodes are of equal importance and the

“working” and “reference” descriptors are not then applicable.

Electrode Potentials: the reference electrode is the key

The cell voltage E always means the potential of the working electrode with respect

to the reference electrode, rather than vice versa. Thus, provided that a meaning can be

attached to the terms on the right-hand side of the equation

WE REE E E  6:1

then the voltage of any cell may be split into two terms, each arising from an individual

electrode. But there is no obvious way to make the split, because the potential of a single

electrode cannot be measured. Indeed, there are difficulties in even defining a single

electrode potential602. Nevertheless, the concept of an electrode potential (or half-cell

potential) is so appealing that electrochemists have agreed on ways to interpret the term

“electrode potential” and so allot a quantitative value to the symbol EWE, at least for cells

in which the ionic conductor is an aqueous electrolyte solution.



106 6 Electrodes

603 H. Kahlert addresses reference electrodes in greater depth in: F. Scholz (Ed.), Electroanalytical Methods,

2nd edn, Springer, 2010, pages 291308.
604 and also by the saturated calomel electrode, an excellent reference electrode that, however, is disappearing

from use on account of its hazardous mercury content. Note that ESCE  0.2412 V.
605 also known as the normal hydrogen electrode (NHE).
606 In principle, any metal (or, indeed, any electronic conductor) would serve, but platinum is invariably used

because it catalyzes reaction 6:4. A high surface area is achieved by electrodepositing a powdery coating of

platinum onto a platinum plate.

Before introducing the convention that allows working electrode potentials to be

assigned, the reference electrode must be discussed603. The reference electrode is the one

that we are less interested in. We want to be able to incorporate the RE into our cell and

then forget about it. An ideal reference electrode would be one that maintains a constant

potential ERE whether we use it as an anode or a cathode, and irrespective of the current,

if any, that we pass through it. To come close to this ideal requires, among other attributes,

that there be an abundant supply of all the species involved in the reference electrode

reaction and that the activities of all these species be constant. As well, a satisfactory

reference electrode must resist polarization (Chapter 10) and be physically robust.

These criteria are close to being met by the Ag*AgCl electrode604. This consists of

bulk silver coated by a substantial layer of silver chloride and immersed in solution rich in

chloride ion, as in the left-hand electrode of Figure 6-1. The electrode reaction in aqueous

media is

AgCl( ) e Ag( ) Cl ( )s s aq  6:2

its rapid kinetics being one reason for the success of Ag*AgCl as a reference electrode.

Another is the porous nature of the silver chloride layer, which allows solution to penetrate

to the underlying metal.

The difficulty in splitting a cell voltage into the difference of two electrode potentials

is akin to the conundrum encountered in Chapter 2, where it was noted that the Gibbs

energies of individual ions could not be measured. In that case, the remedy was to assign

one special ion, the hydronium ion H3O
+, to have a specified Go value. A similar

convention enables individual electrode potentials to be given quantitative significance.

If one particular reference electrode is chosen and its potential is assigned a value of zero,

then equation 6:1 shows that any working electrode paired with this selected reference has

a potential equal to the measurable cell voltage. For electrochemistry in which the ionic

conductor is an aqueous solution, the chosen reference electrode is the standard hydrogen

electrode605 (SHE):

SHE 0E 6:3

This electrode consists of a metal606 in contact with an aqueous solution containing

hydronium ion at unit activity and saturated with gaseous H2 at 1.000 bar pressure (unit

activity), as in the right-hand electrode of Figure 6-1. The SHE reaction is
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607 One way of looking at the convention is that it defines the activity of electrons in the standard hydrogen

electrode to be unity.
608 Sometimes sodium chloride is used, resulting in somewhat different, slightly less positive, potentials.
609 from H. Kahlert in: F. Scholz (Ed.), Electroanalytical Methods, 2nd edn, Springer, 2010, page 269. These

potentials have a temperature coefficient of about 0.7 mV K1.

3 2 22H O ( ) 2e H ( ) 2H O( )aq g   6:4

The choice of this reference electrode to establish a scale of electrode potentials was made

for thermodynamic reasons607, not for experimental convenience. Sadly, the standard

hydrogen electrode has few of the desirable features listed above and, in fact, it is

implemented only for meticulous metrological purposes.

Fortunately, there is no need to employ the impractical standard hydrogen electrode

in day-to-day electrochemistry because equation 6:1 may be rewritten as

   WE SHE RE SHE

adjustment to

practical RE
E E E E E    6:5

and the term (ERE  ESHE) may be determined once and for all in a separate experiment.

Figure 6-1 diagrams such a calibration experiment using the Ag*AgCl electrode as the

substitute electrode. In practice, the Ag*AgCl electrode rarely employs hydrochloric acid

[ions: H3O
+(aq), Cl(aq)]. More usually, an aqueous solution of potassium chloride608

[ions: K+(aq), Cl(aq)] is used, either saturated with this salt, or at a variety of specified

concentrations. With such an Ag*AgCl electrode, the experiment shown in Figure 6-1

could not be carried out without a separator to prevent the mixing of the two solutions. The

separator would introduce a junction potential, as discussed Chapter 3. Corrections for this

junction potential, or its elimination, would be needed. In such ways, the potential EAg*AgCl

has been accurately determined at 25oC to be609
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610 Henceforth, the WE subscript will be dropped, as it becomes obvious which electrode is being discussed.

Ag AgCl

0.2363 in 1000 mM potassium chloride solution

0.2223 in one molal potassium chloride solution

0.2070 in 3000 mM potassium chloride solution

0.2037 in 3500 mM potassium chloride solution

0.1970 in saturated potass

E 
*

ium chloride solution










6:6

These values differ from each other, and from the value reported in the caption to Figure

6-1, because of differing chloride ion activities.

Once the potential ERE of a suitable reference electrode has been measured, or found

from the literature, the potential of a working electrode of interest can be determined

directly from experiment as610

REE E E  6:7

An example of such an experiment is shown in Figure 6-2. This cell is equipped with a salt

bridge (page 66) to eliminate most of the junction potential that would otherwise exist.

When the current direction is as shown, the copper working electrode functions as a

cathode, but with a less positive applied voltage it could become an anode. Or, on opening

the switch, it would soon behave as an equilibrium cell. There are two ways of reporting

the potential of this working electrode:

0.018V versus Ag AgCl(1000 mM KCl)

0.317V
E


 


*
6:8
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611 Ferrocene is bis-cyclopentadienyl iron, the Fe atom being sandwiched between the aromatic rings. The full

symbol is 5-(C5H5)2Fe, indicating that the iron atom is symmetrically placed with respect to the 10 carbon

atoms. Fc is a frequent abbreviation.
612 How the referencing is practiced in voltammetry is explained on pages 353354. With some solvents, the

ferrocenium cation may be unstable.

In the second option, the absence of any mention of a reference electrode implies that the

measured voltage has been converted to the SHE scale. In such cases, the electrode

potential expresses what the measured cell voltage would have been had the reference

electrode been a standard hydrogen electrode functioning ideally.

Notice that the terms “galvanic” or “electrolytic” are no longer useful descriptors of

such a cell as that in Figure 6-2, because such a classification depends on the (arbitrary)

choice of a reference electrode.

The convention of using a hydrogen-based standard reference electrode can be applied

to cells that employ water-like solvents, such as methanol CH3OH and liquid ammonia

NH3, but it is mostly restricted to aqueous systems. In other cases, the upper option in 6:8

is adopted by specifying explicitly what the reference electrode is. When the temperature

departs from 25oC, it is wise to report the reference conditions, even when the system is

aqueous. One popular and effective internal reference system for many nonaqueous

solvents is the ferrocenium*ferrocene611 couple based on the

5 5 2 5 5 2(C H ) Fe ( ) e (C H ) Fe( )soln soln  6:9

equilibrium, with both species present at equal small concentrations612.

Standard Electrode Potentials: they are related to standard Gibbs energies

As described above for aqueous systems, the potential of a working electrode is E 

E  ERE, where RE is the reference electrode. Because it equals the value that the cell

voltage would have had with an ideal SHE as reference, the supposed cell reaction would

have been
2+

2 2 3Cu ( ) H ( ) 2H O( ) Cu( ) 2H O ( )aq g s aq   6:10

for the cell diagramed in Figure 6-2.

Because of polarizations (Chapter 10), it is difficult to interpret the electrode potential

of a cell through which current is flowing. However, if the switch shown in Figure 6-2 is

opened and the cell is allowed to come to rest then, as we saw in Chapter 3, the cell voltage

is related, through the equation

n n null potential
G

E E
nF


  6:11

to the thermodynamics of the cell reaction. Here the italic n represents the number of

electrons that were cancelled out in forming the cell reaction from the electrode reactions,
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613 Explain the origin of the “2” divisor in equation 6:13 and then predict the potential of the cell in Figure 6-2

after opening the switch. The (mean ionic) activity coefficient of the copper ion in 200 mM aqueous copper(II)

nitrate solution is 0.466. See Web#613.
614 Notice that in several electrochemical contexts, the adjective “standard” implies unit activities.
615 Beware that many of these tables still relate to an older standard atmospheric pressure of 101325 Pa. The

data in this book have been corrected to the present 100000 Pa (one bar) standard. Demonstrate how this

correction was made. See Web#615.

616 Use Go values from this table to confirm the standard potential of the 4 3MnO ( ) 8H O ( )aq aq 

electrode reaction. Compare this with the Eo value from the table on page 3922
25e Mn ( ) 12H O( )aq   

and with Web#616.
617 and standard electrode potentials are therefore sometimes known as standard reduction potentials.

while each subscript n serves as a reminder that the cell is operating under null conditions.

G denotes the change in Gibbs energy that would accompany an SHE-referenced cell

reaction, such as that described by equation 6:10.

In the case of the cell shown in Figure 6-2, the Gibbs energy change would have been

+ 2+
2 23

o o o
Cu H H OH O Cu

2 2G G G G G G     6:12

The Gibbs energies of the species participating in the SHE reference electrode reaction

have been written as their standard values because unit activities are prescribed for the

standard hydrogen electrode. Moreover, these three terms disappear because of the

thermodynamic conventions that and that The latter convention+
23

o o
H OH O

G G o
element 0.G 

also enables one to set Only one nonzero term, remains. As we sawo
Cu Cu 0.G G  2+Cu

,G

in Chapters 2 and 3, this expression can be written in terms of the standard Gibbs energy

and the activity. Thereby one finds613

 2+2

2+

2+

o

oCCu Cu

C

u

u

n

ln 1
ln

22 2 2

G
E

RT a R

F a
E

TG

FF F

   
 





   


6:13

In 6:13, we have defined a quantity Eo, which is the value adopted by the electrode potential

under null conditions, when all the species that are involved in the reaction at the working

electrode are at unit activity. It is called the standard electrode potential614. Long lists

of standard electrode potentials have been compiled615; the table616 on page 392 is one of

these. In compiling such tables, it is usual to cite the equilibrium to which the potential

relates, with the electrons on the left-hand side617, as in
2+ oCu ( ) 2e Cu( ), 0.340 Vaq s E 6:14

As a glance at the table will confirm, some standard electrode potentials are known to very

high precision, others less so. Different sources may list slightly diverse values.

With the v’s being stoichiometric coefficients, let the general equation

A B Z YA + B + + e Z + Y +n          6:15

describe an electrode reaction in which the ionic conductor is aqueous. Then the standard
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618 because a few species can be combined into a multitude of reactions.
619 See Web#619 for an example of how accurate standard electrode potentials are determined by careful

measurement of cell voltages.
620 Correctly calculate the Eo of reaction 6:19 from 6:17 and 6:18. See Web#620.
621 Such a rare instance would be the Ag*AgCl electrode in a chloride melt.

electrode potential is
o o o o

o Z Z Y Y A A B B
standard electrode

potential

[ + ]G G G G
E

nF

         
6:16

Thus it follows that a table of standard electrode potentials contains no more information

than is available from a table of standard Gibbs energies, such as that on page 391.

Furthermore, the information is much more compact in the latter form618. Nonetheless, Eo

values do have many uses. In fact, it is from accurate standard electrode potentials,

painstakingly measured by electrochemists619, that tabulated Gibbs energies and other

thermodynamic data have been largely compiled.

Novice electrochemists sometimes make the error of trying to add or subtract standard

electrode potentials. They argue, for example, that because
2 oCu ( ) 2e Cu( ) 0.340 Vaq s E  6:17

and
oCu ( ) e Cu( ) 0.521 Vaq s E  6:18

then the standard potential of the electrode
2 +Cu ( ) e Cu ( )aq aq  6:19

should be the difference between these values, namely 0.181 V. There is no justification

for this assumption. The E o of reaction 6:19 can be calculated from 6:17 and 6:18, but not

by a simple subtraction620.

It is only for aqueous and similar systems that it is unnecessary to cite the reference

electrode in quoting an electrode potential. In all other circumstances, any statement about

the value of an electrode potential (standard or otherwise) is meaningless without a

specification of the reference electrode.

The Nernst Equation: how activities influence electrode potentials

Rarely are the activities of all the species involved in an electrode reaction constrained

to equal unity621. More generally, the electrode potential is influenced by those activities.

When nonunity activities are encountered, the electrode potential is given by

Z Y

A

o Z Y

A B

Nernst equatl ionn
RT a a

E E
nF a a

 

 

  
   

  
B

6:20
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622 Walther Hermann Nernst, 18641941, Prussian physical chemist and 1920 Nobel laureate.
623 though not always in practice. When it fails it is usually because the exchange current density (page 134)

of the reaction is inadequate compared with currents generated by extraneous processes.
624 The cited millivoltage applies only at 25.00oC. Calculate the chloride ion activity coefficient in 3000 mM

aqueous KCl solution at 25oC. See Web#624.
625 Notice that either side of 6:23 expresses the equilibrium constant K of reaction 6:15, electrons being ignored.

626 Show that the error in making this approximation is about 10 millivolts if See Web#626.2+Cu
0.466. 

for the general electrode reaction 6:15, and by 6:13 for the cell shown in Figure 6-2. This

is the Nernst equation622; it is, perhaps, the most important equation in electrochemistry.

In principle623, the Nernst equation applies to all electrodes when there is no current. It may

also apply when current does flow, with the caveat that the activities which appear in the

equation then refer to the conditions at the electrode surface, and not necessarily

elsewhere. When an electrode obeys the Nernst equation despite current flow, it is said to

be behaving in a nernstian or reversible fashion.

Though 6:20 is the most fundamental representation of the Nernst equation, you may

find it written differently. The activities of certain species may be omitted because those

species are in their standard, unit activity, states, as was done in equation 6:13. The

properties of logarithms permit the exponents of the activities to be manipulated, as in

Y A B

A B Z A Y

/ / /
o oZ Z Y A B

/ / v / /
A B Z Y

ln or ln
Z

Z

n n

n n

v RT a a RT a a
E E E E

nF a a F a a

   

    

       
      

        
6:21

or logarithms to base 10 may be employed624:

Z Y Z Y

A B A B

o
o oZ Y Z Y

10 10

A B A B

2.303 (59.159 mV)
log log

RT a a a a
E E E

nF a a n a a

   

   

        
      

        
6:22

The Nernst equation may be written in inverse form625 as:

Z Y

A

oZ Y

A B

exp ( )
a a nF

E E
a a RT

 

 

    
  

    B
6:23

showing that activities respond exponentially to electrode potential.

When a reactant or product is a solute, the Nernst equation may be approximated by

replacing the activity of the solute by a concentration ratio; for example, equation 6:13

could be written as

2+

o
o

Cu

ln
2

RT c
E E

F c

  
   

  
6:24

However, this can be a poor approximation in the case of an ion626 and what is often done

in such cases is to incorporate the activity coefficient into the E o term by writing, for

example,
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627 often erroneously called “the standard electrode potential”. See Web#720 for elaboration.
628 “Redox” is a contraction of “reduction-oxidation” and indicates that the two members are related by electron

transfer.
629 Ironically, these metals are said by inorganic chemists to be the most electropositive elements.

2+ 2+

o
o o o

Cu Cu

1
ln with ln

2 2

RT c RT
E E E E

F c F

             
      

6:25

Here Eo is named the formal electrode potential or the

conditional electrode potential627; it may behave as a constant

during certain experiments, or in a series of similar experiments.

The second equation in 6:25 calls for the activity coefficient of

a single ion which, as noted on page 44, cannot be measured; the

mean ionic activity coefficient appropriate to the cell in question

is used instead, for example in the case of the2+
3

2 / 3 1/ 3

Cu NO   

cell depicted in Figure 6-2.

Electrochemical Series: elaboration into Pourbaix diagrams

The table of electrode potentials, page 392, contains several

entries in which one of the participating species is an element,

generally either a metal, as for
2+ oFe ( ) 2e Fe( ) 0.447 Vaq s E  6:26

or a gas, for example
o

2Cl ( ) 2e 2Cl ( ) 1.3579 Vg aq E  6:27

The element in question may be either oxidized or reduced by

the electrode reaction. In either case, the element and its partner

in the reaction constitute an electrochemical couple or redox

couple628. Thus Cu2+*Cu and Cl2*Cl are examples of such

couples. The electrochemical series of the elements is a listing

of redox couples according to the magnitude of the electrode

potential. Figure 6-3 is an example with eleven couples ranked

in this way. The elements with the most positive E o values are

strong oxidizing agents and come highest in the series, whereas

powerful reducing elements, such as the alkali metals, have the

most negative electrode potentials629.

Quite apart from the quantitative data conveyed by the

electrochemical series much qualitative chemical information is

inherent in a listing such as that in Figure 6-3. The series
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630 The “most likely” caveat reflects the fact that factors other than the thermodynamic stability of the aqueous

ions affect dominance. The presence of counterions may play a role by complexing or precipitating one of the

ions as does the slowness of many feasible reactions.
631 Validate the second equality in 6:31. Compare with Web#631.

3 2Fe ( ) e Fe ( )aq aq   

2Fe ( ) 2e Fe( )aq s  

provides a ranking of elements by oxidizing power. Many chemical properties of the

elements correlate well with their position in the electrochemical series, often surpassing

the periodic table in this respect. If the species participating in any two electrochemical

couples are brought into contact, then the reaction of the more oxidized member of the

higher couple with the reduced partner of the lower couple is thermodynamically favored

and will probably take place. For example, Ag+ will react with Zn:
+ 2+2Ag ( ) Zn( ) 2Ag( ) Zn ( )aq s s aq 6:28

and ultimately produce an equilibrium in which the two other partners of each couple are

dominant.

There is ambiguity in the ranking of some elements because the element may form

more than one redox couple. For example, in addition to reaction 6:26, iron enters into an

electron-transfer equilibrium with another ion:
3+ oFe ( ) 3e Fe( ) 0.037 Vaq s E  6:29

One way of interpreting the chemistry of iron is that the form adopted by this element in

the presence of water – Fe3+(aq), Fe2+(aq), or Fe(s) – depends on the potential to which it

is exposed. Figure 6-4 provides a dominance

diagram for iron: it reveals which is the

thermodynamically dominant species for any

particular potential. For example, if a potential

of 0.00 V is imposed on a iron-containing

solution, either by an electrode or by some

more concentrated redox couple, the iron is

most likely630 to be found in the Fe2+(aq) state.

Another complication undermining the

simplistic concept of an electrochemical series

is that the aqueous electrode reactions of many

elements involve the ions H3O
+ or OH and

therefore the extent of the electrode reaction

depends on pH. For example, the element zinc

undergoes the electrochemical reaction
+

2 3 2Zn(OH) ( ) 2H O ( ) 2e Zn( ) 4H O( )s aq s   6:30

and, because the activities of solvents and pure solids are unity, the corresponding Nernst

equation is631
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632 Marcel Pourbaix, 1904 1998; born in Russia but it was in Belgium that he researched electrochemical

thermodynamics.
633 also known as potential-pH diagrams.
634 Use Figure 6-5 to estimate the solubility product of Zn(OH)2; see Web#634.

3

o
o o
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H O

1
ln (59.16 mV) H

2

RT
E E E p

F a 

  
    

  

6:31

The dominance is affected, in such cases, by both the electrode potential and the pH. This

consideration led Pourbaix632 to design the diagrams that now bear his name.

Figure 6-4 is a one-dimensional dominance diagram, showing the species that have

dominant thermodynamic stability at each value of the electrode potential. Pourbaix

diagrams633 are two dimensional and show how dominance is affected by both potential

and pH. Figure 6-5 is the Pourbaix diagram for zinc and shows the regions in which four

distinct species are dominant. Horizontal lines in such diagrams represent simple redox

couples, involving an electron transfer only. Diagonal lines represent processes in which

both electrons and protons are exchanged, as in the equilibria 6:30 and
2
2 2ZnO ( ) 2H O( ) 2e Zn( ) 4OH ( )aq s aq     6:32

Vertical lines represent purely chemical processes634; those in Figure 6-5 correspond to the

equilibria
+ 2+

2 3 2Zn(OH) ( ) 2H O ( ) Zn ( ) 4H O( )s aq aq  6:33
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635 From the data below, construct a Pourbaix diagram for cadmium showing the zones of dominance of the

species Cd(s), Cd2+(aq) and Cd(OH)2(s). Compare your answer to Web#635.

Cd2+(aq) + 2e Cd(s), Eo  0.403 V; Cd(OH)2(s) + 2e Cd(s) + 2OH(aq), Eo  0.825 V; 

Cd(OH)2(s) + 2H3O
+(aq) Cd2+(aq) + 4H2O( ), K  5.01 × 1013

and
2
2 2 2ZnO ( ) 2H O( ) Zn(OH) ( ) 2OH ( )aq s aq   6:34

The location of one or more lines on a Pourbaix diagram635 may be affected by the activity

of the ions of the element in question, as illustrated in Figures 6-5 and 6-6.

Recognize that Pourbaix diagrams are diagrams based solely on thermodynamics: they

identify what the dominant species would be if no factors other than thermodynamics

governed the behavior of matter. Their weakness is that much of chemistry is governed by

kinetic factors that play no role in Pourbaix diagrams. These defects are brought out well

in Figure 6-6, the upper half of which is the simple Pourbaix diagram for oxygen, while the

lower half refers to hydrogen. Notice that neither hydrogen peroxide H2O2( ), the

hydroperoxide ion , nor ozone O3, finds a place in the diagram. This reflects2HO ( )aq

their thermodynamic instability: these species should not exist! The fact that they do exist,

and play significant roles in the chemistry of the elements oxygen and hydrogen, demon-

strates the slow kinetics of their decomposition reactions. A second defect revealed by the

diagram is that it leads one to believe that, at any pH, water is stable only over a potential
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636 For a more extensive discussion, see Š. Komorsky-Lovri in: F. Scholz (Ed.), Electroanalytical Methods,

2nd edn, Springer, 2010, pages 273288.

637 For example, in basic solution, the hexacyanoiron(III) ion is readily reducible at a nickel,3
6Fe(CN) ( )aq

but not at an aluminum, electrode. For a second example, refer to pages 7879.
638 Gentle oxidation of water produces oxygen at some electrodes, hydrogen peroxide at others.

“window” of width 1.229 V. This is untrue! Again, slow kinetics takes credit for widening

the actual window of water’s stability almost twofold, thereby opening up a fruitful field

of aqueous electrochemistry that would not have existed had thermodynamics held sway.

Usefully, Pourbaix diagrams show what is feasible, but they cannot be relied upon to

predict what will actually occur. Their impact has been especially pronounced in the field

of corrosion (Chapter 11).

Working Electrodes: constructed from many materials in many shapes and sizes

Working electrodes636 are ones at which processes of interest occur. They may be

divided into two broad classes. Sometimes the working electrode is an active electrode;

that is, it is involved as a reactant or product in the electrode reaction. Otherwise, when the

working electrode acts purely as a source or sink of electrons, not being stoichiometrically

involved in the electrode reaction, it is called an inert electrode. The adjective “inert” can

be misleading; a reaction at one inert electrode may proceed at quite a different rate than

at an electrode made of another “inert” material. In extreme cases, a reaction may proceed

rapidly on one inert electrode but not perceptively on another electrode material637, or it

may lead to a different product638. This is because electronic conductors often have

catalytic properties in addition to their roles as electron sources or sinks.

Materials from which inert working electrodes are typically made include noble metals

such as platinum or gold, and various forms of carbon, such as graphite, glassy carbon,

carbon nanotubes, and even boron-doped diamonds. Of course, a requirement is that the

material not undergo any chemical or electrochemical reaction with the reactant or product

of the reaction of interest, or with any other component of the ionic conductor. Or at least,

if they are removed by part of the reaction mechanism, they must be reformed by another

part.

Glass, covered with a conducting layer of indium-doped tin oxide SnO2, provides an

inert working electrode that is optically transparent, valuably permitting electrochemistry

and spectrophotometry to be carried out simultaneously. The surface of modified

electrodes has been changed by the creation of an adherent layer by some appropriate

chemical, physical or electrochemical process. The motives for such modification are

numerous but they frequently have the aim of facilitating some specific electrode reaction.

To be electrochemically useful, the layer must be able to transport electricity; but, in
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639 because the disk has a flat section and an edge, from both of which currents arise. The edge effect is more

pronounced for small disks.
640 that is, exposure to high-frequency sound.

addition to familiar electronic and ionic conduction, electron hopping may occur through

certain sufficiently thin modifying layers. Often enzymes are attached, so as to catalyze an

electrode reaction that otherwise would not occur. The glucose sensor described on pages

175177 provides an example.

The behavior of a large electrode depends on its area, but very little on its shape. For

the small electrodes used in voltammetry, however, the shape of an inert working electrode

is more important than might be

expected, for reasons discussed in

Chapter 12. Electrodes for voltammetric

purposes are often of cylindrical shape,

shrouded by an insulator, so that the

surface presented to the ionic conductor

is that of an inlaid disk, as illustrated

in cross section in Figure 6-7a. Such

electrodes are rather easy to construct

and to clean by polishing. However, the

behavior of a disk electrode depends

awkwardly on its size639, as discussed in

Chapter 12, and therefore the current is

often difficult to predict or interpret.

Working electrodes of a hemispherical or

spherical shape are far better from a

predictive standpoint though, with one

exception, they are difficult to make and

clean. The exception is the mercury

drop electrode which is simple to make

and, because it is easily renewed, does

not need cleaning. Solution can easily

be changed with electrodes of the shape shown cross sectionally in Figure 6-7d, known as

a tubular band electrode. Such electrodes can be conveniently constructed by drilling a

hole through an insulator*conductor*insulator sandwich.

The majority of working electrodes are static and there is no relative motion between

the electrode and the ionic conductor. With a liquid conductor, however, current can be

greatly enhanced by stirring, by bubbling gas, or by sonication640. The effect of such forced

convection is difficult to predict quantitatively. With careful cell design, however,

reproducible convection can be achieved. Foremost in this regard is the rotating disk
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641 The “exterior” descriptor distinguishes it from the “interior” reference electrode (Figure 6-8). Sometimes

the exterior reference electrode is incorporated, with the ISE, into a single unit called a combination electrode.

electrode, described in more detail on pages 248252. Somewhat similar results are

achieved by electrodes embedded in the walls of pipes through which electrolyte solutions

flow, as in the tubular band electrode. The dropping mercury electrode also benefits

from controlled convection. Some features of this classic electrode are described on page

260. Much of our present day electrochemical knowledge rests on experiments conducted

in the last century with mercury drop electrodes.

The measurement of cell voltages in the absence of current flow, known as

potentiometry, is used to furnish thermodynamic information and to measure ionic

activities. Devices used for the latter application employ a working electrode in

conjunction with an exterior reference electrode641. A working electrode used in this way

to measure the activity of a specific ion is known as an ion-specific electrode or, more

realistically, an ion-selective electrode (ISE).

What is usually measured in analytical potentiometry is the ratio of the two activities

of the target ion. It should be emphasized that ion-selective electrodes respond to activities

not concentrations. Sometimes the purpose of the investigation is well served by an

activity measurement but, more often, it is a concentration that is sought. Fortunately,

calibration or standardization procedures, such as those discussed later in this section,

enable accurate concentration information to be gathered by potentiometry.

According to the Nernst law, an electrode of pure copper metal develops a null

potential

 2+

2+

o oCu
n Cu

Cu

ln ln
2 2

RT a RT
E E E a

F a F

  
    

  
6:35

when placed in a solution containing Cu2+(aq) ions. Therefore, paired with a reference

electrode, it may be used to measure copper ion activities. In an obsolescent terminology,

such an electrode is described as being an electrode of the first kind and it could be

considered a rudimentary ion-selective electrode. An ideal ion-selective electrode responds

in a nernstian fashion to the target ion – Cu2+ in this case – but is totally unaffected by other

ions. In practice, most electrodes fail to live up to this ideal, because species other than the

target interfere. For example, silver ions interfere with the copper electrode because they

react chemically with the electrode:
+ 2Cu( ) 2Ag ( ) Cu ( ) 2Ag( )s aq aq s  6:36

and play havoc with the analysis.

A silver electrode coated with insoluble silver chloride exhibits a null potential of

 Ago oCl
n Cl

AgCl

ln ln
a aRT RT

E E E a
F a F





  
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  
6:37
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642 These have two solid (and hence unit-activity) phases, in contrast to the single phase of electrodes of the first

kind. There are also electrodes of the third kind, which have three.
643 though the Hg2+(aq) ion interferes seriously.
644 From Go data, calculate the standard potential of this electrode. Write an expression for its null potential and

draw a logarithmic graph showing how the null potential depends on sulfide ion activity. SeeWeb#644.
645 Though they are universally called “electrodes”, the name “half-cell” would be more appropriate.
646 Notice that the Henderson equation, 3:24, gives rise to equation 6:38 by setting either of the mobility terms

to zero, as befits a semipermeable membrane.

and this so-called electrode of the second kind642 therefore has a nernstian response to

chloride ions. It is rather unselective, however, because the presence in solution of any

anion, such as Br(aq) or CN(aq) that forms a salt more insoluble than AgCl, will react

and interfere, as will Ag+(aq). The Ag*Ag2S electrode has fewer interferences, because

Ag2S is less soluble, and does serve as a satisfactory643 ISE for the S2(aq) target ion644.

Many successful ion-selective electrodes645 employ a discriminating membrane and

have the general geometry shown in Figure 6-8. The principle used by such an ISE in

measuring the activity of a target ion in a test solution is straightforward. The end of a

chamber is sealed by a membrane permeable to the target ion, say ion i and, ideally, it is

permeable only to that ion. This membrane separates two aqueous solutions, each

containing the ion. One is the test solution, into which the ISE is dipped: thisii ( )z aq

solution contains the target ion with an unknown activity The other is the solutionouter
i .a

inside the chamber, with a fixed activity of ion i. The target ions establish equilibriuminner
ia

across the membrane, creating an electrical potential difference between the two solutions.

Equation 2:25 is obeyed in the form646

outer
inner outer i

inner
i i

membrane po
ln

tential

difference

RT a

z F a

 
     

 
6:38

The membrane has transformed a disparity in activities of the target ion between the outer

and inner solutions into a difference in the electrical potentials of those solutions. This
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647 Federick George Donnan, 18701956, British chemist. His concern was largely with biological membranes.
648 The inner electrode is often called the “indicator electrode”; the outer electrode is the reference electrode.

In a sense, they are both reference electrodes.
649 These should closely match the test solution, other than in their fluoride ion concentrations. The hydroxide

ion OH is the only significant interferant, so the test solution is adjusted to about pH 5 by a reagent that also

imposes a high and reproducible ionic strength.
650 The numerical factor arises because, for any x, ln{x}  ln{10}log10{x}  2.3026log10{x}.
651 Can you explain why? See Web#651.
652 A cyclic organic compound with eight oxygen atoms which octahedrally surround a space that closely

matches the size of the K+ ion. Compounds with this, or similar, structures are know as crown ethers.

so-called membrane potential difference or Donnan potential difference647 cannot be

measured directly, so we must rely on a pair of electrodes to transduce the potential

difference between two solutions into a potential difference between two metallic

conductors, as in the arrangement shown in Figure 6-8. One electrode is placed inside the

ISE chamber, as illustrated, a second in the test solution. The two electrodes648 need not

be identical, though they could be. The figure shows an Ag*AgCl reference electrode used

for each purpose. The voltmeter measures

 internal inner outer external outer
n RE RE constant i

i

ln
RT

E E E E a
z F

        6:39

equation 6:38 having been incorporated. The Econstant includes any difference between the

two electrode potentials and a term arising from the invariant activity of the target ion in

the inner solution.

The fluoride-ion sensor provides a typical example of an ion-selective membrane

electrode. The membrane is a crystal of europium fluoride-doped lanthanum fluoride

which, as described on page 10, conducts by F ion migration. A transfer equilibrium, or

Donnan equilibrium, is established (sometimes slowly) between fluoride ions in the test

solution and those within the ISE chamber. This chamber holds a mixed solution of sodium

fluoride and potassium chloride, the latter to supply chloride ions for the Ag*AgCl interior

reference electrode. To measure an unknown fluoride ion concentration in the test solution,

one would normally first calibrate the ISE with at least two solutions649 of known and
F

c 

then interpolate logarithmically to find the unknown concentration, as in Figure 6-9

overleaf. Equation 6:39 predicts that the cell voltage will change by650 2.3026RT/ziF (equal

to 59.159 mV at 25.00oC for zi  1) for a tenfold increase in the activity of the target ion.

As the graph illustrates, the slope of an experimental graph of cell voltage versus the

logarithm of concentration is often of a somewhat smaller magnitude651.

The antibiotic nonactin652 selectively complexes the potassium ion, thereby

“disguising” the hydrophillic nature of the K+ ion and enabling it to cross hydrophobic cell

walls that would otherwise be barriers. The resulting “potassium leak” disrupts bacterial

metabolism and so confers bactericidal properties on nonactin. A potassium-ion sensor



122 6 Electrodes

653 Using linear regression or otherwise, determine the potassium ion concentration of a solution that gives a

cell voltage of 97 mV with such a sensor. Calibrating solutions of 0.20, 0.60 and 2.00 mM potassium sulfate

give voltages of 133, 104 and 78 mV. See Web#653.
654 Some commercial pH sensors incorporate the “exterior” reference electrode in the same unit as the glass

electrode. Others incorporate a temperature sensor to take account automatically of the T in equation 6:41.
655 See Web#655.

uses nonactin dissolved in an organic solvent held in the pores of a thin porous disk of

poly(vinyl chloride) to provide a potassium-ion-selective membrane for ISE use653.

The oldest, and still the most widely used, ion-selective electrode is the glass

electrode. The simple design of this ISE is illustrated in Figure 6-10. It consists of a

chamber holding an interior Ag*AgCl reference electrode, with a thin-walled (50100m

thick) glass membrane separating the internal solution (usually 100 mM hydrochloric acid

HCl) from the test solution654. Though the mechanism by which it operates is probably that

described elsewhere655, the membrane behaves as if it were selectively permeable to

hydronium ions. The cell voltage obeys equation 6:39 with so that
3

i H O
1,z z  

 
3

outer
constant H O

ln
RT

E E a
F

  6:40

Recall that pH is defined as the negative of the decadic logarithm of the hydronium ion

activity, and therefore

constant constant slope

2.3026
H H

RT
E E p E E p

F
    6:41
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656 invented by the American, Kenneth H. Goode, 19021967, when he was a 19-year old undergraduate at the

University of Chicago.

where Eslope is theoretically 59.159 mV at 25oC, but in practice is somewhat less than this.

The glass electrode is usually used to measure pH in conjunction with a pH meter. This

is an electronic voltmeter656, specially designed to cope with the high resistance of the glass

electrode and to output (Econstant E)/Eslope instead of the cell voltage E itself. The pH

meter is first “standardized” by using two buffer solutions of known pH; this procedure

establishes appropriate values of Econstant and Eslope. Once standardized in this way, the pH

meter provides a direct reading of the pH of a test solution. Unfortunately Na+ ions do

transit the membrane to some small extent and constitute a substantial interference when

H3O
+ ions are scarce, that is for test solutions of high pH.

Summary

By contriving one of the electrodes to remain stable despite current flow, a cell voltage

E may be expressed as the difference between the potential E of the working electrode

and the constant potential ERE of the reference electrode, so that

REE E E  6:42

In aqueous electrochemistry ERE, and hence E, is referenced to ESHE. The standard electrode

potential Eo is the null potential of the working electrode when all the reactants and

products of the working electrode reaction are in their standard states. The Nernst equation

gives the open-circuit potential of an electrode in terms of the activities of the electrode

reaction participants:

Z Y

A B

o Z Y
n

A B Z YA B

for the reaction
ln

A

Nernst

eB quatiZ one Y

v v

v v

RT a a
E E

v v n v vnF a a 

 
   

    
6:43

The standard potential Eo provides access to thermodynamic data about the reaction at the
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View supplementary web material at www.wiley.com/go/EST.

electrode, and permits calculation of the Gibbs energies of the reaction’s participants. If

the activities of all the reactants and products that are not at unit activity are appropriately

replaced in equation 6:43 by concentrations or pressures, then the equation
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n A B Z Y

A B
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v v

v v

RT c c
E E v v n v v

nF c c
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applies approximately. E o has been replaced by E o, the formal potential of the electrode,

which incorporates activity coefficients, assumed constant. Electrochemical series and

Pourbaix diagrams portray information about the relative stabilities of various ions and

compounds of particular elements. Ion-selective electrodes permit the activities and

concentrations of target ions to be determined potentiometrically.
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7

Electrode Reactions

On page 46, the study of chemical reactions was said to be the search for answers to

four questions. The same questions recur in studying electrochemical reactions.

Answering each of these questions leads into a different realmof physical electrochemistry:

Electrochemical stoichiometry

Electrochemical thermodynamic

What electrode reactions occurs?

Why does the reaction occur?

How fast

s

Electrochemical kindoes the reaction occur?

How does the r

etics

eaction







Mechanisms of electrode reoccur act? ions

This chapter is largely concerned with the third and fourth questions, which are

interconnected because studies of the kinetics of an electrode reaction provide information

on its mechanism. The first and second questions were addressed in previous chapters, but

initially these “what?” and “why?” questions will be revisited briefly.

Faraday’s Law: necessities for an electrode reaction

Inasmuch as it is the basis of all electrochemistry, how have we managed to arrive at

Chapter 7 without even mentioning Faraday’s law? In truth, this law, which states that the

amount (number of moles) of any substance produced or consumed in an electrode reaction

is proportional to the quantity of charge passed, is implicit in the equation of every

electrode reaction that is written in this book. By quantitatively linking electrons to

molecules and ions, each of these balanced stoichiometric equations demonstrates the

proportionality of the amount of electricity to the amount of chemical change. Nowadays

this equivalence seems almost self-evident, but it was not when Michael Faraday151 put

electrochemistry on a quantitative footing in 1832 by enunciating the law that now bears

his name.

In Chapter 13 we shall find that an electric current may sometimes flow transiently

through a cell without an accompanying chemical reaction, as a consequence of the
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701 Electroanalytical chemistry is the use of electrochemistry to measure concentrations. Related to coulometry

is the technique of coulometric titration, described at Web#701, as is amperometric end-point detection,

another electrochemical aid to titrimetry.
702 The signs in equations 7:1 and 7:2 apply because a positive I corresponds to a negative n in equation 7:3.
703 See Web#703 for a brief description of thin-layer coulometry and a worked problem based thereon.
704 The current falls exponentially during coulometry. Why? Derive an expression showing, in terms of the

initial current, how the current changes with time. See Web#704.
705 Such an electrode is often, though erroneously, said to be “three-dimensional”.

capacitive property of electrodes. Such currents are described as nonfaradaic. In contrast,

currents that are obedient to Faraday’s law are said to be faradaic.

Coulometry is conceptually the simplest electroanalytical technique701, being based

directly on Faraday’s law. If Q is the amount of electricity needed to oxidize or reduce all

of species i from an electrolyte solution or other ionic conductor, then

i i/Q nFVc v7:1

where n and vi are respectively the number of electrons702 and the number of molecules or

ions of the target species i in the electrode reaction. V is the cell volume. Usually, the

electrolysis is carried out with the cell voltage held constant at a value chosen to preclude

any competitive electrode reaction. The solution is stirred, or the cell is of minute size703,

as otherwise the electrolysis time would be unacceptably long. The current is monitored704

and integrated, permitting the original concentration of the target to be found from

i i
i

0

d
t

v Q v
c I t

nFV nFV



  7:2

where t is the time by which the current has fallen to an

insignificant or background value. Even with vigorous stirring,

coulometry is a slow method. A faster variant is flowing

coulometry, in which the analyte solution flows steadily through

a long narrow tubular working electrode, or a porous metal

working electrode705 as illustrated in Figure 7-1. Because the flow

rate (m3 s1) is chosen to be small enough that the emergentV

solution is completely denuded of the target species i, the entrant

concentration ci is calculable as viI/nF from the steady current I.V

The general stoichiometric equation for an electrode reaction

is

A B Z YA B e Z Yv v n v v          7:3

with the understanding that n is negative for an anodic reaction

and positive when the reaction is cathodic. By using the

symbol in equation 7:3, we indicate that the discussion relates

to the left-to-right progress of the reaction, while reminding the
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706 The signs in 7:4 are appropriate if charge passing anodically is regarded as positive. This matches the

convention that anodic current at a working electrode is reckoned as positive.
707 Calculate the charge that must be passed to produce one tonne (103 kg) of pure copper by the electrorefining

process summarized in reactions 4:4 and 4:5. Check at Web#707.

reader that the reverse process is also proceeding to a lesser extent. Reaction 7:3 embodies

Faraday’s law inasmuch as706

final initial
Z Z Z Z

initial final
A A A A

quantity of charge passed

amount of Z produced = /

amount of A consumed = /

Q

n n n v Q nF Q

n n n v Q nF Q




     


     

7:4

with similar proportionalities for other reactants and products707. Each subscripted n in

equations 7:4 represents an amount (numbers of moles). In the cathodic reduction of

oxygen in aqueous solution,

2 2O ( ) 2H O( ) 4e 4OH ( )g aq   7:5

for example, the passage of 4×(96485) coulombs of charge produces four moles of

hydroxide ion and consumes one mole of oxygen, as well as two moles of water. Such

relationships were often used in Chapters 4 and 5 to interrelate charge and chemical

amounts.

There is no single “correct” way to write the equation of an electrode reaction. For

instance, equation 7:5 may be rewritten as
1

2 22
O ( ) H O( ) 2OH ( ) 2g aq e   7:6

or in innumerable other ways, without affecting the stoichiometry. The electrode potentials

of reactions 7:5 and 7:6 are identical; the Nernst equations for each are equivalent. With

a change in the sign of their stoichiometric number, we may even move species, as well as

electrons, from one side of the equation to the other, as in
1

2 22
O ( ) H O( ) OH ( ) 2e OH ( )g aq aq     7:7

and, as we shall see later, it may sometimes be advantageous to do so. Of course, the

requirement for balancing atoms and charges by adjusting the stoichiometric coefficients

(the subscripted v’s) must always be met in the equations for all reactions, chemical or

electrochemical.

Provided that the standard Gibbs energies of the reactants and products of an electrode

reaction are known, its stoichiometric equation permits the standard potential of the

electrode to be determined as
o

o o o o o
Z Z Y Y A A B B

1G
E v G v G v G v G

nF nF

 
             7:8

Moreover, with this standard electrode potential known, the null electrode potential can

be calculated for any pertinent activities of the reactants and products, through the Nernst
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708 Estimate the null potential for the reaction when the solution3 4
6 6Fe(CN) ( ) e Fe(CN) ( )aq aq   

contains, in addition to supporting electrolyte, 1.00 mM K3Fe(CN)6 and either (a) 0.1 mM K4Fe(CN)6 (b) a

mere trace (say 106 mM) of K4Fe(CN)6 present as impurity or (c) no K4Fe(CN)6 whatsoever. See Web#708.

equation,
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The null potential is that adopted by an electrode when no current flows.

Unlike the standard potential, the null potential of an electrode is not a constant. It

depends on the prevailing activities of the reactants and products at the electrode surface

and may change temporarily during an experiment as the corresponding surface

concentrations alter as a result of current flow. Rarely is the change permanent in

laboratory experiments, because seldom is the change in the amount of any species

significant in comparison with the total content of that species within the cell. Of course,

coulometric experiments are exceptions to that generalization and another exception occurs

often in voltammetry (Chapters 12, 15, and 16), in which an electrode reaction is frequently

studied in the initial absence of at least one of the products. In such experiments, the initial

null potential is theoretically either  for an oxidation, or + for a reduction. In practice

when product is absent, the resting potential will be irreproducible or determined by some

other redox couple, frequently arising from impurities708.

Obviously, the fact that one can write down a stoichiometric equation, and even

perform pertinent thermodynamic calculations, does not mean that the electrode reaction

will actually occur. There follows a list of some requirements for an electrode reaction of

interest to be sustained:

(a) There must be an adequate supply of reactants to

the electrode interface. Some reactants may be

abundantly present at the electrode, as when a reactant

is the electrode material itself, or the solvent of an ionic

conductor, or present as a layer on the electrode. In

those cases, supply is not a constraint. However, for

reactants that are present as solutes, supply to the

electrode is possible only through the motion of the

dissolved species. Such motion is known as transport

and is the subject of Chapter 8. Reaction and transport

destroy the original uniformity of concentration, making

it necessary to distinguish between the bulk

concentration of a species and its concentration at the

electrode surface. In this book we use alternative



Faraday’s Law 129

709 Commonly an asterisk, as in c* is used to indicate a bulk concentration.
710 though bubbles are sometimes advantageous. In aluminum electrowinning (page 71), bubbles from the

cathode provide valuable agitation, aiding transport. Bubbles are the key to electroflotation (page 184).
711 Also known as base electrolyte, indifferent electrolyte, or inert electrolyte. The last two of these names

reflect an essential property of a supporting electrolyte: its ions should not undergo any reaction.
712 On the basis of conductivity alone, which of the following would make the best supporting electrolyte

solution: (a) 800 mM KCl, (b) 450 mM Na2SO4 or (c) 500 mM Mg(NO3)2? See Web#712.
713 Potassium chloride is a favorite in aqueous solutions, such salts as tetraalkylammonium hexafluoro-

phosphates are preferred in nonaqueous solvents because of their higher solubility.
714 see the discussion following equation 8:61.

superscripts, as in cb and cs to differentiate between the two sites709.

(b) There must be somewhere for the products to go without blocking the access of

reactants to the electrode. If the product is a solute, it leaves by transport away from the

electrode. If the product is a gas, it is produced initially as a solute, but once the solubility

of the gas in the solvent is exceeded, troublesome bubbles may form710. If the product is

a solid, it must be porous. Cases arise in which a solid product, though nonporous, is

semiconducting and itself supports a continuing reaction. An example is in the electro-

polymerization of pyrrole C4H4N to form polypyrrole (page 9). There are many examples

of porous products; the silver chloride produced by the anodic oxidation of silver metal in

a chloride medium was mentioned in the context of reaction 6:2. But there are numerous

counterexamples, too; the anodic oxidation of aluminum in an aqueous medium produces

an impervious layer of Al2O3, so the reaction ceases almost immediately.

(c) The electrode reaction must have sufficiently fast kinetics. The topic of electrode

kinetics occupies most of the remainder of this chapter.

(d) There must be an adequately conducting pathway through the circuit formed by the

ionic conductor, the two electrodes and the associated wiring. The ionic conductor is

usually the least conductive circuit element. With solutions in water or other solvents, it

is standard practice to add supporting electrolyte711 to improve the solution’s

conductivity712. A supporting electrolyte is usually a salt713, and enough714 should be added

that the concentration of the supporting ions far exceeds the concentration of the

electroactive ions (those that are reactants or products). Though it ranks first in

importance, the increase in conductivity is not the only beneficial effect of excess

supporting ions. The other benefits, and some drawbacks, are discussed on pages 199 and

200. Of course, no supporting electrolyte is needed if the ionic conductor is an ionic liquid

or a solid electrolyte.

(e) If the study is to be meaningful, no other electrode reaction should occur to a

significant extent in the vicinity of the null potential of the reaction in question. This

includes a prohibition on the supporting electrolyte or the solvent undergoing anodic

oxidation or cathodic reduction at nearby potentials. If an extreme potential is applied, the

solvent will inevitably undergo oxidation or reduction, leading to current-voltage curves
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715 Freedom from oxygen is needed because this dissolved gas can be cathodically reduced. Usually, prior to

the experiment, an inert gas (nitrogen or argon) is bubbled through a liquid electrolyte to displace oxygen.
716 The location of the potential limits of the window depend markedly, not only on the solvent, but also on the

nature of the electrode. For the system illustrated in Figure 7-2, the anodic limit is about 1.0 V for a platinum

electrode, but about 0.0 V for mercury.

2 22H O( ) 2e H ( ) 2OH ( )g aq   

2 2 36H O( ) 4e O ( ) 4H O ( )g aq   

of the typical shape shown in Figure 7-2 for an oxygen-free715 aqueous solution of

potassium nitrate. In the region where the current is virtually zero, the working electrode

is said to be totally polarized. The figure demonstrates that it is only within a potential

window716 that an electrode reaction may be studied without interference from solvent

electrochemistry.

Kinetics of a Simple Electron Transfer: the Butler-Volmer equation

Most electrode reactions take place through complicated mechanisms involving a

number of sequential steps. Such mechanisms are addressed in a later section. Here we

consider the simplest oxidation reaction in which a single electron is transferred to the

electronic conductor from a dissolved species R

R( ) e O( )soln soln 7:10

thereby creating O, a second dissolved species. R and O represent the reduced and oxidized

partners of a one-electron redox couple; either or both of them will be an ion. Examples

of reactions that probably occur in such an elementary one-step process are



Kinetics of a Simple Electron Transfer 131

717 usually. Isotopic exchange experiments can measure the individual rates.
718 “potential-dependent rate constant” appears oxymoronic but it is the name generally used, though rate

coefficient is also encountered. Even at constant potential, k is not truly constant because it incorporates an

activity coefficient. In solutions wherein the supporting-electrolyte-bolstered ionic strength is large,  (and

hence ) will vary little, at a constant potential, during an experiment.k


4 3
6 6Cr(CN) ( ) e Cr(CN) ( )aq aq  7:11

and the oxidation of ferrocene611 to the ferrocenium cation

5 5 2 5 5 2(C H ) Fe( ) e (C H ) Fe ( )soln soln 7:12

In choosing to address an electrode reaction in which the stoichiometric coefficients and

the electron number are all unity, and in which there is a single reactant and a single

product, we are, of course, choosing the simplest instance. The choice is not merely for

convenience, however, because we believe that electrode reactions that overall are more

complicated than 7:10, nevertheless proceed by steps that are often no more complicated

than 7:10.

Our concept of chemical equilibrium is of equality between forward and backward

reaction rates. When these opposing rates are unequal, their difference results in a net

reaction rate vnet. Applied to electrode reaction 7:10, the net rate is the difference between

the rates of the forward (oxidation) and backward (reduction) processes:

net ox rd( ) ( ) ( )E E E v v v7:13

An “(E)” has been placed following each term to emphasize that the value of each rate

depends on the electrode potential E or, to put it in another way, on the activity of electrons

in the electrode. The unit in which each rate is measured is mol m2 s1, because this is a

heterogeneous reaction (page 47). The net rate, which alone is directly measurable717, is

also the rate at which electrons are being generated, and therefore is proportional, through

Faraday’s constant, to the current density i. The expression

net ox rd

( )
( ) ( ) ( )

i E
E E E

F
  v v v7:14

conforms to the convention that anodic current at a working electrode is positive.

The rate vox(E) of the oxidative process in 7:10 will be proportional to the activity of

species R at the electrode surface, or equivalently to the product of R’s activity coefficient

and a concentration ratio:
s s o s

ox ox R ox R R ox R( ) ( ) ( ) / ( )E k E a k E c c k E c   v7:15

The final step in 7:15 has incorporated the activity coefficient R and the standard

concentration co into the rate constant kox thereby creating a new potential-dependent rate

constant718 with units of m s1. A similar treatment of the reductive rate leads tooxk

. When these two rate expressions are substituted into equation 7:14, thes
rd rd O( ) ( )E k E cv

important result



132 7 Electrode Reactions

719 In other texts you will find this equation written without the primes. Confirm, as in Web#719, that equation

7:16 is dimensionally consistent.
720 though it is often inappropriately called the “standard rate constant” and symbolized ko or ks. See Web#720

for a fuller description of ko and how it differs from ko.

s s
ox R rd O

( )
( ) ( )

i E
k E c k E c

F
  7:16

emerges719. Equation 7:16 is equally valid whether the oxidative rate exceeds its reductive

counterpart or vice versa. That is, the equation applies equally to the reduction reaction

O( ) e R( )soln soln 7:17

as it does to the oxidation 7:10. Result 7:16 shows how the current density depends on the

concentrations, at the electrode surface, of the members R and O of the redox couple, in

terms of two potential-dependent rate constants. Our goal in this section is to elucidate the

form of those potential dependences.

Firstly, however, let us examine the form adopted by equation 7:16 after a prolonged

null condition. Then the current density will be zero, the two surface concentrations will

have returned to their bulk values, and the potential will have acquired its null value.

Hence
b b

ox n R rd n O0 ( ) ( )k E c k E c  7:18

Moreover, in the absence of current, the Nernst equation 6:44
b

o R
n b

O

ln
RT c

E E
F c

 
   

 
7:19

will apply, and it may be combined with 7:18 into

o rd n
n

ox n

( )
ln

( )

RT k E
E E

F k E

 
   

 
7:20

By suitably adjusting the bulk concentration ratio, any potential may be made a null

potential, and therefore equation 7:20 must hold whatever the potential; that is:

o rd

ox

( )
ln

( )

RT k E
E E

F k E

 
   

 
7:21

One sees that at the formal potential E o the two rate constants are equal; this common

value is given the symbol ko and the name formal rate constant720: o o
rd ( )k k E  

o
ox ( ).k E 

Next, after dropping the (E) suffixes, equation 7:21 may be rearranged into

o
oox

o
rd

ln ln
kRT k RT

E E
F k F k

          
    

7:22

and differentiated with respect to E. This gives
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721 The symbol  is often used in the literature,  being reserved for what we denote as rd.
722 Carry out the required integration to derive 7:25, or see Web#722.
723 Rudolph A. Marcus , 1923 , Canadian-American theoretical chemist, Nobel laureate 1992; Noel S. Hush,

1925 , Australian theoretical chemist. See Web#723 for more information on the Marcus-Hush theory.
724 A parallel derivation can produce an equation similar to 7:26 with activities replacing concentrations and

without primes. Though preferable to a purist, such a relationship is hardly ever used in practice.

o
ox

o
rd

d d
ln ln 1

d d

RT k RT k

F E k F E k

    
    

    
7:23

The first left-hand term in 7:23 is named the reductive transfer coefficient and

represented by the symbol721 . The second left-hand term is the oxidative transfer

coefficient, which the equation shows to equal 1. Thus

o
ox

o
rd

d d
ln and 1 ln

d d

RT k RT k

F E k F E k

    
       

    
7:24

whence on integration722

o o o o
rd ox

(1 )
exp ( ) and exp ( )

F F
k k E E k k E E

RT RT

              
   

7:25

Alternative names for the dimensionless  and 1 quantities are symmetry factors

and charge-transfer coefficients. Though they are commonly derived by dubious

arguments based on vague energy profiles, it is seen here that their appearance is a

consequence of purely mathematical arguments. Those arguments throw no light on

whether or not  is a constant. As used in the Butler-Volmer equation described below, the

transfer coefficients are usually treated as empirical constants that sum to unity, with

experimental values typically clustering in the range between 0.3 and 0.7, and that is their

status in this book. The Marcus-Hush theory723 predicts that the transfer coefficient will

have a constant value close to 0.5 at potentials near Eo but that  may become potential

dependent at more remote potentials. Though the theory has proved of value in special

cases, our inability to study electron-transfer reactions over wide ranges of potential makes

further discussion of the distinction between the Butler-Volmer and Marcus-Hush

treatments generally rather moot.

With the transfer coefficients regarded as constants, equations 7:25 show that the

oxidative rate constant increases exponentially with potential, whereas the reductive rate

constant declines exponentially with potential. Figure 7-3 overleaf illustrates this behavior

graphically for two values of .

Substitution from 7:25 into equation 7:16 leads to the result724

   o s o s o
O R

(1 )
exp exp

I F F
i Fk c E E c E E

A RT RT

                  
    

7:26
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725 John Alfred Valentine Butler, 1899 1977, English electrochemist; Max Volmer,1885 1965, German

physical chemist. In addition to these scientists, the Hungarian electrochemist Tibor Erdey-Grúz, 19021976,

should also receive credit.
726 Derive equation 7:27 from 7:26 or see Web#726.
727 In 1000 mM NaCl, using a platinum electrode of area 9 mm2, at 25oC, measurements on the reaction

reveal ko and  values of 1.0 × 104 m s1 and 0.5. Show that the3 4
6 6Fe(CN) ( ) e Fe(CN) ( )aq aq   

exchange current density, when each hexacyanoiron ion has a concentration of 2.0 mM, is 19 A m2. Web# 727.
728 Demonstrate the truth of this statement or consult Web#728.
729 With special instrumentation, they may be measurable optically in certain cases.

This is the usual way in which the important Butler-Volmer equation725 is formulated, but

an alternative726 is
s s
O R

n n nb b
O R

(1 )
exp ( ) exp ( )

c cF F
i i E E E E

c RT c RT

     
        

    
7:27

where in, known as the exchange current density727, equals . Botho b b 1
R O( ) ( )Fk c c 

versions describe how the current density i depends on the electrode potential E and on the

two surface concentrations The Butler-Volmer equation reduces to differents s
O Rand .c c

versions of the Nernst equation under two circumstances: when the current density is zero,

and when the formal rate constant is very large728.

7:26 is an equation of some complexity. There are thirteen distinct quantities whose

symbols are either present in the equation or are closely associated with it. At this juncture

it may be useful to review the meanings and status of these quantities in a typical

electrochemical study. The table opposite provides such an appraisal. Generally one of the

variables shown in blue is imposed, the other blue variable being monitored. Values of the

two variables shown in green are inferred from the electrical observations during the

experiment, because there is no electrochemical way of measuring them directly729. There

are exceptions depending on the motive for the study, but frequently the object of the

experiment is to determine the value of one or all of the quantities shown in red.
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730 Occasionally, voltammetry (or polarography1305) is employed as a method of chemical analysis, the bulk

concentration of O or R being unknown and sought. Voltammetry has also been used to measure electrode

areas.
731 With ionic strength in particular, because of its effect on activity coefficients. Also with temperature.

Symbols Meanings Status during most experiments

F, R Faraday’s constant, gas constant
physical constants, known and

invariant

b b
R O, , ,T A c c

temperature, electrode area, bulk

concentrations of R and O

experimental parameters,

known730 and constant

Eo, ko, 
formal potential, formal rate

constant, transfer coefficient

unknown parameters, usually

treated as constants but subject

to mild variation731

I, E current, electrode potential
variables, either controlled or

measured

,s s
R Oc c

concentrations of R and O at the

electrode surface

variables, unknown and not

measurable electrochemically

The term may be thought of as the activity of electrons inoexp{ ( ) / }F E E RT 
e

a 

an electrode at potential E, compared with their activity at the formal potential E o. From

this viewpoint, the Butler-Volmer equation may be written

o s 1 o s
net R Oe e

i
k c a k c a

F
 

    v7:28

Note that  and 1 appear as powers and thereby play roles akin to fractional

stoichiometric coefficients. Equation 7:28 correctly indicates that increasing the activity

of electrons has two effects: it accelerates the reductive process and it retards the oxidative

process. If the electrode potential is made more negative, the transfer coefficient  is the

fraction of the increased electron activity devoted to increasing the reductive rate, while the

complementary 1 fraction serves to decrease the oxidative rate. The Butler-Volmer

equation, in the 7:28 version, closely resembles the equations describing the kinetics of

ordinary chemical reactions, as in Chapter 2. And, just as stoichiokinetic equations

usefully portray chemical reactions, so the representation

R ( 1)e e O     7:29

serves to describe both the stoichiometry and the kinetics of the simple R e O

oxidation. The “shape” of the rate law 7:28 is exactly as expected from the stoichiokinetic

equation 7:29. The only surprise, perhaps, is that the forward and reverse rate constants

are equal; this is a consequence of the electron activities being referenced to the formal

potential. Of course, apart from a change to arrows, rate law 7:28 and stoichiokinetic
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equation 7:29 are equally applicable to the cathodic reduction of O.

A word of warning about nomenclature! Thus far, we have been analyzing an

electrode reaction occurring in a single elementary step. Such reactions are rare. In the

next section, attention will be directed to reactions that involve a sequence of elementary

steps, electrochemical and chemical. During our analysis of such mechanisms, it will

transpire that the current generally obeys an equation of the same “shape” as 7:26 (or 7:27

or 7:28) but with modified terms. Confusingly, the name “Butler-Volmer equation” is also

given to such expressions. Moreover, the terms that replace the  and 1 are also

commonly referred to as “transfer coefficients”. Yet again, the phrase “exchange current

density” is used in the context of both one- or multistep reactions. In this book, we shall

endeavor to reduce the risk of confusion by including the adjective “composite” in names

that relate to multistep mechanisms and by attaching subscripts to  to denote composite

transfer coefficients.

A further word of warning. Except in potentiometry or in carefully designed steady-

state experiments (Chapter 12), time is an important factor in the study of electrode

reactions but, in the interest of introducing concepts gradually, its role has been sidestepped

in this chapter. All of the factors colored in blue or green in the table on page 135 are

liable to change with time. There are three ways in which time may enter the picture:

(a) The experimenter may decide to impose a time-dependent signal (such as a voltage

ramp, or an a.c. current) on the cell.

(b) Transport laws involve time, causing concentration profiles to evolve.

(c) Chemical and electrochemical reactions cause changes in concentrations with time.

These matters will be taken up in subsequent chapters.

Elsewhere you may find equations similar to 7:26 or 7:27 but written with an n

incorporated, so as to cater to a concerted transfer of several electrons

R( ) e O( )soln n soln 7:30

However, it is our position that there is no evidence to suggest that even a reaction as

stoichiometrically simple as
3Tl ( ) 2e Tl ( )aq aq  7:31

does, in fact, occur by concerted electron transfer. Multiple electron transfers can be

explained by successive events as in the following section.

For a simple surface-confined reaction

R( ) e O( )ads ads 7:32

the formalism of this chapter applies. The only changes are that the electrode reaction rate

constants have the s1 unit, rather than m s1, and that volumetric concentrations at the

electrode surface cs are replaced by areal surface concentrations, , with mol m2 units.

On page 269 the voltammetry of surface-confined reactions is briefly discussed. Such

reactions, which often have a bearing on biochemical processes, are of increasing

importance in electrochemistry.
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732 though not uncommonly, because of experimental constraints, only one can be established reliably.
733 Note that we assume the mechanism for the reduction mechanism to be the converse of that for the oxidation

reaction. One can conceive of mechanisms in which this is not so but a thermodynamic argument, known as

the principle of microscopic reversibility, proves otherwise. That is not to say, however, that different

mechanisms may not apply at different potentials.
734 As little as 120 mV from En is often adequate. Confirm this for the simple reaction 7:10, or see Web#734.

Multistep Electrode Reactions: studying kinetics to elucidate mechanisms

It is from studying the kinetics of an electrode reaction that evidence concerning the

reaction’s mechanism can most easily be gleaned. The kinetics is summarized by the rate

law that mathematically describes how the current density is influenced by concentrations

and by the electrode potential; for example, equation 7:26 is the rate law for the simple

electron transfers described in the prior section. From multiple experiments at various

potentials and with various concentrations of reactants and products, the experimental rate

law may be determined. As for the simple case discussed in the previous section, this

composite rate law will generally consist of two732 rate terms: a positive oxidative moiety

and a negative reductive moiety733, both usually potential dependent

net ox rd

i

F
  v v v7:33

Though they are not independently measurable electrochemically, we again view the

current density to be composed of two components: a positive oxidative current density iox

and a negative reductive current density ird

net rd ox ox rdi F F F i i    v v v7:34

Figure 7-4 is a diagram showing how these partial current densities combine to form a

typical graph of current density versus potential.

As the diagram implies, at potentials remote734 from the null potential the current

density is dominated by one or other of the partial currents and this fact opens up the
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735 Julius Tafel, 18621919, a Swiss-German organic chemist who discovered the log{|i|} versus E relationship

empirically.
736 Often in the literature this term refers not to d(ln{|i|})/dE, but to dE/d(log10{|i|} and equals 2.303RT/(F),

or about 59 mV divided by the composite transfer coefficient at 25oC. What is the anodic Tafel slope for the

one-step reaction? Check at Web#736.O e R 

opportunity of deciphering the experimental rate law by measuring ird and iox separately.

This procedure is associated with the name of Tafel735. Because electrode reaction rates

vary exponentially with potential, the Tafel approach involves plotting the logarithm of the

absolute value |i| of the current density versus potential. This produces graphs resembling

Figure 7-5, with linear portions. The slopes of those linear segments yield the composite

transfer coefficients

   
ox rd

ox rdln and ln
i i i i

RT RT
i i

F E F E 

  
    

 
7:35

The slopes themselves are called Tafel slopes736 and are a prime source of information

about electrode reaction mechanisms. They show that, as far as the potential-dependence

is concerned, the following proportionalities exist:

ox rd
ox rdexp and exp

F F
i E i E

RT RT

    
     

   
7:36

In addition to investigating the potential dependences, the experimental study of the

kinetics of an electrode reaction should include a determination of how the rates of the

reductive and oxidative current density moieties depend on the concentrations of the

species participating in the reaction. For the overall reduction

A B 2e 2Z  7:37

to take an example, one would expect ird to reflect the concentration of A at the electrode

surface. But this dependence is not necessarily a proportionality to itself; ird could wells
Ac

be proportional to raised to some power other than unity, perhaps tos
Ac s 2

A( ) ,c s 1/ 2
A( ) ,c
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737 but less straightforwardly in practice. The experimenter has direct control over bulk concentrations only.

or even In principle737, the appropriate power can be found from thes 0
A( ) ,c s 1

A( ) .c 

operation

rd
A,rds

A

ln{ }

ln{ }

i

c

 
 


7:38

which yields the orderA,rd of the reductive partial current density with respect to reactant

A. The surface concentrations of B and Z likely play roles in determining the ird partial

current, too. Similar considerations apply to the concentration dependences of iox. Hence

the kinetic study should include a hunt for the various reductive and oxidative kinetic

orders; that is, the numerical values of the exponents represented by the ’s in the

proportionalities

A ,ox B,ox Z,ox A ,rd B,rd Z ,rds s s s s s
ox A B Z rd A B Z( ) ( ) ( ) and ( ) ( ) ( )i c c c i c c c

     
  7:39

Determining the experimental rate law for the electrode reaction 7:37 thus devolves into

finding eight dimensionless numbers – the six ’s and the two ’s – in the experimental

reductive and oxidative rate laws:

A ,ox B,ox Z,ox

A,rd B,rd Z,rd

s s s ox
ox A B Z

s s s rd
rd A B Z

( ) ( ) ( ) exp

( ) ( ) ( )

genera

ex

l

rate

p law

F
i c c c E

RT

F
i c c c E

RT

  

  

  
  

  


      

7:40

A requirement is that setting iox and ird equal each other in magnitude, and thereby invoking

the null potential, in 7:40, produces a result that is compatible with the Nernst equation.

Having determined the experimental rate laws, how can they be used to investigate the

mechanism? Figure 7-6 will help to explain the process. Relying on chemical savvy,
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738 Not uncommonly intermediates are radicals; that is species that defy the usual rules of chemical valency.

Unlike most organic species, be they ionic or neutral, organic radicals have an odd number of electrons, the

unpaired electron being indicated by a superscript dot in such formulas as H3C
! or HO!. Radical anions have

both an unpaired electron and a negative charge.
739 It might be expected that the designation “slow step” would mean the step proceeding at the slowest rate.

In kinetics terminology, however, it describes the step with the smallest rate constant, that is, the one that has

the potential to be slowest. When locked into a mechanism, each step generally proceeds at the same rate.

Mechanistic equations Step Modified equations

(1)A e I  A I e  

(2)I B J Z  I B J Z   

J e K  ˆ(3) 3 3J e ( 1)e K     

(4)K Z Z K

sumA B 2e 2Z   3 3A B (1 )e ( 1)e ZZ         

possible mechanisms are envisaged and the rate law appropriate to each is deduced. As the

figure illustrates, each putative mechanism (three in the chart) is analyzed to find the rate

law which that mechanism predicts. Each mechanistic rate law is then compared with the

experimental rate law. Disagreement rules out that mechanism; agreement shows that the

mechanism is possibly correct. No mechanism may be proved unequivocally, though

persuasive circumstantial evidence can accumulate.

The electrode reaction 7:10 that was addressed in the prior section had the simplest

possible mechanism: it occurred in a single step. Steps in a multistep mechanism may be

chemical or electrochemical. Each step is itself a reaction; it has its own rate constants and,

if it is an electrochemical step, its own formal potential and transfer coefficients. As well

as involving reactants and products, these steps usually involve intermediates738,

ephemeral species that are created in one step and consumed in another. As discussed for

chemical reactions in Chapter 2, it is nearly always possible to arrange the steps in a logical

sequence such that an intermediate created in one step is consumed in a step later in the list.

Conceivably, an intermediate might be transported away from the electrode or be involved

in some side reaction, but no such events are considered here.

Continuing with the contrived example of an overall reaction, oneA B 2e 2Z  
possible four-step mechanism – involving three intermediates I, J and K – is that listed on

the left-hand side of the table below. Of course the mechanistic steps, of which two are

chemical and two electrochemical, are required to add up to the overall stoichiometry. In

numbering the steps, we have “hatted” the third, to indicate that this is the “slow step”739
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740 Of course it is possible for two steps to be comparably slow. However, considering that the timescale for

reactions ranges from nanoseconds to centuries, this is unlikely.
741 For a justification of this approximation, see Web#741.
742 The algebra appropriate to the mechanism proposed for reaction 7:37 will be found at Web#742.
743 Employ the stoichiokinetic construct method to elucidate the rate laws appropriate to the three mechanisms,

detailed on page 78, governing hydrogen evolution from aqueous solutions on different metals. See Web#743.

or rate-determining step (page 48). All the other steps are fast in comparison740 and can

therefore741 be treated as at equilibrium. How can one construct the overall rate law from

the mechanism? That is, how are the procedures represented by red arrows in Figure 7-6

actually performed? Elaborate algebra may be applied on a case-by-case basis742 but a

construct operating through the stoichiokinetic principle (pages 4950), works well in most

cases743. It involves eight straightforward rules that will be illustrated by reaction 7:37 and

the table shown on the facing page:

(a) Write the equations of all pre-slow-step reactions, that is Steps (1) and (2) in the

example, as equilibria, by transferring all species from the right-hand side to the left,

introducing negative signs on transfer.

(b) Write the equation of the rate-determining step, here Step (3), in the normal way.

If this is an electrochemical step, split the electron in the manner of equation 7:29.

(c) Write the equations of all post-slow-step reactions, just Step (4) in the example, by

transferring species to the right-hand side, introducing negative signs on transfer.

(d) Leaving the rate-determining step unchanged, multiply or divide other equations, if

necessary (it is unnecessary in the example) by a small integer (seldom other than 2), so

that all intermediates disappear on implementing rule (e).

(e) Add the modified equations to generate the stoichiokinetic equation. Combine and

cancel terms on addition, but do not combine terms on one side of the equation with those

on the other. The stoichiokinetic equation provides the key to formulating the rate law.

(f) The terms A+BZ on the left-hand side of the stoichiokinetic equation, show that the

reductive moiety of the reaction proceeds at a rate proportional to the concentrations of A

and B, and inversely proportional to the concentration of Z. That is, .rd A B Z/c c cv

Similarly the right-hand terms show that ox Z .cv
(g) The stoichiometric coefficients of the electrons in the stoichiokinetic equation

reveal the potential dependences of the reductive and oxidative rates. Thus rd v

and3exp{ (1 ) / }FE RT   ox 3exp{ ( 1) / } .FE RT   v

(h) From the proportionalities, an expression for the current density, which equals

may finally be written down asox rd( ),F v v
s s

s 3 A B 3
ox Z rd s

Z

(1 ) (1 )
exp exp

i F c c F
k c E k E

F RT c RT

           
   

7:41

by supplying appropriate rate constants. According to this mechanism, the composite

transfer coefficients ox and rd, will equal 13 and 1+3 respectively and are thereby
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744 At 25oC, the Tafel slopes dE/d(log10{|i|}) will be close to 120 mV and 40 mV respectively.
745 Confirm this, or see Web#745.

expected to have numerical values close to 0.5 and 1.5 respectively744. Note the unexpected

retarding effect of Z on the reductive moiety. Note also that 7:41 meets the requirement745,

when i  0, of being compatible with the Nernst equation for reaction 7:37. The andoxk

terms are composites of chemical and/or formal rate constants, formal potentials, andrdk

other constants but, because they are of no mechanistic utility, we shall not analyze them

further.

As an interesting real example, consider the cathodic reduction of 1-bromonaphthalene,

C10H7Br in an inert organic solvent. Representing the naphthyl C10H7 core by Nl, the

stoichiometric equation of the reaction

N Br( ) + 2e N ( ) Br ( )soln soln soln  l l7:42

is simple but the experimental rate law turns out to be surprisingly elaborate. A three-step

mechanism that can explain the experimental facts is given in the left-hand column of the

following table. It involves a free radical and a radical anion738 as intermediates. Rule (d)

must be implemented carefully in this case. The rate law predicted by the mechanism is

s s s s1 1
ox N Br rd N BrN Br

(1 )
exp exp

F Fi
k c c c E k c E

F RT RT
 

         
   

l ll
7:43

with the conclusion that ox and rd sum to 1, and not the 2 that might have been expected

from the stoichiometry of reaction 7:42.

Mechanistic equations Step Modified equations

N Br e N Br  l l ˆ(1) 1 1N Br e ( 1)e N Br      l l

(2)1 1 1
2 2 2N Br N Br  l l 1 1 1

2 2 2
N Br N Br     l l

(3)1 1 1 1
2 2 2 2N Br N N Br N   l l l l

1 1
2 2

1 1
2 2

N Br N

N Br N

 



 

 

 l l

l l

sum1 1 1
2 2 2N Br e N Br   l l

1 1
1 1 2 2

1
2

N Br e ( 1)e N + Br

N Br

      



l l

l

Because the molecules are held together by electron-pair bonds, cathodic reductions and

anodic oxidations of organic compounds usually involve even numbers of electrons. The

mechanism shown on the left in the next table has found widespread application to two-

electron oxidations

R 2e O 7:45
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Mechanistic equations Step Modified equations

(1)R e I  R e I  

I J ˆ(2) I J

(3)J e O  e O J  

sumR 2e O  R e e O  

Two intermediates (perhaps radical cations) appear in the mechanism, in which the

interconversion of two intermediates is the slow step. The stoichiokinetic method leads to

the simple rate law

s s
ox R rd Oexp exp

i F F
k c E k c E

F RT RT

        
   

7:46

with both composite transfer coefficients equaling unity. However, were Step (1) to be rate

determining, ox  0.5 and rd  1.5, the converse being the case if Step (3) determines the

rate.

A notation that is commonly adopted in categorizing complex electrode mechanisms is

composed of the letters E and C, standing for “electrochemical” and “chemical”. Thus the

symbol describes the mechanism of which 7:41 is the rate law, the “hat” showingˆECEC

which of the four steps is rate determining. Likewise describes the mechanism toˆECE

which 7:46 relates.

As a final example, consider the mechanism listed on the left belowˆCCE

Mechanistic equations Step Modified equations

(1)3 2I ( ) I ( ) I ( )aq ads aq  1 1 1
3 22 2 2

I ( ) I ( ) I ( )aq ads aq   

(2)2I ( ) 2I( )ads ads 1
22

I ( ) I( )ads ads 

I( ) e I ( )ads aq   ˆ(3)
3

3

I( ) e I ( )

(1 )e

ads aq 



 

 



sum3I ( ) 2e 3I ( )aq aq   

1 1
3 32 2

3

I ( ) I ( ) e I ( )

(1 )e

aq aq aq   



  

 



for the reduction of the triiodide ion in aqueous solution to the iodide ion I. The3I


predicted rate law is
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3

s

Is 3 3
ox rd sI

I

(1 )
exp exp

ci F F
k c E k E

F RT c RT







          
   

7:47

which leads to an expectation that the composite transfer coefficients are related by ox 

13 and rd  3 to the transfer coefficients of Step (3) and will therefore sum to 1, rather

than the 2 that would have been expected from a concerted electron transfer. The

experimental values of ox  0.78 and rd  0.20, do indeed sum to close to unity, even

though their individual values are abnormally far from the usual 0.3 – 0.7 range. Moreover,

the predicted concentration dependences match experiment. Evidently, the mechanism

predicts the experimental rate and is likely to be correct.

Because of its simplicity, we shall use the simple reaction asR( ) e O( )soln soln 

the generic representation of an electrode reaction in much of this book, notwithstanding

our belief that it is a poor descriptor of most electrochemical reactions. It does, however,

provide a framework that can be adapted to suit more realistic electrode mechanisms.

Summary

Though the feasibility and direction of an electrode reaction are governed by the applied

voltage and the Gibbs energy change accompanying the cell reaction, thermodynamics

provides no information on the rate of the reaction. The stoichiometry of an electrode

reaction satisfies Faraday’s law, but the equation for the reaction may be written in several

ways, only one of which also conveys information correctly about the kinetics of the

reaction. Most electrode reactions occur by multistep mechanisms, but the simplest

electrode reactions involve the transfer of a single electron between the electrode and an

electroactive solute and take place in a single bidirectional step. Both the forward and

backward directions of this process are influenced by the electrode potential, as conveyed

by the Butler-Volmer equation

s s o s o s o
ox R rd O R O

(1 )
exp ( ) exp ( )

i F F
k c k c k c E E c E E

F RT RT

                   
    

7:48

which applies to the or reaction. TheR( ) e O( )soln soln  O( ) e R( )soln soln 

rates of multistep electrode reactions are governed by the mechanism of the process, which

is not known a priori and can never be established with absolute certainty. The “slowest”

step in the mechanism, which may or may not involve electrons, is crucial in determining

the reaction rate. Information about the mechanism can be gleaned from how the current

depends on potential and on the surface concentrations of all the nonunity-activity species

that participate in the reaction. This information is summarized by the values of ox and

rd (which sum to an integer) and by the stoichiokinetic equation, which must match the

stoichiometry of the overall reaction, as well as the experimental orders.
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8

Transport

In most electrochemical cells, reactants must travel to reach the electrode and/or

products must be transported from the electrode. To proceed in our study of

electrochemistry, we now need to look in some detail at the various ways in which such

transport occurs and the laws it obeys. Though transport occurs in gases801, and even in

certain solids, it is the transport of molecular and ionic solutes in liquids, and especially in

aqueous solutions, that will be our primary concern. This is sometimes called “mass

transport” to distinguish it from other kinds of transport, such as heat transport or

momentum transport, but for simplicity and because the transport of a solute does not

necessarily imply the transport of mass, we shall use the unqualified term “transport”.

Flux Density: solutes in motion obey conservation laws

Transport is the motion of a solute though space. The flux

density802 of a species i (an ion or a molecule), quantifies the motion;

it is measured in the SI unit of mol m2 s1 and is symbolized ji in this

book. Flux density can be defined by

i

definition of

flux densit

d1

yd
in

j
A t

8:1

in terms of the number dni of moles of i crossing a surface of area A

in a time interval dt. The area in question is perpendicular to the direction of motion. Flux

density is a vector quantity, but in electrochemical usage it is always measured in the

direction in which the transport occurs – that is, along the flux lines – being positive or

negative in accordance with the choice of coordinate direction. Illustrated above is
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803 Confirm that each of equations 8:1, 8:2, and 8:3 is dimensionally consistent. See Web#803.
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Equiconcentration surfaces are planes in the case of Figure 8-1 and portions of spheres for Figure 8-3.

transport for which ji is positive. In general, the flux density depends on position and time,

and we will frequently use a notation such as to indicate these dependences. Fluxi ( , )j t

density equals the product of the concentration ci of a solute species i and its average

velocity in the direction of motion:iv

i i ij c v8:2

The flux densities of all charged species contribute to the current density through the

relationship

i i
i

i F z j 8:3

where each z is a charge number803.

If transport of a species is occurring solely along parallel flux lines in the x direction,

as in Figure 8-1, then the amount of that species in any narrow wafer of volume V lying

between x and x + dx will change from its initial value Vc(x,t) in response to flux densities

in and out of the wafer. In fact

new old influx efflux
amount amount from left to right
       

         
       

8:4

or symbolically, with A denoting the surface areas across which transport occurs

( , d ) ( , ) ( , )d ( d , )dVc x t t Vc x t Aj x t t Aj x x t t    8:5

Such transport is described as planar804 because the equiconcentration surfaces are planes.

Because V  Adx, equation 8:5 may be rearranged into

( , d ) ( , ) ( , ) ( d , )

d d

c x t t c x t j x t j x x t

t x

   
8:6

or, in the notation of the partial differential calculus,

planar transport
c j

t x

 
 

 
8:7

This remarkably simple equation is known as the conservation law for planar transport.

The flux lines are not parallel in Figure 8-2 and, for transport in this more general

circumstance, the conservation equation takes the more elaborate form

d
ln{ ( )}

d

c j
j A

t

 
  

 


 
8:8

because account must be taken of the change in area of the equiconcentration surfaces805
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806 The general conservation law is derived in Web#806. Equations 8:7, 8:8, and 8:9 are referred to as

continuity equations.
807 Confirm this or see Web#807.
808 Confirm that the four terms in 8:11 have the same SI unit. See Web#808.

with the coordinate Equation 8:8, the general conservation law, is derived elsewhere806..

As an example, consider the case illustrated in Figure 8-3, in which the flux lines radiate

in three dimensions from a single point. Then the equiconcentration surfaces are spherical

or hemispherical and their areas increase with the square of the radius r, so that

dln{A(r)}/dr equals807 2/r. Therefore, in this case, equation 8:8 becomes

spherical transp
2

ort
c j j

t r r

 
  

 
8:9

This is the conservation law for spherical transport.

The conservation law requires amendment if the species in question is being created

or removed within the transport medium. For instance, if the homogeneous chemical

reaction

A( ) B( ) Z( )
k

k
soln soln soln





 



8:10

takes place in a solution through which the planar transport of species A is occurring, then

the conservation law 8:7 needs supplementation by two terms:

A A
A B Z

c j
k c c k c

t x

 
    

 

 
8:11

where are concentration-based rate constants (respectively bimolecular andandk k 
 

unimolecular – see Chapter 2)808.
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809 Less commonly, electroosmotic force (Chapter 13) may be the cause of convection.
810 The erratic motion of molecules in a liquid, inferred from the random motion that they impart to much larger

suspended particles, as first observed microscopically by Robert Brown, 17731858, Scottish botanist.

Three Transport Modes: migration, diffusion and convection

There are three distinct ways in which a solute in a solution may move. Each mode of

transport is associated with a gradient of a causal agent:

occurs in response to a gradie

migration electrical potential

diffusion activity or concennt o tati

con

on

vection pressure

f

 
  
 
 
  

With one exception, the motion is from a higher to a lower value of the property in

question. It is the migration of anions that is the exception: they migrate towards higher

(more positive) electrical potentials.

The force that causes migration is provided by an electric field and energy is dissipated

by the motion, appearing as heat. Similarly, a hydrostatic force usually809 instigates

convection. There is no comparable force that can be identified with diffusion, which is

driven by the entropy increase that accompanies the passage of solute into a more dilute

region of the solution. Stated differently but equivalently, diffusion arises from the

brownian motion810 of the solute molecules in a liquid; this jostling inevitably leads to

more molecules leaving a concentrated region for a more dilute adjacent region than are

recouped by the reverse journey.

A common characteristic of both migration and diffusion is that, in these transport

modes, the solute moves through the solvent, which remains more-or-less static. In

convection, the solute moves by being entrained with the solvent in a moving solution.

Thus convection is very different from the other modes in being closely dependent on the

geometry of the vessel which contains the liquid. Convection is often used, particularly in

electrosynthesis, as a rough-and-ready means of accelerating transport. Only with favorable

cell geometries can convection be modeled with help from the laws of hydrodynamics. In

most other circumstances, convection is an unwelcome complication that investigative

electrochemists try to avoid. In this context, we distinguish between forced convection,

deliberately caused by stirring, pumping or sonicating640 the solution, and natural

convection, the unwanted motion of the solution caused by vibrations or density gradients.

Three distinct sections of this chapter address each of the three modes separately.

Rarely in electrochemistry, however, is one mode of transport operative in isolation. Even

forced convection, which is a very efficient transport mode, nevertheless calls upon the

other modes to transfer solutes to an electrode. Moreover, migration can induce diffusion

and vice versa. Indeed, migration and diffusion may be viewed as two manifestations of

the same phenomenon. Recall that energy is expended in migration, but that entropy is
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811 though the effect can be significant for large ions at high a.c. frequencies.

812 The alternative definitions and of “mobility” are also in use, so take care ini/ , /( ),X z X| |i iv v i 0/( )z Q Xiv

comparing information from diverse sources.

increased in diffusion. Both transport modes thus lead to a decrease in Gibbs energy and

the tendency towards this decrease can be viewed as the cause of the transport. Following

this line of reasoning leads to relationships that will be discussed on page 159. For the

present, however, we shall regard the three transport modes as distinct and operating singly.

That migration affects only ionic solutes, whereas all solutes are prone to diffusion and

convection, is one important distinction among the transport modes. Another is a

consequence of Newton’s105 laws of motion. Motion cannot start instantaneously: the

moving body must be accelerated up to its terminal velocity. The time required by this

acceleration period depends on the mass being accelerated. The consequential delay is so

trivial811 for migration that it can be ignored in electrochemistry: as soon as the switch is

thrown, electrons and ions jump into steady motion almost instantaneously. This is not the

case with natural convection, however. Large quantities of solution must be set in motion,

and the inertia is considerable. This is a fortunate happenstance in voltammetry (Chapters

12, 15, and 16), for it gives the experimenter as long as 100 seconds before there is a need

to worry about the effect of density gradients.

Migration: ions moving in response to an electric field

The term mobility was introduced on page 19 where it was defined812 as the ratio of

the average velocity of an ion to the electric field that elicits its motion.

ii
i definition of mobilityu

X


v
8:12

The migratory flux density of an ion is given by an equation that combines this definition

with equation 8:2 into

mig
i i i i i

d

d
j u c X u c


  


8:13

Mobilities change somewhat with concentration and those listed in the second column of

the table overleaf are for infinite dilution, as indicated by the uo notation. Notice that the

mobilities of most common inorganic ions in water are in the vicinity of 107 m2 V1 s1 in

magnitude. This may appear to be slow, for it implies that an ion moves only 9 mm in a

day under a field of one volt per meter. On a molecular scale, however, the speed is

respectable: this migrating ion rushes past 300 water molecules in one second.

Two features become clear on inspection of the tabulated mobilities. Firstly, contrary

to the expectation that doubly charged ions might migrate twice as fast as singly charged
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813 Sir George Gabriel Stokes, 18191903, Irish-born mathematician and physicist. According to Stokes’ law,

how fast will a mercury droplet of volume 0.050 mm3 fall through water after it has acquired a constant speed?

See Web#813.
814 from the density of salt crystals of known packing, generally assuming anion-cation contact.

i
9 o

i
2 1 1

10

m V s

u
 


stokes
i

pm

R cryst
i

pm

R

Li+(aq) 40.1 239 68

Na+(aq) 51.9 183 97

K+(aq) 76.2 125 133

Rb+(aq) 80.6 118 147

Cs+(aq) 80.0 119 167

76.2 125 1434NH ( )aq

H3O
+(aq) 362.2 26 –

Mg2+(aq) 54.9 347 66

Ca2+(aq) 61.6 309 99

Sr2+(aq) 62.5 304 112

Ba2+(aq) 65.9 289 153

Zn2+(aq) 54.7 348 74

F(aq) 57.4 166 133

Cl(aq) 79.1 120 181

Br(aq) 80.9 118 196

I(aq) 79.6 119 220

OH(aq) 205.2 46 –

ions, they do in fact migrate more slowly.

Secondly, and quite unexpectedly, the

mobilities of the H3O
+(aq) and the OH(aq)

ions are well out of line with the others.

Before analyzing these experimental values

in greater detail, let us consider how

mobilities might be predicted. If we imagine

the ions as small spheres of radius R, moving

through a viscous medium such as water

under the action of a force f, they should

behave similarly to small metallic spheres

falling through the medium under the force of

gravity. Those falling spheres closely obey

Stokes’ law813 in acquiring a terminal

velocity of

Stokes’ law
6

f
=

R
v8:14

where is the viscosity of the medium (8.937

× 104 kg m1 s1 for pure water at 298 K).

Because the force fi experienced by a

migrating ion i has a magnitude of ziQ0X, we

expect a migratory velocity of

i 0i
i

i i6 6

z Q Xf

R R
 

 
v8:15

and this prediction may be recast into an

equation that allows the radius of the

migrating ion to be calculated. Thus, making use of definition 8:12,

i 0 i 0
i o

i i6 6

z Q X z Q
R  

 v u
8:16

Values calculated by this Stokes’ law formula from mobilities, listed in the second column

above, are given in the third column and compared, in the fourth column, with ionic radii

calculated from crystallography814. For the largest singly charged ions, the agreement is not

bad, considering the diversity of the measurement techniques. One very evident paradox

is that proceeding through the sequence of alkali metal cations Li+  Na+  K+  Rb+, or
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815 Probably 3 for H3O
+(aq), 4 each for F(aq) and Zn2+(aq) and 6 for Mg2+(aq), but different methods of

assessing these hydration numbers give somewhat different values.
816 Christian Johann Dietrich Grotthuss (he later went by the name Theodor Grotthuss), 17851822, Lithuanian

electrochemist and photochemist. Predating ions, his explanation was based on the reversible dissociation of

H2O molecules into atoms.
817 Friedrich Wilhelm Georg Kohlrausch, 18401910, German physical chemist.
818 The conductivity of solutions of weak electrolytes (page 41) follows a different pattern, because the

equilibrium that exists in these cases is displaced. See Web#818. Interpreting this behavior led Friedrich

Wilhelm Ostwald (18531932, Latvian physical chemist, 1909 Nobel laureate for his work on catalysis and

kinetics) and Arrhenius232 towards our current view of ionic solutions.

the alkaline earth sequence Mg2+ Ca2+ Sr2+ Ba2+, during which the crystallographic

radii steadily increase, we see that the Stokes’ radii steadily decrease! A similar, though

less pronounced, effect is observed for the halide anion sequence F  Cl  Br  I.

This, and the doubly-versus-singly charged anomaly noted earlier, is undoubtedly due to

the hydration of the ions (page 41), being particularly intense for small and multiply

charged ions. When they migrate, small ions do not travel alone, but are accompanied by

a coterie of water molecules815. With the hydration effect taken into account, the

crystallographic radius exceeds the Stokes-based radius somewhat. This may be due to the

moving ion finding it easier to penetrate the rather open structure of water than does a

sphere whose size vastly exceeds that of the water molecules.

The anomalies of the hydronium and hydroxide ions are explained by the Grotthuss

mechanism816, illustrated in Figure 8-4. In addition to moving as intact particles through

the water, these ions are able to simulate motion by a chemical change of identity. In other

solvents, the hydronium and hydroxide ions migrate with typical mobilities.

It was Kohlrausch817 who observed that the increase with concentration in the

conductivity of a solution of a strong818 electrolyte was not exactly linear. Interpreted in

terms of mobilities, his finding was that the ionic mobilities decline as the square-root of

the electrolyte concentration. The presence of foreign ions also slows the migration of a
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819 Lars Onsager, 19031976, Norwegian-American physical chemist; Nobel laureate 1968 for his discovery

of reciprocity relationships in thermodynamics.
820 For a binary electrolyte comprised of cation i and anion j, it predicts that 2

A i18 / 1N RT z F     

.o 2 2 o o o o
j i i j i j i j i i j j/[2 (1 )] where ( ) /[( )( )]z F u h RT h h z z u u z z z u z u      

821 Hans Falkenhagen, 18951971, German physical chemist, member of the productive European scientific

team that included Debye, Hückel, and Onsager.

particular ion i, and it turns out that the mobility decline follows the square root of the ionic

strength (page 41) through a constant :
o

i iu u   8:17

An explanation of this behavior and a theoretical basis for  comes from the work of

Onsager819 and his colleagues. Their mathematical treatment, which is based on the same

central-ion-plus-ionic-cloud model as the Debye-Hückel theory, is elaborate820 and will not

be presented here. The mobility decline is attributed to two effects, both of which

contribute to , but with opposite signs. The so-called electrophoretic effect arises from

the electrostatic drag that the moving central ion experiences from the ionic atmosphere

trying to move in the opposite direction. The

relaxation effect, associated with the names of

Debye241 and Falkenhagen821, is caused by the

moving central ion no longer being centrally located

within its ionic cloud; this asymmetry leads to an

additional electric field, tending to increase the ion’s

velocity.

A straightforward conductivity measurement of

a salt solution reveals the difference between the

mobilities of the cation and the anion, the latter

being negative. To take an example, if  is the

conductivity of a calcium nitrate solution,

of concentration c, then it2
3Ca ( ) 2NO ( ),aq aq 

follows from equation 1:30 that

2+
3Ca NO 2

u u
Fc




 8:18

Finding individual mobilities is less easy, but the

method described below can accomplish this. Once

one single mobility has been measured, all others

become accessible through conductivity measure-

ments and equations such as 8:18.

Figure 8-5 illustrates the simple apparatus used

in the moving boundary method of measuring

mobilities. In the diagrammed example, a solution
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822 For his pioneering work in electrophoresis the Swedish chemist Arne Wilhelm Kaurin Tiselius, 19011971,

earned a Nobel prize in 1948.

of hydrochloric acid overlies a solution of copper(II) chloride in a long tube of known

cross-sectional area A. The current I flowing between the two electrodes (Ag*AgCl could

be used) is measured, the applied d.c. voltage being large enough that the motion of the

boundary can be conveniently observed. The cations Cu2+(aq) and H3O
+(aq) slowly migrate

upwards. The Cl(aq) ions, which alone carry current across the boundary, migrate

downwards. Because the hydronium ion has a greater mobility than the copper(II) ion, and

because the denser solution occupies the lower segment of the tube, the boundary remains

sharp. No significant concentration changes occur in the two solutions, so the upward

velocity of the boundary must match the average velocities of the copper and hydronium

ions:

2+ 2+ 2+ 2+

+ + + +
3 3 3 3

L L L

Cu Cu Cu Cu

boundary U U U

H O H O H O H O

( / ) /( )

( / ) /( )

X u i u Iu A

X u i u Iu A

      

     

v
v

v
8:19

where the L and U superscripts relate to the lower and upper segments of the tube. Though

the analysis of the moving boundary method is usually presented in terms of transport

numbers153, the equations above show that a determination of the velocity of the boundary,

together with other easily measured quantities, can lead directly to the mobilities of both

cations.

The moving boundary experiment is an example of electrophoresis822, a family of

methods in which charged particles migrate under an electric field. The particles may be

simple ions or much larger charged particles, frequently ones of biochemical or biomedical

interest. In a typical electrophoresis experiment, a solution containing several charged

particles is injected near one end of a tube, along which a strong electric field exists.
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823 Adolf Eugen Fick,18291901, German physiologist who studied diffusion through membranes.
824 Note that this is the same SI unit as for permeability (page 80). In a sense, diffusivity is the permeability of

an unconfined solvent.

Because they have different mobilities, the particles travel at differing speeds along the tube

and arrive at different times at the detector, which is positioned near the other end. When

the polarity is as shown in Figure 8-6, the apparatus is designed to investigate positively

charged particles. Many detection methods exist, and most allow a quantitative assessment

of the amount of each species passing the detector, so permitting both the identification of

the particles present in the sample (from its residence time between injection and detection)

and measurement of its concentration (from the detector output for a known injection

volume). The carrier electrolyte solution is usually a buffer and added resolution is often

possible by judicious selection of the pH. A popular version is capillary electrophoresis,

in which the tube is narrow and through which solution travels by electroosmosis (Chapter

14), but other versions employ gels or porous paper as the electrophoretic medium.

Diffusion: Fick’s two important laws

Diffusion occurs in response to a gradient of activity and the diffusive flux is

proportional to that gradient.

dif i
i

a
j





8:20

However, as in chemical kinetics (page 51) and for a similar reason, diffusion is almost

always treated as a response to a gradient of concentration and is considered to obey

dif i
i i Fick’s first law

c
j D


 


8:21

where Di is the diffusivity (or diffusion coefficient) of the species in question. It was in

the form of equation 8:21 that Fick823 enunciated what is now called Fick’s first law. The

diffusivity Di has the SI unit824 of m2 s1 and is regarded as an empirical constant with a

value that depends on the solvent and, to some extent, on the concentrations of all solutes,

including i itself, in solution. A listing of some diffusivities, primarily for small ions and

molecules in water, will be found on page 388; a typical Di is close to 109 m2 s1.

The coordinate in equation 8:21 is measured along the diffusive flux lines and, if

these are parallel as in Figure 8-1, then equations 8:7 and 8:21 may be combined as follows

2

2

Fick’s second law

planar transport

c j

c ct x
D

c t x
j D

x

  
     

 
   

 

8:22
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825 Derive Fick’s second law for cylindrical diffusion as it would apply to a cell in which the electrode is a

long rod surrounded by the ionic conductor. See Web#825.
826 would be x in cases of planar transport, r for spherical transport, or some other appropriate coordinate in

other cases. Sometimes more than one spatial coordinate is required.
827 Why are three boundary conditions needed? Fick’s second law involves two differentiations in space and

one in time. So, to remove these derivatives, we must integrate three times: twice in space, once in time. Each

requires an “integration constant”, which is what a boundary condition provides. Hence three boundary

conditions are needed: two in space and one in time.

The result is Fick’s second law for planar transport. The corresponding law for

spherical transport can be written in two equivalent ways:
2

2

2 2

Fick’s second law

spherical transp t

2

or

c c D c D c
D r

t r r r r r r

     
    

     
8:23

It arises from combining conservation law 8:9 with Fick’s first law825.

As we shall find in later chapters, electrochemists often need to solve Fick’s second

law. The solution describes explicitly; that is, it specifies what the concentrationi ( , )c t

of the diffusing species is at all points of interest along the spatial coordinate826 at all

positive times t. As with any differential equation, Fick’s second law cannot be solved as

it stands. Each problem requires three827 pertinent boundary conditions for its solution.

As an illustration of the solution to Fick’s second law, we now consider its role in what

could be considered as one of the prototypical experiments in electrochemistry. It is

illustrated in Figure 8-7. Initially the solution contains an uncharged electrooxidizable

species R at a uniform concentration . Thus, with cR(x,t) denoting the concentration ofb
Rc

R at any point x in solution at time t, then
b

R R( 0,0)c x c 8:24
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828 Not only equation 8:28, but also the equations 8:29 and 8:32, are derived in Web#828. This web document

opens with a definition of the error function and reports some of its properties.
829 Confirm that each of these four equations is, indeed, satisfied by formula 8:28. See Web#829.
830 Beyond about 100 s, the potential-leap experiment is in danger of being affected by natural convection.

The solution will likely contain excess supporting electrolyte (page 129) too, but this is

immaterial to the present discussion. At time t  0, the switch is closed and the working

electrode is suddenly brought to, and maintained at, a potential sufficiently positive to

remove R totally from the electrode surface; that is, for this potential-leap experiment

R (0, 0) 0c t  8:25

Because R is uncharged and the solution is quiescent, diffusion is the only transport mode

operative for R, so Fick’s laws govern transport. Clearly the flux lines will be parallel for

the cell geometry as illustrated, and therefore the form adopted by Fick’s second law is

8:22; that is
2

R R R2
( , ) ( , )c x t D c x t

t x

 


 
8:26

Of the three boundary conditions needed to solve this equation, two are present in 8:24 and

8:25. The third is provided by the observation that, far from the electrode, the

concentration will remain unchanged, which may be stated mathematically as
b

R R( , )c x t c 8:27

A derivation828 using Laplace transformation demonstrates that the four equations829

8:248:27 are satisfied by

b
R R

R

potential leap

concentration p
( , ) erf

4 rofile

x
c x t c

D t

  
  

  
8:28

where erf{ } denotes the error function828. Figure 8-8 shows concentration profiles

illustrating this result.

Because R is transported only by diffusion, Fick’s first law applied to equation 8:28

shows the flux density to be
2

b R
R R R R

R

( , ) ( , ) exp
4

D x
j x t D c x t c

x t D t

  
     

   
8:29

Electrochemical interest is seldom in the concentration profile or the flux profile, but in the

current. The stoichiometry of the electrode reaction links the flux density of the reactant

to the current. If the overall electrode reaction is830

R OR( ) e O( )v soln n v soln 8:30

where each v is a stoichiometric coefficient (often unity and then omitted from the

equation), then the flux densities of R and O at the electrode surface are related to the rate

of creation of electrons, that is, to the current density by
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831 Frederick Gardner Cottrell, 18771948, American electrochemist, inventor of the electrostatic precipitator

for removing polluting particles from gas streams, and founder of the philanthropic Research Corporation.
832 in principle. In practice there will always be a modicum of ohmic and kinetic polarization to temper the

initial absence of transport polarization. See Chapter 10.

O R e

R O

(0, ) (0, ) (0, ) ( ) ( )j t j t j t i t I t

v v n nF nAF

 
   8:31

Combining this equation with the x  0 version of 8:29 yields

b R
R

R

Cottrell equat( ion)
Dn

I t AFc
v t




8:32

This is the Cottrell equation831: it describes the current

resulting from a potential-leap experiment when planar

diffusive transport applies. It describes a current, initially infinite832, that declines as t 1/2.

It frequently happens in electrochemistry that one seeks to solve Fick’s second law for

planar transport, equation 8:22, under circumstance in which two of the three boundary

conditions are

i b
i

i

( ,0)

( , )

c x
c

c x t




  
8:33
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833 For more information on the partial solution and on the fractional calculus, see Web#833 and Web#1242.
834 Combine Stokes’ law with the Nernst-Einstein law to produce a relationship between the diffusivity of a

solute and its radius. This is the Stokes-Einstein law. Use it, as in Web#834, to estimate the diffusivity

of zinc atoms in an amalgam. The radii of Zn and Hg atoms are respectively 153 pm and 176 pm; theamal
ZnD

viscosity of mercury is 1.526 × 103 kg m1 s1. Comment on the discrepancy between your estimate and the

measured diffusivity value of 1.89 × 109 m2 s1.

but where one is unable (or unwilling) to provide the third condition. When these

circumstances apply, a partial solution to Fick’s second law is provided by

 
1/ 2

s s b
i i i i1/ 2

d
( ) ( ) i R,O

d
j t D c t c

t
  8:34

The superscripts b and s refer to the bulk solution and the electrode surface respectively.

The derivation of 8:34 and an explanation of semidifferentiation will be found

elsewhere833. This is a partial solution inasmuch as only two of the three needed conditions

have been met. The third depends on the particular experiment and reflects the perturbation

applied by the experimenter to control the electrode. In the potential-leap experiment, for

example, the perturbation is to set to zero. Equation 8:34 then leads directly tos
R ( )c t

b1/ 2
s b R
R R R R1/ 2

d
( )

d

c
j t D c D

t t
   


8:35

in agreement with 8:29.

Our concern is mostly with transport within the ionic conductor, but when mercury

electrodes are used, electrochemists must also treat the diffusion of metals within the

working electrode. The process of dissolving in mercury, which many metals do, is known

as amalgamation. An example occurs when zinc ions reduce at a mercury electrode to

form zinc amalgam:
2Zn ( ) 2e ( ) Zn( )aq Hg amal  8:36

The amalgamated zinc is formed at the surface of the mercury electrode and then diffuses834

into the bulk of the mercury electrode. If the mercury electrode is subsequently made

anodic, the zinc atoms are transported in the opposite direction and may be oxidized back

into solution. This process lies at the heart of stripping analysis, a procedure discussed in

Chapter 9, and is also important in polarography1305.

Diffusion and Migration: they may cooperate or oppose

The analysis, given in the previous section, of the potential-leap experiment is correct

as far as it goes, but it is incomplete. The oxidation of the electroneutral R produces a

cationic product O subject to both diffusion and migration. Moreover, the current has to

flow through the solution as a whole and, unless ions are present initially, the solution is
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835 Albert Einstein, 18791955, German-American physicist and the quintessential scientist in lay eyes; Nobel

laureate, 1921, for his work on the quantum mechanical photoelectric effect.
836 See Web#836 for a terse derivation of the equation 8:37 by a thermodynamic argument.
837 after a very long time. This is a “thought experiment” only.

not an ionic conductor and the passage of current would be impossible. Being neutral, R

cannot carry any current. To provide conductivity, ions must be present initially, though

not necessarily in excess. Although the cation O is transported by both migration and

diffusion, the latter transport mode will dominate if supporting ions are at a high

concentration compared to O because their presence diminishes the electric field.

Nevertheless, even then, migration of O will be important close to the electrode because

this ion carries 100% of the current at the WE, however concentrated the supporting ions

might be. More detailed analysis of transport close to an electrode will be presented later.

Migration of electroactive species occurs from the onset of any experiment when

supporting ions are not in overwhelming excess. But worse, the two or more ionic

concentrations then proceed to vary in both time and space, affecting the local field, which

in turn affects the migratory fluxes. Prediction of the outcome of an experiment becomes

a nightmare. You can see why it is that electrochemists prefer, whenever possible, to work

with excess supporting electrolyte. Then, the effects of migration can be lessened to an

extent that they may legitimately be ignored.

One would expect that factors – primarily the viscosity of the solution – that hinder

migration would also hinder diffusion, and this is true. Mention was made earlier of the

viewpoint that migration and diffusion are just different aspects of a more generalized

transport, both arising from a gradient of a thermodynamic quantity known as the

electrochemical potential. A précis of how this approach leads to the important Nernst-

Einstein equation622,835

i i i Nernst-Einstein equationz FD RTu8:37

will be found elsewhere836, but here we shall derive this result by recourse to an

experimental argument.

A constant current I is passed through the cell illustrated overleaf in Figure 8-9.

Originally the two chambers contained the same solution of a metal salt. The cations

move from left to right through the tube, initially by migration alone but, as theMM ( )z soln

salt concentration on the left builds up as a result of the dissolution of the left-hand

electrode, also by diffusion. We focus attention, though, on the anions ; theirAA ( )z soln

leftwards migration is opposed by a rightwards diffusion. Eventually837, the concentrations

will cease to change. In that eventual condition the anions experience a diffusive flux

density and a migratory flux density that must sum to zero; that is:

dif A
A A

mig
A A A

d

d

d

d
0

c
j Dj

x
u c

x
 


 8:38

This equation may rearranged and integrated along the length of the tube
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where the R and L superscripts refer to conditions in the right- and left-hand chambers. The

fact that diffusion is more accurately described as activity driven than concentration driven

permits the replacement of the concentration ratio in 8:39 by . Exponentiation andR L
A A/a a

rearrangement then lead to

R R L LA A
A A

A A

exp exp
u u

a a
D D

   
     

   
8:40

in which the diffusive and migratory components are intermingled.

Here is a good place at which to draw a phenomenological distinction between the

terms “steady state” and “equilibrium state”. A steady state implies that no changes are

occurring with time in any property (concentration, flux density, etc) of interest. An

equilibrium state is a stronger condition: not only is nothing changing with time, but there

are no net motions either. In the eventual state arrived at by the Figure 8-9 experiment, the

metal cations are in a steady state, but the anions are in an equilibrium state.MM z AA z

Being at equilibrium, the anions obey equation 2:26, the Boltzmann relation. For both that

equation and equation 8:40 to be satisfied simultaneously requires that

A A

A

u z F

D RT
8:41
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838 Use the Nernst-Einstein law to calculate the diffusivity of the Zn2+(aq) ion at 25oC from the data on page 150.

Check with Web#838. Compare your result with the value 0.638 × 109 m2s1 measured voltammetrically in

a 100 mM KNO3 solution and suggest a reason for any discrepancy.
839 See Web#839, where the expressions for the current through, and the potential across, the Figure 8-9 cell

are derived.
840 Max Karl Ernst Ludwig Planck, 18581947, German physicist, Nobel laureate 1918.
841 Convection is usually caused by a pressure gradient, but not in electroosmotic flow (page 299)
842 or the Hagen-Poiseuille law; Gotthilf Heinrich Ludwig Hagen, 17971884, German hydraulic engineer;

Jean Louise Marie Poiseuille, 17991869, French physician. The law’s derivation is included in Web#842.

an instance of the Nernst-Einstein838 law 8:37. The steady-state behavior of the cations in

the experiment of Figure 8-9 can also be analyzed; this analysis is carried out elsewhere839.

With the proportionality between the diffusivity and the mobility of a solute

established, it is possible to write a combined transport equation as

i i i
i

i Nernst-Planck equation
F

z c
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c
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8:42

which, for planar transport, is the Nernst-Planck equation622,840. This is the equation that

replaces Fick’s first law when diffusive and migratory modes of transport come into play.

The replacement for Fick’s second law,
2 2

i i i
i i i i2 2

c c cF F
D z z c

t x RT x x RT x

      
   

     
8:43

is so elaborate that time-dependent problems involving both diffusion and migration have

been solved analytically only in very special circumstances.

Convection: transport controlled by hydrodynamics

Equation 8:13 shows that flux density for migratory transport is proportional to the

potential gradient; equation 8:21 shows that flux density for diffusive transport is

proportional to the concentration gradient. Thus we might expect that the flux density for

convective transport would be proportional to the pressure gradient841 and this is indeed

true, at least with some provisos. The simplest vessel for containing a moving liquid is a

tube with a uniform circular cross section of radius R. Solutes entrained in the flowing

liquid within such a tube share their velocity with the liquid and have an average flux

density given, in terms of the viscosity , by
2

conv i
i i

d

8 d

R c p
j c

x
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
v8:44

which derives from Poiseuille’s law842. It is necessary to specify the average flux density

because, as illustrated in Figure 8-10 overleaf, the solution velocity v and hence variesconv
ij
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843 See Web#843. To ensure 99.9% capture, the tube must be at least 0.584 long./V D

2 2 42 [ ]/ ,V R r R v(r) = V

V

quadratically with the radius, being twice the average in the center of the tube and falling

to zero at the wall. This lack of motion at the wall is an important and general feature of

hydrodynamic flow. The type of motion described by Poiseuille’s law is called laminar

flow. At high flow rates it is replaced by a chaotic hydrodynamic regime known as

turbulent flow; such a regime is seldom encountered in investigative electrochemistry but

is favored in electrosynthesis.

Convection within a tube is electrochemically important in capillary electrophoresis,

in electrokinetic phenomena (pages 298302), and in flowing coulometry, as illustrated on

page 126. Another form of flowing coulometry has been practiced in which the tube itself

is the working electrode. In that case, the lack of convective motion at the tube wall means

that slow diffusion is invoked to capture solute electrochemically, so that long metal tubes

of very narrow bore are needed for thorough removal843. Shorter tube electrodes, however,

can be used to sample the flowing solution, as with the tubular band electrode illustrated

on page 118.

The most important electrochemical device that employs forced convection is the

rotating disk electrode, consisting of a disk (typical area 10 mm2) of an electronic

conductor (typically Pt or glassy carbon) embedded in the center of, and coplanar with, a

larger disk of insulator (often teflon®). The composite disk forms the end of a rod, which

is mounted vertically and rotated at high speed (the angular velocity  is typically about

100 rad s1) while immersed in an electrolyte solution. Solution is thrown sideways by the

spinning disk and replaced from below. The flow lines followed by the moving solution

are illustrated in Figure 8-11; the coordinate system and velocity components useful for

describing this flow are shown in Figure 8-12. In the presence of excess supporting

electrolyte, the flux density in the x-direction is provided by convection and diffusion

 conv
i x

diff
i i ii ij cjj D c

x
   

 
 
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v8:45

though, because the convective velocity is zero at the electrode surface, only diffusion is

operative there. This equation, combined with the conservation requirement 8:7, leads to
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844 A synopsis is presented in Web#844.
845 Hungarian Szöllöskislaki Kármán Tódor, 1881 1963, who took the name Theodore von Kármán on

emigrating to the United States, where he had a distinguished career as an aeronautical engineer.
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This is the equation that replaces Fick’s second law when diffusion is augmented by the

convection provided by the rotating electrode. Although modulation of the applied cell

voltage, the rotation speed, and even the temperature has occasionally been applied to the

rotating disk electrode, for the most part it is operated under steady conditions. In this

circumstance, the left-hand member of 8:46 is zero. Hydrodynamic theory844 can predict

the motion of the moving liquid as its velocity components in the x, r, and  directions.

Close to the electrode surface, the prediction is that is independent of r and , beingxv

approximately equal to . Here vK is the von Kármán845 number 0.51023,2 3
K /v x   
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846 The ratio / is known as the kinematic viscosity; it equals 9.13 × 107 m2 s1 for water at T o.
847 See Web#847 for details of the solution and a pedestrian derivation of equation 8:49, the Levich equation.
848 See page 378 for definitions of these functions and Web#848 for further information.

with  and  being the density and the viscosity of the solution846. Thus,
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This is an ordinary differential equation that can be solved847 subject to the boundary

conditions and The solution isb
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where are respectivelyan incomplete and the complete gamma function1 1
3 3{ , } and { } 

of order one-third848. Figure 8-13 shows a graph of the concentration profile predicted by

this equation. Notice from the scales of the abscissas in Figures 8-8 and 8-13 how much

narrower the depletion layer is for convective transport than for diffusive transport. The

slope of this curve at x  0 leads to the following expression for the flux density at the

electrode surface:
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849 Veniamin Grigorievich Levich, 19171987, Russian physical chemist.

where vL is the Levich number, 0.62046. It was Levich849 who recognized the applicability

of the rotating disk to electrochemistry and consequently the equation describing the flux

at its surface, or the current (see equation 12:31), is the Levich equation.

Fluxes at Electrodes and in the Bulk: transport coefficients

Let us resume our discussion of the generalized n-electron reaction 8:30, in which an

R species is oxidized to an O product:
OR

R OR ( ) e O ( )zzv soln n soln 8:50

No restriction is placed on the charges of the two species, other than the stoichiometric

constraint

O O R Rz z n   8:51

We also consider there to be other ions, and perhaps uncharged solutes, also present in the

quiescent solution, though not necessarily in excess. Concern in this section will be with

the relationships that link the local flux densities and concentrations of the solute species

to each other and to the current density i. We shall not delve deeply into any time

dependences that the variables might have, focusing instead on instantaneous values of the

j’s and the c’s. No particular cell geometry is assumed, but an coordinate, that measures

distance outwards along flux lines from the working electrode surface, is used to express

spatial dependence.

First we present the following four relationships that hold globally:
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These are written using a sigma notation that implies summation over all the solutes, ionic

or molecular, though uncharged species play no role in the first three summations. The first

relationship is an expression of electroneutrality; the validity of this may be questioned in

the immediate vicinity of the electrode interface, but it is certainly valid elsewhere. The

conservation of charge is expressed by the second relationship; this also serves as a

reminder that, although the same current passes through all regions of the cell, the current
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850 Carry out the derivations or see Web#850
851 Derive 8:59 from 8:53 and 8:54 as in Web#851.

density is spatially variable, except when the “trough” geometry applies. The third

equation of the quartet involves the local ionic strength (page 41). Equations 8:54 and

8:55 both derive from the Nernst-Planck relationship850. Making an equidiffusivity

approximation – this means assuming that all solutes share the same diffusivity D –

equation 8:54 may be combined with 8:53 into the useful expression  X 
for the local field. If one again invokes the equidiffusivity2[ ( )]/[2 ( )]RTi F D 

approximation, equation 8:55 demonstrates that the total solute content collectively satisfies

Fick’s first law of diffusion, notwithstanding the occurrence of migration. The elaborate

equations in this paragraph apply to the electrolyte solution throughout the cell.

Fortunately, simpler equations hold in the bulk of the solution, and at the working electrode

itself.

In the bulk of the solution (a region denoted by a superscript b), concentrations have

not had time to change from their original values. Each solute has its original uniform bulk

concentration The conductivity b is uniform and the field is given by Ohm’s lawb
i .c

b
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There are no concentration gradients, so no diffusion occurs and each ion migrates

according to
b

b b
i i i i
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8:57

There are no fluxes of neutral species but all the ions share in the carrying of current in

proportion to their individual contributions to the sum.2 b
i i iD z c

At the electrode surface, denoted by s, the flux densities of electropassive solutes 

those that are not involved in the electrode reaction are necessarily zero, whereas the flux

densities of those solutes that do participate in reaction 8:50 are related through the

stoichiometry to the flux density of electrons and thus to the current density. One finds:
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and this assignment is consistent with equation 8:53. The equation
2 s

s s2F D
i X

RT


8:59

derives851 from the global relationships 8:53 and 8:54 by making the equidiffusivity

assumption DR  DO  D, this time restricted to the electroactive species. We are now in
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852 Web#852 contains details of the experiment, its modeling (which employs a combination of analytical and

simulative techniques), and the derivation of the graphs in Figures 8-14 and 8-15.

a position to quantify the effectiveness of supporting electrolyte in nullifying the migration

of electroactive species. The migratory component of the flux density of reactant R or

product O is found from the corresponding term in the Nernst-Planck equation
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and therefore the migratory current carried jointly by R and O at the electrode surface is

 
2
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i z F j z F j D z c D z c X

RT
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If we now divide this result by equation 8:59, once more invoking restricted equidiffusivity,

we arrive at the conclusion that the fraction of the total current passed at the electrode by

the migration of O and R is or simply the fractional contribution of the2 s 2 s s
R R O O( ) / 2 ,z c z c 

electroactive ions to the ionic strength. Though the rigor of the conclusion is weakened by

our having had to assume equidiffusivity, it can be concluded, for example, that if the

electroactive species contribute 1% of the ionic strength, then 99% of the current at the

electrode will be transported by diffusion.

It has been demonstrated that, when supporting electrolyte is present, transport at the

electrode is primarily by the diffusion of the electroactive species, whereas transport in the

bulk is primarily by migration of the supporting ions. The how and why of this changeover

between the two regimes can be puzzling, and is often ignored in the literature because the

algebra required to model the events is complicated. Here a rather simple, but still typical,

example852 has been selected to illustrate the transition. The chosen reaction is one in

which a neutral electroreactant R is oxidized to a singly charged cationic product O, which

is initially absent. Supporting electrolyte, not necessarily in excess, supplies the cation C

and the anion A, both singly charged. An example would be the oxidation of ferrocene,

reaction 7:12, in a solution with an electrolyte yielding a singly charged cation and anion.

The results of the analysis are presented in Figures 8-14 and 8-15 overleaf, which show the

concentration and flux density profiles at a particular instant in time. Observe that, despite

the pronounced concentration gradients of C and A at the electrode, there is no flux there

because the contributions of diffusion and migration are equal and opposite.

The bulk solution and the electrode surface are the two termini for transport and

attention in electrochemistry often focuses on how conditions at one terminus relate to

those at the other. For example, equation 8:49 for the rotating disk electrode may be

rearranged to
s 3/ 2 1/ 2 1/ 6
i L i

s b 1/ 6
i i

j v D
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c c
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853 Or, less appropriately, transport constant or mass-transfer coefficient or mass-transport coefficient.

Avoid confusion with the similarly named transport number153 and transfer coefficient (page 133).
854 Pages 234245 address hemispherical microelectrodes and the voltammetry they support. See Web#854 for

a discussion of the transport coefficient at such electrodes.
855 Pages 245248 address disk microelectrodes and the voltammetry they support. Macroelectrodes are planar

electrodes large enough that their edges are of no consequence. See Web#855 for a discussion of the transport

coefficient applicable to each of these electrodes.
856 The cell to which this transport coefficient relates has its two electrodes separated by a very narrow distance

L, with the two electrode reactions being mutual converses, such as Cu*Cu2+(aq)*Cu. See Web#856 for further

details on this, and other, kinds of thin-layer cell.
857 The Nernst transport layer, is an empirical concept in which the potential profile is treated as two straight

lines: one, adjoining the electrode, with a slope of and a second, extending over   x < , with
b s
i i( ) / ,c c 

zero slope. The concept often satisfactorily explains transport behavior when mild convection assists diffusion.

The same concept, under the name diffusion layer, is sometimes used as an approximation in diffusion-only

transport.

Experimental technique Mode Transport coefficient mi See

rotating disk electrode conv + dif page 2483/ 2 1/ 2 1/ 6 1/ 6
L i /v D   

hemispherical microelectrode diffusion Di/rhemi footnote 854

disk microelectrode diffusion 4Di /(rdisk) footnote 855

thin-layer cell at steady state diffusion 2Di/L footnote 856

Nernst transport layer conv + dif Di/ footnote 857

macroelectrode diffusion footnote 855i /( )D t

growing spherical electrode conv + dif footnote 1305i7 /(3 )D t

The constant depends on the diffusivity of i, but its other components are independent

of the electrochemistry involved. This proportionality of the flux density at the electrode

surface to the surface-minus-bulk concentration difference turns out to exist for very many

electrochemical techniques. The proportionality constant is symbolized mi

s
i

is b
i i

definition of transport coefficient
j

m
c c




8:63

and is called a transport coefficient853.854855856857The generality of relation 8:63 will prove useful

when, in Chapter 10, we consider the contribution of transport to electrode polarization.

Though a transport coefficient may be assigned for most techniques, it is not a universal

concept; in particular the linear relation between js and cs is destroyed if migration

participates in the transport of an electroactive species. The table below lists some

instances of transport coefficients. The transport coefficient has the SI unit of m s1; it is
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858 A potential-step experiment is one in which the potential of a previously inactive electrode is suddenly and

permanently changed, resulting in the concentration of electroactive species at the surface changing suddenly

and permanently from The potential-leap experiment (page 156) is the special case in whichb s
i ito .c c

and therefores
i 0c  s b

i i i .j m c

View supplementary web material at www.wiley.com/go/EST.

a velocity that links flux density of that species at the electrode surface to its concentration

there. In some techniques, as in the example of equation 8:62, the transport coefficient is

unchanging; such techniques are characterized as steady-state techniques (Chapter 12).

Some instances in which diffusion is supplemented by convection occur in the table, which

lists both steady-state and transient techniques. With the latter techniques (Chapters 15 and

16) time is a factor in the transport coefficient. Here t is the time from the onset of the

experiment and its presence as a negative power implies that transport fails to keep up with

the electrode reaction. Each species involved in the electrode reaction has its own transport

coefficient, though the differences between them are slight, arising from minor disparities

in diffusivities. Though the coefficients may be valid for other experiments, we have in

mind the response to a potential step858 when excess supporting electrolyte is present.

Summary

The three transport modes – migration, diffusion and convection – have distinct origins

and obey different transport laws
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though migration and diffusion are interrelated. Being an efficient means of transport,

convection is often used in preparative electrochemistry, but only in special circumstances

– notably with the rotating disk electrode – is it feasible to predict the voltammetric

consequences of convection quantitatively. Migration transports only ions, but is wholly

responsible for carrying current through electrochemical cells other than in the vicinity of

the working and reference electrodes. When supporting electrolyte is present in excess, as

it usually is in investigative electrochemistry, diffusion is the transport mode that controls

the current. Diffusion obeys Fick’s two laws, the second of which must be solved to

predict the outcome of a voltammetric experiment. The Cottrell equation arises from the

simplest of those solutions.



901 Copper is toxic to aquatic life, for example, but small quantities are essential to many organisms.
902 By convention, ppm means parts per million by volume in the case of gases; by mass otherwise.
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9

Green Electrochemistry

By this title, we include not only ways in which electrochemistry can help mankind’s

environment, but also how it can assist humans directly through medical intervention. As

well, we describe a few of the many applications of electrochemistry to biology.

Sensors for Pollution Control: keeping watch on contaminant levels

The term pollution is used to describe a harmful manmade change in the concentration

of some species in a particular medium (air, water, soil, ecosystem, foodstuff, etc).

Occasionally it is a concentration decrease that is worrisome, as when industrial effluents

decrease the oxygen content of a river, or when vital nutrients are lost during food

processing. But more usually it is an increase in some toxic species that is of concern. The

object of remedial action is not to eliminate the pollutant entirely, for not only is that an

unattainable goal, but it may even be counterproductive901. The aim is to bring the

contaminant concentration to within acceptable bounds.

Obviously one needs to be able first to detect, and then to quantify, the presence of

pollutants. Those are the tasks of the analytical chemist. The number of analytical

techniques is legion and here our intent is only to give a sampling of some of the ways in

which electrochemistry can assist the analytical chemist. Recognize that, in the present

context, the precision of the measurement is not usually of great importance: a pollutant

may be toxic at concentrations in excess of one part per million (ppm902), but whether its

concentration is 3 ppm or 4 ppm is of little concern.

Chemical analysis can be expensive, especially if one needs to analyze many samples

frequently. Devices that automatically provide measurements that can be converted to

concentrations are therefore invaluable. Such devices, which may operate continuously or

intermittently, are called sensors. Many sensors operate on electrochemical principles.
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903 also described on page 295. Nonactin (page 121) is a synthetic alternative to valinomycin.
904 that is, three identical units linked together, as in an equilateral triangle.

The presence of electrolytes in fresh water can be detected and quantified by a

conductivity sensor, a simple instrument that uses a.c. to measures the conductance of a

water sample in a standardized cell to find the conductivity of the water (pages 15 and 304).

Such sensors are used to detect and assess the intrusion of salts into rivers, lakes, and

agricultural land. Less clearly understood is the change in conductivity experienced by thin

films of zinc and tin oxides, especially if they are lightly doped, on exposure to certain

gases. For example, an undoped film of ZnO deposited on Al2O3 (synthetic sapphire)

responds to arsine AsH3 at concentrations as low as 0.015 ppm, while an SnO2 film doped

with aluminum will recognize traces of formaldehyde HCHO vapor. Because quantitation

is poorly established, these devices are better described as conductivity detectors than

sensors.

Measurement of pH by the glass electrode was described on page 122. pH sensors are

one of today’s most ubiquitous electrochemical sensors. They find applications in

monitoring acid rain, in regulating the acidity of foods and drinking water, in biomedical

assays, and elsewhere. You will find pH meters in quality control laboratories worldwide,

and they monitor chemical flows in almost every production facility that handles aqueous

solutions.

The glass electrode has been adapted to sense gases. The ammonia sensor, for

example, employs an ammonium chloride solution, in contact with+
4NH ( ) + Cl ( ),aq aq

a glass electrode. Ammonia in the gas stream upsets the

3 3 3 3 4 2NH ( ) NH ( ) NH ( ) H O ( ) NH ( ) H O( )g aq aq aq aq    9:1

equilibria and the resulting pH change will reflect the ammonia concentration in the gas

stream. A carbon dioxide sensor operates similarly; by shifting the

2 2 2 2 3 3CO ( ) CO ( ) CO ( or ) 2H O( ) HCO ( ) H O ( )g aq g aq aq aq    9:2

equilibria in a sodium bicarbonate solution, carbon dioxide may be3Na ( ) HCO ( ),aq aq 

assayed through the pH change. These gas sensors are not specific: they respond to all

gases that have basic or acidic properties.

Ion-selective electrodes (Chapter 6) are ideally suited for sensor use. Apart from the

need for periodic calibration, they require little attention and provide a convenient

concentration-dependent voltage signal that can be used to actuate controls. Their lack of

high precision in measuring concentrations is seldom a problem. The fluoride-ion sensor

is described on page 121 and so-called isfets are discussed on page 284. An interesting link

to microbiology is provided by the valinomycin potassium-ion sensor. Valinomycin is

a powerful bactericidal agent isolated from cultures of the microorganism Streptomyces

fulvissimus. This antibiotic903 is incorporated into an organic liquid or plastic membrane

that, in the manner of Figure 6-8, provides a potassium-ion ISE. It is a cyclic trimer904,
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905 In particular, the Na+ analogue of reaction 9:3 has an equilibrium constant of only 10 M1. However, the

complex is stable enough to interfere significantly in ISE measurements of potassium ion content.4NH

906 For example the ionophore calcimycin, also known by the uninformative name A23187, is an excellent

carrier of Ca2+. It, too, is an antibiotic obtained originally from the fungus Streptomycin chartreusensis.
907 literally “fat-loving”, having a preference for an oily environment over an aqueous locale. Lipophilic 

hydrophobic; hydrophilic  lipophobic.
908 or 1.97 mM at 0.0oC. Calculate the solubility (25.0oC) as a percentage by mass and in ppm (by volume).

See Web#908.
909 Charles Leland Clark, 19182005, U.S. chemist, biochemist, physiologist and surgeon.

(C18H30N2O6)3, composed of amino acid and hydroxy acid units, with a total chain length

of 36 atoms. The secret of valinomycin’s antibiotic properties is its ability to desolvate and

engulf a potassium ion,
6 1

18 30 2 6 3 18 30 2 6 3K ( ) (C H N O ) ( ) K(C H N O ) ( ) 10 Maq aq aq K   9:3

and thereby interfere with the bacterium’s metabolism. There is an excellent size match

between the K+ ion and a six-oxygen-atom-fringed void that the valinomycin molecule can

develop. The valinomycin literally wraps itself around the naked cation, aided by the

attraction between the positively charged K+ and the six oxygen atoms, which have negative

polarities. Other cations do not fit so well905. A compound such as valinomycin that is able

to bind an ion, and later release it, is called an ionophore. There are many ionophores,

some with high specificity for particular ions906. When complexed by an ionophore,

inorganic ions are better able to enter an organic medium and cross lipophilic907 boundaries,

which is their physiological role. A related structure is an ion-selective transmembrane

channel, the function of which will be discussed later in this chapter.

An example of a very successful potentiometric sensor is the zirconia-based oxygen

sensor described on page 68. Such sensors will be found in the exhaust manifolds of most

modern vehicles, where they monitor the oxygen content of the exhaust gases as a means

of ensuring the most fuel-efficient operation of the internal combustion engine. The solid

electrolyte used in these cells is ZrO2 heavily doped with yttrium (or niobium) to ensure

that the zirconia retains the cubic crystal modification that alone has a high electrical

conductivity (about 0.03 S m1 at 1000 K) resulting from oxide-ion migration. Working on

a similar principle, another high-temperature potentiometric gas sensor measures hydrogen

sulfide in flue gases through a cell that employs a sulfide-ion-conducting solid electrolyte,

consisting of mixed sulfides of a lanthanide (Sm or Y) metal and an alkaline earth (Ca or

Ba) metal.

At standard pressure and temperature, oxygen dissolves in water to a concentration of

1.27 mM908 and therefore air-saturated water has However, water exposed
2O 0.27 mM.c 

to air can be undersaturated or oversaturated. The actual concentration vitally affects

aquatic organisms and can be measured with a Clark909 cell, of which Figure 9-1 overleaf

shows a cross-section. The Clark oxygen sensor is by no means limited to measuring

oxygen concentrations in water; indeed Clark himself invented the sensor as a means of
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910 Membranes can be selected to favor specific permeants; polyethene, polypropene, and polytetrafluoroethene

are frequent membrane materials. The last, known as Teflon®, is most common; its permeability to oxygen is

1.0 × 1014 mol m1 s1 Pa1. As in Web#910, calculate the current from a Clark oxygen sensor with a gold disk

cathode of 3.3 mm diameter, covered by a Teflon membrane of 13 m thickness, when exposed to air.

measuring oxygen levels in blood when he was developing an early heart-lung machine.

The electrolyte is generally a mixture of potassium chloride and hydroxide,

K+(aq) + Cl–(aq) + OH–(aq). Oxygen permeates through the membrane910, then diffuses

through the thin layer of solution that wets the electrode and is reduced

2 2 2 2O ( ) O ( ) O ( ) 2H O( ) 4e 4OH ( )blood aq aq aq    9:4

under conditions of total transport polarization. The current is almost completely

determined by the rate of permeation through the membrane. Clark oxygen sensors are

easily calibrated using air.

The Clark cell is classified as an amperometric sensor because it generates a current

output that is directly proportional to the concentration of the target species. In this, it

differs from potentiometric sensors, such as ISEs, which deliver voltage signals that

respond logarithmically to the target’s activity. There are many amperometric sensors,

operating similarly to the Clark cell. Among gases that can be sensed in this way are Cl2,

HCl, HCN, NH3, PH3, CO, CO2, O2, O3, NO, NO2, N2O, and several organic gases and

vapors. Generally, the reaction at the working electrode is a straightforward oxidation or

reduction of the dissolved gas, for example

2 3 3NO( ) NO( ) NO( ) 6H O( ) 3e NO ( ) 4H O ( )g aq aq aq aq      9:5

and

3 3 3 3 2 2O ( ) O ( ) O ( ) 2H O ( ) 2e O ( ) 3H O( )g aq aq aq aq     9:6

but sometimes more sophisticated schemes are employed. One carbon dioxide sensor

relies on the CO2 to lower the pH of an aqueous solution, thereby shifting the equilibrium

of the homogeneous reaction
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911 Even the human nose can detect malodorous substances at concentrations of one part per billion.
912 The glucose oxidase molecule is huge in comparison to an inorganic molecule such as O2, so one may validly

regard a reaction such as 9:9 as homogeneous or heterogeneous.

2
3 2 3 6 2 2

2 2
3 3 6 3 2

4H O ( ) Cu(NH C H NH ) ( )

Cu ( ) 2NH C H NH ( ) 4H O( )

aq aq

aq aq

 

 



 




9:7

and liberating uncomplexed copper ions. It is the amperometric reduction of these free ions

to that provides access to the carbon dioxide concentration.2CuCl ( )aq

Our senses of smell and taste, and more potently those of other animals911, are based

on a contact interaction between a target molecule and a receptor. There is a

complementarity, both sterically and electrically, between the receptor and the target, so

that, when the fit occurs, there is an electrical stimulation of nerves adjacent to the receptor.

Thereby we “smell” or “taste” the target molecule. A feeble attempt, at least in its current

stage of development, to emulate nature’s efficient sensing technology, is the field of

biosensors. There are two elements to biosensor development: first, the identification of

a receptor suitable for selectively recognizing the target; and, second, the transduction of

that recognition into a signal proportional to the target concentration. The second element

may be mechanical, optical, electrical, or electrochemical. This is a field of intense

research activity, accompanied by much ballyhoo, but commercial realization at present is

limited to very few targets, including glucose, lactate and glucosamine.

The story of the electrochemical glucose sensor is interesting. In1962 during his

development of the heart-lung machine, and following his invention of the amperometric

blood oxygen sensor, Clark909 introduced a small quantity of the enzyme glucose oxidase

inside the sensor. Glucose oxidase, Glox, is always associated with a moiety of flavin

adenosine dinucleotide, and the combination exists either in the oxidized formas GloxFAD

or in the reduced GloxFADH2 form. Clark found that, along with the oxygen, glucose

C6H12O6 from the blood was able to permeate through the sensor membrane into the

aqueous solution. Here it was readily oxidized by the glucose oxidase to gluconolactone

C6H10O6

6 12 6 6 10 6C H O ( ) C H O () )( ()aq aqaq aq   2GloxFADFA HGlox D9:8

The reduced enzyme was, however, immediately reoxidized by the oxygen present:

2 2 2O ( ) H ))( (() Oaq aaq aqq  2 GloxFGloxFADH AD9:9

with the production of hydrogen peroxide. The net result of these two homogeneous912

reactions is to decrease the oxygen current in direct proportion to the glucose content of the

blood. In effect Clark had developed a rudimentary glucose sensor. Because oxygen and

hydrogen peroxide reduce at different potentials and by different numbers of electrons, the

simultaneous determination of oxygen and glucose is possible. Commercialization of

Clark’s discovery followed and glucose sensors were marketed by U.S. and German firms

as early as the 1970s. These are very successful instruments that are still in daily use in



176 9 Green Electrochemistry

913 It was based on research carried out at the University of Oxford by H.A.O. Hill and his group.
914 A mediator is a member of a redox couple that can carry out an oxidation (or a reduction) of a species A,

being itself then regenerated by an oxidation (or a reduction) by B in circumstances where the direct oxidation

(reduction) of A by B is kinetically unfavorable. As here, B may be an electrode.
915 such as ascorbic acid, Vitamin C.

clinical laboratories throughout the world.

Diabetics suffer fromdefective carbohydrate metabolism, but knowledge of their blood

glucose levels makes them better able to manage their condition. Is it feasible to adapt the

commercial electrochemical glucose sensor and make it not only convenient for individual

diabetic use, but also competitive with rival colorimetric methods? This challenge was first

successfully overcome in 1987 when an electrochemical glucose sensor specifically

designed913 for home use came on the market. There are at least three competing designs

available today. They use test strips, onto which a drop of blood is placed. The strip may

incorporate three electrodes: a reference electrode and two working electrodes. The

glucose from the blood permeates into a microcell that contains the first working electrode,

glucose oxidase and a mediator914. In one version of the sensor, the mediator is a water-

soluble derivative of ferrocene611, here represented by Fcd. The corresponding ferrocenium

ion is produced at the electrode

Fcd( ) e Fcd ( )aq aq 9:10

and reacts with the reduced form of glucose oxidase produced by reaction 9:8

2

3

2Fcd ( ) 2H O( )

2Fcd( ) 2H O ( )(

( )

)

aq aq

aq aa

aq

q q





 

  

2

GloxFA

Glox

D

FADH
9:11

regenerating the ferrocene derivative and the enzyme. In this catalytic scheme, the overall

process of which is illustrated in Figure 9-2, each glucose molecule eventually liberates two

electrons, which are assayed amperometrically. The cathode is a straightforward Ag*AgCl

electrode. Indirectly, the current flowing from the first working electrode reflects the

glucose content of the blood. The microcell serving the second working electrode, into

which solutes from the blood also permeate, contains mediator but no enzyme. The role

of this second WE is to compensate for any reducing agent915 other than glucose that might
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916 The scales interconvert through the formula (molarity)  (parts per million)/(1003 M) where M is the molar

mass of the solute in g mol1. Derive this formula or see Web#916.
917 However, an element’s toxicity does not correlate solely with its concentration. Chromium in its highest

oxidation state, Cr(VI), for example, is much more toxic than Cr(III). Conversely, the toxicity of As(III)

exceeds that of As(V).
918 For further information see M. Lovri in: F. Scholz (Ed.), Electroanalytical Methods, 2nd edn, Springer,

2010, pages 201222; or the book Stripping Analysis, 2nd edn, by J. Wang, VCH Publishers, 1995.

ppm M

Cu 1 16

Cr 0.05 1

U 0.02 0.08

Se 0.01 0.13

Cd 0.005 0.04

Pb 0.003 0.014

Hg 0.001 0.005

NO3


45 720

F 1.5 80

CN 0.2 8

be present. The output, when the test strip has been loaded into a measuring device, is

proportional to the difference between the anodic currents at the two working electrodes.

These sensors work well, and have been steadily improved over the years.

Stripping Analysis: assaying pollutants in water at nanomolar levels

Environmentalists generally use parts per

million as their concentration scale, whereas

chemists prefer subunits of the molar scale916.

Both sets of units are included in the

accompanying table that lists guidelines for the

maximum acceptable levels917 of certain elements

found as their ions in drinking water. Some anions

of concern are included in the table. To ensure

potability, drinking water supplies must be

analyzed frequently and the need to perform

analyses repetitively at the submicromolar level

provides a severe economic challenge. An

electrochemical strategy that can address such low

concentration levels is called stripping analysis918.

There are several varieties of this technique, but

they all share the following principles: a substance

derived from the target species is accumulated

from aqueous solution onto or into a metal electrode during a preconcentration stage,

which is followed by a measurement stage during which the accumulated deposit is

“stripped” back into solution.

Variations in the stripping analysis technique, some of which are charted overleaf,

arise from different choices of electrode, different accumulation strategies during the

preconcentration stage, and different stripping signals during the measurement stage. The

nomenclature of the various options is not closely standardized. The two options marked

with asterisks, which are probably the most frequently employed, are usually implied when

the respective names anodic stripping voltammetry and adsorptive cathodic stripping
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voltammetry are used without further qualification.
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Target metal ions such as those of silver, gold or mercury may be cathodically

electrodeposited as metals from stirred solutions onto a solid electrode (of platinum or

glassy carbon, for example).

stripp

depositio

ing

n
M ( ) e M( or )n aq n s    9:12

After a waiting period to allow the convective motion to subside, a positive-going ramp

voltage signal is applied, as in Figure 9-3. When the potential of the electrode reaches a

value close to the standard potential of reaction 9:12, the deposit redissolves and a burst of

anodic current appears, as in the lower trace in the figure. The same concept can be applied

the other way around: such ions as Br (aq), can be preconcentrated anodically on a silver

electrode

strippi

depos t

ng

i ion
Ag( ) Br ( ) e +AgBr( )s aq s  9:13

and then cathodically stripped off; mercury can replace silver.

Stripping analysis is rarely practiced with bare solid electrodes, but it has been

discussed here as a convenient introduction to stripping analysis at mercury or mercury-

coated electrodes. Interestingly, though, the first commercial application of electro-

chemical analysis was to determine the thickness of tin coatings on copper wire by

stripping the tin deposit.

As the only metal liquid at room temperature, mercury is unique as an electrode in

stripping analysis. For cathodic deposition, the process differs from that described above
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919 The other five, Bi, Tl, In, Zn, and Sn, seldom occur in dangerous concentrations in drinking water, though

they may be found in industrial effluents. Other metals present in water cannot be analyzed by this method,

either because they do not amalgamate with mercury or because their aqueous ions do not reduce in the narrow

potential window between water reduction and mercury oxidation.

only in that the metal produced dissolves in the electrode rather than being plated onto it:

stripp

deposition

ing
M ( ) e M( )n aq n amal   9:14

In consequence there is a diffusion process within the amalgam involved in both the

deposition and stripping stages. Cations of eight metals can be accurately determined at

mercury by the method known as anodic stripping analysis, though only three of these919

– those of copper, cadmium and lead – are of serious environmental concern. At one time,

hanging mercury drop electrodes (page 118) were used and this is the only electrode for

which an established body of theory exists. Nowadays a solid electrode substrate, such as

glassy carbon, is more often employed and mercury is codeposited by adding a mercury(II)

salt to the analyte solution, so that the mercury is being formed
codepositio2 nHg ( ) 2e Hg( )aq   9:15

at the same time as, but at a rate perhaps 100 times faster than, the amalgamating metal.
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920 The common distinguishing names – anodic stripping voltammetry versus adsorptive stripping voltammetry

– can be confusing. Whereas the “anodic” adjective refers to the measurement stage, the “adsorptive” refers to

the preconcentration stage.
921 Assuming the analyte molecule to be a cube of edge length 1.0 nm and to have a diffusivity D of 5 × 1010

m2 s1, calculate what fraction of a monolayer accumulates in 60 s from a solution of 1.0 M concentration, if

the rate of adsorption is given by the Cottrell expression (page 157) . See Web#921.b /c D t
922 for the analyst’s health and the disposal of laboratory waste. Bismuth has been advocated as a safer

replacement.

The solution is usually stirred during this stage to facilitate transport, though no attempt is

made to achieve exhaustive electrolysis. The mercury film is grown to only about 10 nm

thick; the thinness of the film enables the metal to reach the surface and deamalgamate

during stripping far faster than from mercury drops. The metal concentration in the

amalgam may achieve more than 1000 times the concentration of the ions in solution; it is

this enrichment factor that provides the analytical power to anodic stripping voltammetry.

Some measure of specificity is possible by adjusting the potential at which the deposition

is conducted; alternatively multiple stripping peaks may be individually quantified.

Because it is not restricted to any particular oxidation state of the analyte, adsorptive

stripping voltammetry920 is a very versatile method. Typically, a reagent is added to

complex the target ion. The reagent may be inorganic, but more usually it is an organic

compound such as dimethylglyoxime (for cobalt and nickel) or a phenol. Conditions

suitable for the adsorption of the complex on the electrode can be chosen by optimizing the

electrode potential, the pH, and the reagent concentration. The adsorptive preconcentration

typically occupies 50100 s, during which interval less than a monolayer is collected921.

Though, in principle, adsorptive stripping analysis could be performed with electrodes

other than mercury, no effective substitute has been found, despite safety concerns922. The

benefits of mercury derive mainly from the rapidity with which a clean surface can be

formed and used before contamination occurs. In adsorptive stripping voltammetry,

hanging drop, or thin film electrodes may be used. The solution may be still, or stirring

may be employed, sometimes even during the measurement stage. Though anodic stripping

has been used, generally the ramp used is negative-going and cathodic peaks are observed

and quantified. The reduction process may involve either the target species or the

complexing reagent.

Irrespective of the particular variety of stripping voltammetry practiced, a stripping

peak results. The area of this peak, or its height, is evidently proportional to the

concentration of target ions in the original solution, but the constant of proportionality

depends on many factors, most of which are imperfectly known. This is a common

paradigm in analytical chemistry and it is addressed by one or other of two well-known

strategies. One is called standardization: solutions of known concentration are prepared

and analyzed in exactly the same way as is the sample of unknown content. The unknown

concentration is then established by the procedure illustrated in Figure 9-4, or more simply
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923 Stripping analysis of an aqueous solution containing an indium In(III) salt, gave a peak of height 9.3 A at

a potential of 0.35 V. Under similar conditions a standard solution of 0.0550 mM In(NO3)3 gave a peak of

height 11.3 A at the same potential, whereas an indium-free solution gave no peak, but at 0.35 V the current

was 0.8 A. Estimate the indium concentration in the first solution. See Web#923.
924 Background is the signal provided by an analytical method when a sample contains no analyte whatsoever.

How would you adjust the procedure shown in Figure 9-5 to take account of background? A stripping analysis

of polluted river water for copper shows a peak of height 230 nA, with a background of 60 nA. Successive

additions, each increasing the Cu2+(aq) concentration by 0.20 M without a significant change in sample

volume, produced peak heights of 310 nA, 380 nA, 480 nA, and 540 nA. What is the copper content of the river

water in parts per million? See Web#924.

by direct proportionality923. Alternatively the method of standard additions is adopted.

In this, the original sample is reanalyzed after the addition of a small known amount of the

target species. Figure 9-5 shows the procedure924 in which this “spiking” is carried out with

several successive amounts. Often the volume change resulting from the spiking is small

enough to be ignored. Inasmuch as interpolation is more reliable than extrapolation, it

might be imagined that the standardization strategy would be superior to standard additions.

But this is not necessarily so. Because determinations made in the latter strategy use the

same medium, errors arising from the presence of interferants are lessened.
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925 “Hard” water contains salts, largely bicarbonates, of the metals Ca, Mg, and Fe. Though harmless (in fact,

nutritive) such salts lead to unpleasant deposits in kettles, water heaters and laundered clothing.

Conditions that are standard in voltammetry (Chapters 12, 15, and 16) – excess

supporting electrolyte, strict exclusion of oxygen, potentiostatic control (pages 208211),

and carefully controlled transport – may be employed during stripping analysis. Whenever

the potential of an electrode is changed, as during the measurement stage of stripping

analysis, a nonfaradaic current flows because of the capacitive property of the electrode

interface. This adds to the faradaic current that one is seeking to measure and subverts the

analysis. One way of discriminating against nonfaradaic current is to modulate the ramp;

such strategies, which are explained in Chapter 13, are often employed in stripping

analysis, square-wave and especially differential pulse waveforms being adopted. Another

stripping procedure is to apply a constant current and monitor the potential versus time; a

plateau is observed of a duration proportional to the sought concentration.

Electrochemical Purification of Water: getting the nasties out

Analysis is only half of the solution to the problem caused by pollution; remediation

is needed whenever pollutants exceed acceptable levels. Of course, the destination of the

purified water is a consideration; the high purity requirements for drinking water need not

apply to “grey” water for cooling or irrigation purposes. Water in urban and agricultural

regions often has a high content of deleterious organic compounds. Organic contaminants

are also present in the wastes of many industries and, in the absence of thorough removal

before leaving the facility, they find their way into natural or manmade waterways.

Traditionally, there were two measures of carbon content: the biological oxygen demand

(measured by the oxygen required for biodegradation during a five-day culture) and the

chemical oxygen demand (determined by titration with dichromate ion, , in2
2 7Cr O 

strongly acidic conditions). Nowadays, a variety of instrumental methods is employed and

a finer classification of water quality is achieved

2
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Though it causes hardness925, inorganic carbon is of little concern and is not removed

during water treatment, other than by water softeners at the point of use. The quantity and

type of organic carbon determine the appropriate remedial measures. Electrochemical

methods are useful whenever the pollutant is known to be susceptible to destruction at
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electrodes or by an electrogenerated mediator.

The classical dichromate titration is being replaced by electrochemical methods

because of concern for the hazards posed by chromium and other reagents. One of these

methods uses coulometry. It employs an illuminated titanium dioxide electrode to generate

electron/hole pairs. The holes react with water to generate hydroxyl radicals which react

with the organic content of the water. The electrons are measured to provide a quantitative

measure of the pollution.

Of the very many types of organic pollutants, we

choose phenols as an example. The formulas of two

typical phenolic compounds are illustrated to the right.

Phenols are present in waste water from many

industries: coal, petroleum, paper, plastics, dyes,

pharmaceuticals, photography, etc. They are toxic and

malodorous, but can be decomposed by vigorous

anodic oxidation. Mild oxidation must be avoided

because the quinones thereby formed are more toxic

than the phenols. Rather than oxidizing the phenols

directly at an anode, which can lead to a polymeric

coating, it is better to oxidize via electrochemically

generated mediators, such as hydroxyl radical

hypochlorite ion OCl, or ozone O3. These potentHO ,

oxidizers are formed only at very positive potentials

and therefore anodes with a very large overvoltage for

O2 generation are required to bypass that more thermo-

dynamically favored anodic reaction. Lead dioxide

PbO2 once filled this role, but fear of introducing lead into the water has led to replacement

by SnO2 and, most recently, boron-doped diamond. One stratagem is to create an oxidizing

environment at both electrodes by blowing air through an air electrode, in the form of a

porous carbon cathode, thereby generating hydrogen peroxide H2O2 cathodically.

2 2 2 2O ( ) 2H O( ) 2e H O ( ) 2OHcathod (e ): air aq aq    9:16

as well as ozone anodically. Electrodes such as the air electrode, in which a gaseous

reactant meets the liquid ionic conductor within the pores of an electronic conductor, are

known as gas diffusion electrodes.

Quite apart from its role in changing the chemical identity of pollutants, electro-

chemistry plays other roles in water treatment. The adsorption of pollutants on bulky

precipitated hydroxides of iron and aluminum is a standard nonelectrochemical process in

water purification. The production of these hydroxides from metal anodes, for example
3+

3+
3

2Al( ) 6e 2Al ( )

2Al ( ) 6OH ( ) 2

anod

Al(OH) ( )

e: s aq

aq aq s





  


 
9:17
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926 Demonstrate that, in principle, a water treatment plant employing reactions 9:17 and 9:18 could operate

without requiring an external supply of electricity. Why is this not so in practice? See Web#926.

is now being used as an effective means of introducing these hydroxides into industrial

waste waters. Because such hydroxides are hydrated and colloidal, they readily adsorb

pollutants as diverse as oil droplets, heavy metal ions, and dyestuffs. This technique,

termed electrocoagulation, is often carried out in conjunction with a second process

known as electroflotation. Figure 9-6 illustrates the joint process. The hydroxide ions

needed for reaction 9:17 are produced at the cathodes926

2 26H O( ) 6eca 3H ( ) 6Otho Hde: ( )g aq   9:18

and evolve hydrogen as bubbles which attach to the colloidal particles and lift them up (a

“flotation”) into a sludge that forms on the surface of the cell, from where it can be

skimmed off. Industrial waste water can often be converted by this electroflotation-

electrocoagulation process, followed by filtration, into grey water fit for irrigation and

cooling.

For reasons of health, potable water must meet biological, as well as chemical

standards; meeting the former is described as disinfection, the eradication of live
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927 The standard method of biological assessment of water is a coliform count. If the number of bacterial

colonies after incubation is less than one per 100 mL of water, the water is considered fit to drink, whereas

unpolluted lake water typically gives a count of 30, and raw sewage more than 105. Sadly, passing the coliform

test is no guarantee that the water is free of such potent pathogens as guardia, cryptosporidium and viruses.

microorganisms927. Chemical treatment (with Cl2, ClO2, or O3), or exposure to ultraviolet

radiation are the chief methods of disinfection, but electrolysis, often with a.c., across

closely-spaced electrodes has also proved effective. It appears that three mechanisms are

jointly involved: the electrogeneration of “killer” species such as direct inactivationHO ,

(“electrocution”) of the organisms, and the adsorption of the microorganisms on the

electrodes.

Chlorine-containing oxidants are falling into disfavor because incomplete oxidation

of certain organic pollutants is known to lead to the formation of traces of chloroform,

CHCl3, and similar toxic compounds. Ozone, an attractive alternative oxidant, is a

powerful disinfectant, but its instability requires that it be produced on site. The

established method of ozone production involves a high-voltage “coronal” electrical

discharge through dry air, but electrochemical methods are also in use. One of these is

illustrated in Figure 9-7. An air cathode is used, in which air diffuses into the pores of a

porous electrode composed of carbon and poly(tetrafluoroethene), where the reaction

2 3 2O ( ) 4H O ( ) 4e 6H O( )cathode: aq aq    9:19

occurs. At the anode, the reaction

2 2 36H O( ) 4e O ( ) 4H Ono )a de: (g aq   9:20

is thermodynamically favored over the sought reaction

2 3 39H O( ) 6 O ( ) 6H Oanode ( ): e g aq   9:21

and therefore conditions are chosen that optimize the latter reaction at the expense of the

former. These include using a glassy carbon electrode, the tetrafluoroborate supporting

anion, and such a high current density that the anode must be cooled. Nevertheless, the

fraction of ozone in the anode gases seldom exceeds one-third. Even this concentration

needs an air diluent to avoid the danger of an ozone explosion. Ozone is believed to form
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928 What are the oxidation states (page 29) adopted by the element chlorine in the species involved in reaction

9:23? Web#928 has the answer.

through the following mechanism:
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that involves hydroxyl radicals adsorbed on the glassy carbon surface.

The electrogeneration, and immediate use, of ozone at water-treatment plants is but one

example of an increasing trend towards the use of small-scale electrosynthetic cells located

at the site of product use. Another example from the water-treatment industry is chlorine

dioxide which, being liable to explode on maltreatment, is unsuited to transportation. It is

prepared on site, either chemically by the reaction928 of chlorine with a chlorite:

2 2 2Cl ( ) 2ClO ( ) 2Cl ( ) 2ClO ( )g aq aq g   9:23

or by electrosynthesis in a cell in which the reactions are
1

2 22
H O( ) e OH ( ) H (catho )de: aq g   9:24

and

2 2ClO ( ) e ClO ( )anode: aq g  9:25

Though chlorine is transportable, it too is often electrosynthesized at its point of use,

sometimes from seawater. Yet another example is hydrogen peroxide, which may be

electrogenerated from air, on site, by reaction 9:16 at a carbon electrode.

The semiconductor industry also makes use of chemicals electrosynthesized as needed

at chip fabrication plants. Commercial hydrogen is not of adequate purity for semi-

conductor applications; ultrapure H2(g) is synthesized by the electrolysis of purified

potassium hydroxide solution when and where needed. Arsine, an extremely toxic gas, is

a second example of a compound electrosynthesized at its point of use in semiconductor

technology. It is made by electrolysis of sodium hydroxide solution

2 3As( ) 3H O( ) 3e AsH ( ) 3OH ( )cathode: s g aq    9:26

using an ultrapure arsenic cathode.

Electrochemistry of Biological Cells: nerve impulses

Animal cells (as well as the organelles inside them) are enclosed by bilayers that serve

as the basic “bricks” of biological membranes. These bilayers, about 5 nm thick, consist
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929 a 15-amino-acid polypeptide, HCONH(amino acids)15CONH(CH2)2OH.

of two sheets of phospholipid molecules, positioned tail-to-tail, with hydrophillic head

groups in contact with the extracellular and intracellular aqueous fluids. The lipid bilayers

are internally hydrophobic and do not allow the passage of water or ions. As mentioned

on page 172, the antibiotic ionophore valinomycin is able to defeat the ion impermeability

of phospholipid bilayers by wrapping the ion within a molecule that possesses a lipophyllic

exterior. With the ion’s lipophobicity disguised in this way, penetration of the bilayer by

the ionophore can occur, with subsequent release of the ion on the far side. This is

illustrated on the left-hand side of Figure 9-8. Certain other antibiotics, such as

gramicidin-A929, adopt a different strategy for getting ions through phospholipid bilayers.

Pairs of these protein molecules, which can adopt a spiral shape, insert themselves across

the bilayer, spanning it from one side to the other. Their spiral arrangement is such that the

gramicidin-A molecules form a channel linking the outside of the cell to its interior. There

is a geometric and electrical match, akin to the properties of ionophores, between the

channel’s inner surface and specific ions, allowing those ions – primarily H3O
+ ions in the
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930 For example, sodium ions transit potassium-ion channels with only 0.1% the frequency of K+ ions.
931 David E. Goldman, 19101998, U.S. biophysicist. With the G representing Goldman, the equations are also

known as GHK equations. H denotes Sir Alan Lloyd Hodgkin, 19141998, English physiologist, Nobel

laureate 1963. The K is for Sir Bernard Katz, 19112003, whose Jewish heritage led him to flee Germany to

Australia and England; Nobel laureate 1970, for his neurophysiology discoveries.
932 See Web#932 for details of the derivation, and the assumptions, of Goldman’s current equation.

case of gramicidin-A – to pass through easily. The right-hand structure in Figure 9-8

illustrates this property.

The gramicidin-A transmembrane channel provides a good model of several structures

that occur naturally in cell walls and permit various exchanges between the exterior and

interior. Embedded in the bilayer are very many such gateways that service the diverse

needs of the cell, but our interest here is confined to those transmembrane channels that

allow the passage of simple ions. Such channels are composed of polypeptide molecules

that are implanted in, and span, the lipid bilayer, similarly to the channel in Figure 9-8.

Only an ion of a specific size and charge may travel through. The matching between the

channel’s inner surface and its conforming ion is so good that foreign ions rarely defy the

specificity of the ionic channels930. The ions travel in single file through the channels,

which are “passive” in the sense that no energy is expended by the cell in their operation.

The protein molecules forming the channel have some flexibility, however, and can close

on sensing a voltage change, either by squeezing shut or by means of an end “flap” that acts

as a stopper.

Typically, there will be many transmembrane ion channels of several types linking the

interior and exterior of a cell. Because the extracellular and intracellular fluids differ

markedly in both ionic content and in potential, ions pass through the open channels by the

electrochemical transport modes of diffusion and/or migration, and therefore the Nernst-

Planck equation of page 161 can be taken to apply. With x denoting distance measured

along the axis of a channel from the inside outwards, this equation is

i
i i i i

d d

d d
Nernst-Planck equation
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where i denotes any one of the ions capable of transiting the membrane. In deriving the so-

called Goldman equations931, one treats the potential gradient d/dx within each channel

as equal to mem/Li where Li is the length of the transmembrane ion channel and mem

is the potential within the cell, relative to that outside, the so-called membrane potential.

After integration of the Nernst-Planck equation, the flux density ji may be related to the

current Ii that flows out of the cell as a result of ions i being transported through the i

channel. Details are given elsewhere932 but the result, in terms of a parameter , is

 
 

in mem out2 mem
i i i

i i mem
i

exp /

ex

Goldman’s

current equationp / 1

c z F RT cF
I G
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933 Derive equation 9:30, Goldman’s voltage equation, or see Web#933.
934 Adenosine triphosphate, ATP, is the body’s energy currency. AG of 1.7 kJ mol1 is provided by each ATP

molecule. In comparison, the transfer of K+ ions against the concentration differential reported in the table

corresponds to a Gibbs energy difference of 8.6 kJ mol1. Derive this last quantity and then compare with

Web#934.

concentration / mM

Na+(aq) K+(aq)

inside 1.5 140

outside 120 5

where are the concentrations of ion i in the intracellular and extracellular fluidsin out
i iandc c

respectively. Gi is the “Goldman permeability”, a quantity characterizing the ease with

which ions i pass through their dedicated transmembrane channels. Both i and Gi are

liable to change with time as the transmembrane ion channels open and close, but other

terms are treated as constants. Equation 9:28 is Goldman’s current equation.

Though there may well be several ion currents flowing into and out of a cell, there

cannot normally be any net current. Thus the sum of the Ii currents over all the permeant

ions will be zero, so that
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This equation, which enables the membrane potential difference to be expressed in

terms of the ion concentrations inside and outside the cell, is called Goldman’s voltage

equation. It expresses the membrane potential implicitly in terms of the intracellular and

extracellular ionic concentrations. Muscle cells are permeable to calcium Ca2+ ions but, for

most other cells, the only values of zi that are encountered are +1 and 1 and, in that

eventuality, formula 9:29 solves933 to
out in

i i i i
mem cations anions

in out
i i i i

cations anions

Goldman’s

voltage equation
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This equation becomes simpler still for the important case in which the permeant ions are

predominantly K+ and Na+, for then the potential inside the cell with respect to its

surroundings is

+ + + + + + + +

+ + + + + + + +

out out out out

mem K K Na Na K K Na Na

in in in in

K K Na Na K K Na Na

ln (26.7 mV)ln
G c G c G c G cRT

F G c G c G c G c
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Here the stated millivoltage refers to the human metabolic temperature of 37oC.

Typical concentrations of potassium and

sodium ions inside and outside neurons (nerve

cells) are close to those tabulated to the right. The

large disparities between the internal and external

concentrations of each ion are maintained by ATP-

fueled934 sodium ion out-pumps and potassium ion
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935 Some pumps are dual acting; one of these expels three sodium ions while admitting two potassium ions.

“Active transport” of this kind is estimated to consume about 25% of the metabolic energy of the human body.
936 Demonstrate that this is so. Also show that, for the tabulated concentrations, the maximum and minimum

possible values of mem are +117 mV and 89 mV. See Web#936.

in-pumps, which work continuously935. The resting membrane potential difference is

close to 70 mV, which shows that the Goldman permeability for K+ exceeds that for Na+

about 35-fold936. It is the large differences in potassium and sodium ion concentration

between the inside and the outside of nerve cells that provide the key to their operation.

Nerve impulses are transmitted within a single nerve cell electrically and between two

nerve cells chemically. Each nerve cell has several axons radiating from its nucleus-

housing “soma”, as suggested in Figure 9-9. Electrical signals are conveyed along the

axons by an action potential. On being triggered by an incoming stimulus, the action

potential starts with a potential rise near the soma and propagates along the axons. Small

stimuli are ineffective, but if a rise in the membrane potential to a level more positive than

a threshold of about 30 mV is experienced, a succession of events occurs at this site:

(a) The stimulus causes an opening of the many closed sodium-ion channels that are

found in the soma near the nucleus.

(b) In response to the huge concentration gradient across the newly opened channels, Na+

ions flood into the axon.

(c) As a result, the membrane potential, previously about 70 mV, climbs quickly to a

maximal value of about +40 mV.
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937 A typical spike in unmyelinated axons has a duration of less than one millisecond and a speed of 25 m s1.
938 Louis-Antoine Ranvier, 18351922, French physician and pathologist.
939 Speeds as high as 120 m s1 have been measured in the spinal motor axon of cats.

(d) The sudden rise in potential has two effects. One of these is to trigger closed

sodium-ion channels further along the axon to open, thereby propagating the action

potential along the axon.

(e) The second effect of the 110 mV rise in membrane potential is to trigger closed

potassium-ion channels to open.

(f) K+ ions exit through the opened channels in response to the 30-fold concentration

differential favoring their travel outwards into the extracellular fluid.

(g) The outward flow of potassium ions restores the membrane potential to negative

values.

(h) The negative mem signals the local transmembrane ion channels – sodium and

potassium – to return to their resting closed states.

(i) The site is now ready to respond to another stimulus, the entire (a)(h) sequence

having taken place within an interval of about 30 ms.

The brief spike in potential – the so-called action potential – moves rapidly937 as a

wave-like signal along the axon. Recognize that it is a rather small number of Na+ ions that

move into the axon and a similar small number of K+ ions that subsequently move out,

certainly not enough to significantly affect concentrations. The effect resembles the

charging of a very small capacitor in that a small flow of charge causes an appreciable

potential change. Even if the active pumps are disabled by drugs, the nerve cell is able to

provide an action potential many thousands of times before becoming inactivated by the

homogenization of interior and exterior ion concentrations. Nerve impulses are digital,

rather than analog, signals: an intense stimulus delivers a higher frequency of action

potential spikes than a weaker stimulus, not spikes of higher voltage or longer duration.

Large animals that must respond fast to capture prey or escape predators benefit from

rapid nervous impulses. In consequence, axons through which the action potential moves

faster have evolved. Such axons are “myelinated”. Myelin is a lipid that insulates some

axons in vertebrates, preventing the normal ionic ingress and egress except at evenly spaced

gaps (nodes of Ranvier938) in the myelin sheathing. The action potential then hops from

node to node, a faster939 and less energy-consumptive motion than the usual wave. Figure

9-9 illustrates myelinated and unmyelinated axons.

Action potentials are not limited to the neurons of animals. They govern muscle action

(where calcium Ca2+ ion channels play a role) and heartbeats (in which the action potential

is more like a square-wave than a spike). Even fungi and plants (in the Mimosa genus, for

example) employ action potentials that arise from chloride Cl ion channels.

Communication between nerve cells usually occurs by transfer of neurotransmitters

across gaps – called synapses or synaptic clefts and about 50 nm wide – where the
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940 + +
3 2 2 3 3 2 6 3 2 2 3H CCOO(CH ) N(CH ) and (HO) C H (CH ) NH respectively.

941 For much more on these topics, and others facets of pollution, see K. Rajeshwar and J.G. Ibanez,

Environmental Electrochemistry: fundamentals and applications in pollution abatement, Academic Press, 1997.

View supplementary web material at www.wiley.com/go/EST.

dendrites of two neurons come very close together. Neurotransmitters, of which

acetylcholine and dopamine940 are examples, are small cations stored in presynaptic vesicles

at the axon terminal. When an action potential reaches the terminal, calcium ion channels

open, which releases the contents of the vesicle into the synaptic cleft. The

neurotransmitters diffuse across the gap and penetrate the postsynaptic membrane,

triggering an action potential in the receptor axon.

The timescale associated with diffusion is about L2/D, where L and D are the distance

traveled and the diffusivity. For diffusion across the synaptic cleft, these parameters have

values of about 50 nm and 2.5×1010 m2 s1, from which one estimates the remarkably brief

transit time of 10 s. Nevertheless, where transit times are crucial, as in the retina of the

human eye, synapses are replaced by connexins; these are transmembrane ion channels

permitting direct ion flow from one neuron to another.

Summary

In this chapter we have merely touched on the ways in which electrochemistry can help

in assaying pollutants and in the remediation of water941. Electrochemistry makes contact

with environmental concerns in many diverse ways, beyond those discussed in this chapter.

Electric vehicular propulsion is an obvious way in which rechargeable electrochemical

power sources can help by displacing the pollution-emitting fossil-fuel-burning Carnot-

efficiency-limited internal combustion engine. In lamenting the slow pace at which this

conversion to electric fuel is taking place on our roads, don’t forget that conversion to

electric propulsion is almost complete for railways. Of course, as long as electricity is

made from fossil fuels, the environment benefits only modestly from the electricity route.

Electric propulsion, using batteries recharged from renewable sources, is thoroughly

“green”. It is to the shame of electrochemistry that better secondary batteries are still

awaited.



1001 or commonly overpotential. Our preference for the name “overvoltage” is based on our usage of “voltage”

to mean “electrical potential difference”.  is certainly a potential difference rather than a potential.

Electrochemical Science and Technology: Fundamentals and Applications, First Edition. Keith B. Oldham, Jan C. Myland, Alan M. Bond.

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Electrode Polarization

When current flows across an electrode, its behavior ceases to be governed solely by

thermodynamics. Several factors then influence the interdependence of current and

electrode potential and their collective effect is known as electrode polarization. Three

contributors to electrode polarization, each arising from a distinct cause, are examined,

individually and collectively, in this chapter. These effects may, or may not, change with

the passage of time; such temporal considerations will not greatly concern us here.

Although they are deeply entrenched in the history of electrochemistry, the concepts

of “electrode polarization” and “overvoltage” are bypassed by some authors, who exclude

them from their writings. Nevertheless, these concepts endure, and prove fruitful, in many

branches of electrochemistry. They clarify the varied factors that influence the behavior

of electrodes, independently of any particular experiment.

Three Causes of Electrode Polarization: sign conventions and graphs

An electrode is said to be totally depolarized if it remains at its null potential when

current of either sign and any magnitude is passed through it. No electrode meets this ideal

perfectly, but secondary battery electrodes (Chapter 5) and well designed reference

electrodes (Chapter 6) come close. The vertical red line in Figure 10-1 represents total

depolarization. The blue line, in contrast, represents the behavior of a totally polarized

electrode, one through which no current passes at any potential. Again, this represents an

idealization, but many electrodes pass no significant steady current at any potential within

the “window” (page 130) allowed by the solvent. It is the green line in Figure 10-1 that

represents typical behavior: the electrode potential E adopts a value more positive than the

null potential when the electrode behaves as an anode, but becomes more negative than En

when passing cathodic current. Overvoltage1001 is the name given to the difference
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1002 or activation polarization or charge-transfer polarization.
1003 or concentration polarization.

between the actual potential E and the null potential En and it is given the symbol :

n overvoltageE E  10:1

Overvoltage measures the extent of electrode polarization, sharing the sign of the current

that causes it. Here cathodic overvoltages are negative but you may encounter the absolute

magnitude |EEn| used as the definition of . Of course, the overvoltage depends on the

current density i. Though it may be intuitive to imagine current flow being caused by a

voltage, it may be more fruitful in discussing electrode polarization, to think of the current

density as being responsible for the overvoltage.

In this chapter, we discuss three sources of electrode polarization, each associated with

its own overvoltage
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As its name suggests, ohmic polarization is manifested as a resistance; it arises from the

slowness of ionic migration. Kinetic polarization1002 has its origin in the inherent

slowness of many electrode reactions. It is slowness in the supply of reactants to, and/or

the removal of products from, the electrode that causes transport polarization1003. A

fourth effect, crystallization polarization, arising from the slowness of crystal growth, is

not addressed here. Thus each type of electrode polarization reflects a slowness of one

kind or another. Extra voltage – the overvoltage – can often compensate for the slowness.
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Because many graphs and equations accompany this chapter, this is a good point at

which to review a topic that bedevils electrochemical science: signs. The International

Union of Pure and Applied Chemistry (IUPAC) prescribes such matters as definitions,

symbols, and sign conventions. However, some of these run counter to established usage

and may not be adhered to by all electrochemists, including the present authors. Here our

purpose is to describe the sign and other conventions that are adopted in this book, and to

alert the reader to other usages that may be encountered elsewhere.

The flow of electricity in an electronic conductor is in the direction opposite to that in

which electrons travel, which sometimes leads to confusion; the sign of the current reflects

the motion of electricity, not electrons. We represent current by I; others use i. We

represent current density by i; others use j. We write Ohm’s law as I  E/R or as

i  d/dx because, in a conductor, current flows in the direction in which electrical

potential decreases; elsewhere the negative sign may be omitted.

Inevitably, ambiguity exists in discussing the sign of cell currents, unless one electrode

is clearly identified as the working electrode. Nowadays, most electrochemists allocate a

positive sign to currents arising from an anodic reaction at the working electrode, as does

this book; however the opposite convention – cathodic currents being positive – may be

encountered elsewhere. Figure 10-2 usefully illustrates some of these conventions.

In this book, currents, overvoltages, and mobilities are allowed to adopt either sign;

elsewhere they may be defined as unsigned quantities, with appropriate compensatory

changes being made to equations. On the other hand, we do not allow stoichiometric

coefficients to be negative, as some others do.

We use E for electrode potentials and E for cell voltages; others use E for both.

Allocating signs to electrode potentials is straightforward: the potential takes the sign of
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1004 This is liable to introduce inconsistencies if the temperature is other than 25oC.

the voltmeter reading in the circuit diagrammed in Figure 10-2. The cited electrode

potential is the voltmeter reading versus whatever reference electrode is specified. The

ferrocene/ ferrocenium couple is frequently used as the reference in nonaqueous solutions.

Alternatively, if the ionic conductor is an aqueous solution at 25oC, the electrode potential

may be reported as E + ERE , where E is the voltmeter reading and ERE is the potential

of the reference versus a SHE reference1004. This latter is the convention we follow in

listing standard electrode potentials in the table on page 392 and elsewhere in this book;

however you may find standard electrode potentials cited in older publications, and

especially in physical chemistry texts, with signs opposite to these.

To compound the ambiguity of the signs to be associated with current and potential,

there are also different customs as to how those quantities are plotted in drawing a current-

voltage graph. Following the mathematical convention used in cartesian graphs, it would

seem natural to plot electrode potential (or cell voltage, or overvoltage) increasing

positively to the right and current (or current density) increasing positively upwards, as was

done in Figure 10-1. However, other ways of plotting were once in vogue, and linger still.

Such counterintuitive plotting was practiced because, at one time, cathodic reactions were

far more commonly studied than their anodic counterparts and it was then more convenient

to plot experimental results in the opposite fashion, with negative potential to the right and

cathodic currents upwards. In this book we follow the positive to the right and upwards

rule, as in Figure 10-3, which labels the four quadrants of a graph of current versus cell

overvoltage. As the figure shows, these quadrants reflect the polarity of the working

electrode, the sign of the current, and whether the particular cell is operating in a galvanic

or an electrolytic mode.
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1005 This ignores any resistance in the electronic-conductor portion of the circuit, which may sometimes be

important.
1006 Read more about equipotential surfaces at Web#1006.
1007 Calculate the ohmic overvoltage of a cell of the geometry of Figure 10-5 when the cell, containing 11 mM

aqueous copper(II) nitrate Cu(NO3)2 solution, is a cube of edge length 19 mm and the current is 123 A. See

Web#1007.

Ohmic Polarization: countered by adding supporting electrolyte

For current to flow across a cell, ions must move through the ionic conductor and to

maintain this motion requires an electric field. The field is supplied by a difference of the

electrical potentials, within the ionic conductor, between the surface adjacent to the

working electrode and that adjacent to the reference electrode. Thus the ohmic over-

voltage is1005
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Here  is the local potential in the

solution, or other ionic conductor.

In 10:2, use has been made of

Ohm’s law in the form

where  is thed / di    

conductivity of the ionic

conductor. The symbol denotes

the length coordinate measured

from the working electrode in the

direction of current flow and ( )A 

is the area of the equipotential

surface1006 at that distance, as

illustrated in Figure 10-4. To

perform the integration in

equation 10:2 requires the specification of the cell geometry, which in practice may often

be rather irregular. For cells of certain simple geometries the integration is readily

accomplished.

The “trough” geometry in Figure 10-5, overleaf, is especially simple because, in that

case, A is a constant and integration gives
0

ohm cell trough geom try
d

e
L

I x IL
IR

A A


   

 10:3

Here, Ohm’s law in the form of equation 1:23 was used in the final step1007 and Rcell denotes

the resistance of the cell. In fact, the equations
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ohm cell cell ohmic overvoltageIR AR i  10:4

apply to a two-electrode cell of any shape, Rcell being the resistance of the ionic conductor

between the two electrodes. One sees why IR drop is often used as a synonym for “ohmic

overvoltage”.

Apart from the simple “trough”

geometry, two other geometries that are

important in electrochemistry, and

particularly in voltammetry (Chapters

12, 15, and 16), are those shown in

Figure 10-6. The left-hand diagram is a

cross section of a hemispherical

electrode and the adjacent solution. In

this case, the equipotential surfaces (one

is shown in red) are hemispherical shells

that surround the working electrode

rather like the layers in half an onion,

and each has an area of 2r2 where r is the radius measured from the center. Were the

reference electrode to be a large hemispherical shell of radius rRE, then the integral in

equation 10:2 evaluates as follows:
hemi
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where rhemi is the radius of the hemispherical working electrode. Of course, a large
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1008 The term inlaid disk electrode is often used to distinguish a disk whose surface is flush with a surrounding

insulator from one that has an exposed rim.
1009 See Web#1009 where, in addition to the disk electrode, resistances associated with some other working

electrode geometries are discussed.
1010 In such cases, the synonyms “inert electrolyte” and “indifferent electrolyte” are inappropriate.

hemispherical reference electrode is seldom if ever employed, but equation 10:5 shows that

if rhemi is small compared with the dimensions of the cell, then the second term in the

brackets is unimportant and the equation reduces to

ohm cell cell

hemi

1
where

2
hemispherical WEIR R

r
  


10:6

irrespective of the shape of RE or its position, provided that it is large and remote. The

corresponding integration in the case of a small disk electrode1008, shown on the right in

Figure 10-6, is less straightforward and is addressed elsewhere1009; the result, however, is

ohm cell cell

disk

1
where

4
disk WEIR R

r
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
10:7

and is seen to differ from the hemispherical case only in a numerical coefficient. However,

there is a further distinction between the two cases that is not apparent in the equations;

whereas the current density is uniform on the surface of the hemisphere, this is not the case

for the disk, which carries an elevated current density near its edge.

Because ohmic overvoltage is almost invariably an unwelcome property, one seeks to

diminish it. The inverse proportionality of ohm to conductivity is the prime reason for

adding supporting electrolyte to cell solutions, but there are other repercussions. Briefly,

the effects of the addition are:

(a) to diminish the resistance and hence the ohmic polarization.

(b) to make migration such a minor transport mode (Chapter 8) that it may be ignored in

comparison with diffusion. This massively simplifies the modeling of cell behavior.

(c) to make activity coefficients (Chapter 2) – and thereby such quantities as formal

potentials and formal rate constants – less variable. This is because ionic activity

coefficients reflect the ionic strength of the solution. With excess supporting electrolyte,

the ionic strength is virtually uniform and constant; without it, the ionic strength may vary

from point to point in the solution and from one instant to the next.

(d) to provide an environment conducive to the study of a particular reaction; for example

supporting electrolytes are often buffer solutions designed to enforce a known H3O
+ or OH

concentration1010.

(e) to make natural convection (Chapter 8) less troublesome. This ameliorating effect

arises because the density of a concentrated ionic solution is less affected by small changes

in the concentration of electroactive ions than is a pure solvent.

(f) to make the double layer (Chapter 13) thinner and less populated by the electroactive

ions, thereby making its capacitance more reproducible and Frumkin effects (page 280) less

obtrusive.
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1011 for example, if one is seeking equilibrium constants or analyzing river water in situ.
1012 Perhaps because the solution is well stirred, or because the reaction rate is so slow that natural diffusion

makes the ratio differ insignificantly from unity.
1013 Notice that the curves lie entirely within the blue areas in Figure 10-3; we are discussing electrolytic

electrochemistry. The null potential represents equilibrium; we are using external energy to drive reactions.

(g) to introduce ions that may complex the electroactive species, making the latter of less

certain composition.

(h) to render the solution less comparable to the media used in nonelectrochemical

studies (such as spectroscopies of various kinds), making it difficult to intercompare results.

(i) to call into doubt the results of electrochemical measurements of such dilute-solution

properties as equilibrium constants or solubility products.

(j) to place an upper limit on the concentration of the electroactive species, because of

the need to have supporting electrolyte in great excess.

In items (g)(j), the effect of supporting electrolyte is adverse. However, the

advantages conferred by items (a)(f) are great enough that, unless there is some cogent

reason1011 not to, supporting electrolyte is almost always added in excess.

Kinetic Polarization: currents limited by electrode reaction rates

Some electrode reactions, like ordinary chemical reactions, are inherently slow. It is

this slowness that gives rise to kinetic polarization. The sluggishness of all reactions,

chemical or electrochemical, can be lessened by increasing the temperature, but electrode

reactions can be accelerated also by changing the electrode potential.

Equation 7:27 demonstrates that the current density due to the simple reaction

is given by the Butler-Volmer equationR( ) e O( )soln soln 
ss
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where ko is the formal rate constant and  is the reductive transfer coefficient. The two

concentration quotients in this equation reflect disparities between surface concentrations

and bulk concentrations, which is a symptom of transport polarization. When these

disparities are absent1012, equation 10:8 may be contracted to

o b b 1
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where kin is the kinetic overvoltage. The preexponential factor in 10:9 is the exchange

current density; the name is appropriate because in represents the current flowing in each

direction (being “exchanged”) at the null potential En. Figure 10-7 has graphs1013 showing

the   0.35 and   0.50 examples of this relationship.
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1014 The hyperbolic sine function, and its inverse, are defined in the Glossary.
1015 Demonstrate that, irrespective of , approximations 10:12 and 10:13 lead to less than 5% error, as

replacements for equation 10:9, provided that the overvoltage has a magnitude of at least 77 mV. See Web

#1015.
1016 Construct a polarization curve for an electrode reaction meeting the following criteria, when both ohmic

and concentration polarization are absent:  1.50 mM,  0.50 mM, Eo  0.0500 V, ko  4.0×106b
Rc b

Oc

m s1,   0.60, T  280 K. See Web#1016.
1017 Calculate the charge-transfer resistance during the experiment described in Footnote 727. Check your

result at Web#1017.

Equation 10:9, which expresses the current density as a function of the overvoltage,

may be inverted to give kin as a function of i only if  takes the value ½. In that case1014

1
2kin

n

2
arsinh wh kien

2
netic overvoltage

RT i

F i

 
    

 
10:10

where the exchange current density in is then equal to .1014However,o b b
R OFk c c

approximate1015 inversions are available where the overvoltage is small and in the two Tafel

regions (page 137)1016:

kin kin

n

o b b 1
kin kin R O

kin kin

10:11 when small

10:12 ln when η large and negative ( ) ( )

10:13 ln when η large and positive
(1 )

n

n

n

RT i

F i

RT i
i Fk c c

F i

RT i

F i

 


   




        
   


  

        

It can be shown1017 with the help of equation 10:9 that, in the vicinity of the null potential,

the electrode potential varies with current at a rate
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
 10:14

and, reflecting the fact that it has the ohm unit, this quantity is known as the kinetic

resistance or charge-transfer resistance Rct.

All of equations 10:8  10:14 are based on the Butler-Volmer relation as it applies to

the simple or equally the reaction, taking place in a singleR e O, O e R , 

step. The corresponding equations for more complicated reaction mechanisms will be of

similar form, but will involve composite transfer coefficients and may have different

concentration terms. Each mechanism should be treated on a case-by-case basis, following

the procedures outlined in the penultimate section of Chapter 7.

Transport Polarization: limiting currents

Transport polarization results from any slowness in the supply of reactant to the

electrode and/or in the removal of product from the electrode. Three different modes of

transport were discussed in Chapter 8, but we shall not be greatly concerned here with

which ones are operative. Appreciate, though, that reactant and product may be propelled

by different modes of transport, as when only one of the two is ionic. Be aware, too, that

sometimes transport may not be required at all for certain species, as for the reactant in

equation 4:17 or for one of the two redox partners, as in the reactions displayed on page 73.

Even when both R and O are transported by the same mechanism, there is an important

distinction between the transport of a reactant and of a product in that there is a limit to the

rate of transport of the reactant, but not of the product.

We shall continue to address the generic one-step reactionR( ) e O( )soln soln

and consider it to be proceeding anodically.

Because the anodic reaction consumes species R at the electrode surface, this species

must be replenished by transport from the bulk solution. However, transport is a sluggish

process and a disparity therefore develops between the bulk and surface concentrations in

the sense that
s b
R Rc c10:15

where the superscript b or s relates to the bulk or surface site.

On the other hand, species O is produced at the electrode

surface and, to provide a driving force for it to disperse into

the surrounding solution, there needs to be a concentration

gradient in the sense that
s b
O Oc c10:16

which is an inequality in the opposite sense to that in 10:15.
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1018 Show, as in Web#1018, that equation 10:19 may be derived directly from 10:8 by letting the formal rate

constant approach infinity.
1019 For an electrooxidation at 25oC, what is the transport overvoltage if the disparity between the surface and

bulk concentrations of both R and O is 1%?, 50%?, 99%? See Web#1019.

We here treat only the nernstian condition, slowness of the electron-transfer process

having been addressed already in the previous section. Nernst’s law
s

o O

s
R

Nernst’s laln w
RT c

E E
F c

 
   

 
10:17

relates the electrode potential to two surface concentrations. It is the bulk concentrations,

however, that determine the potential that the electrode adopts in the resting state; thus, the

null potential is
b

o O
n b

R

null potenl tialn
RT c

E E
F c

 
   

 
10:18

Subtraction of 10:18 from 10:17 leads immediately to a formula1018 for the transport

overvoltage
s b
O R

trans n b s
O R

transport overvolta eln g
c cRT

E E
F c c

 
     

 
10:19

Inequalities 10:15 and 10:16 show that each of the concentration quotients1019, s b
O O/c c

and that appear in 10:19 are greater than unity for the anodic process beingb s
R R/ ,c c

addressed, leading, as expected, to a positive overvoltage.

Thus far in this section, we have discussed only the way in which transport polarization

affects concentrations at the electrode surface and thereby, through the medium of

Nernst’s law, determines the overvoltage, as illustrated towards the right-hand side of

Figure 10-8. Yet to be explained is how the current density interacts, through the medium

of Faraday’s law, to determine the values of the concentration quotients. The full picture

is clarified by Figure 10-8, which shows how the various laws governing the behavior of

the system conspire to create a dependence of transport overvoltage on current density.
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1020 Write the Faraday-law equations corresponding to 10:21 for (a) reaction 9:15 and (b) reaction 9:14. See

Web#1020.
1021 As in Web#1021, carry out the algebra to derive equation 10:22.

It was shown in Chapter 8 that the transport laws provide a linkage between the

concentration of a reactant or product at the surface of the electrode and the flux density

there. Often the relationship is as simple as

 s s b
i i i i i = R,Oj m c c 10:20

where mi is a transport coefficient that may, or may not, incorporate time as a factor.

Moreover, for the reaction the simple stoichiometry tells us thatR( ) e O( ),soln soln

the arrival of each R at the electrode coincides with the release of an electron into the

electrode and the creation of an O. It follows that

s s
R O Faraday’s law

i
j j

F
  10:21

is the simple consequence of Faraday’s law1020. Though we have focused on the oxidation

the equations hereabouts, and indeed throughout the chapter, areR( ) e O( ),soln soln

equally valid for the reduction.O( ) e R( )soln soln 

Equations 10:19, 10:20, and 10:21 may be combined into1021

trans

b b
O O R R

transport overvoltageln 1 ln 1
F i i

RT Fm c Fm c

   
      

  
10:22

If the transport law is not as simple as 10:20, or if the electrode reaction has a different

stoichiometry, then equation 10:22 will need modification, but the principles implied by

Figure 10-8 remain valid whenever the overvoltage reflects transport polarization alone.

Because the arguments of logarithms can never be negative, equation 10:22 shows that

the current density cannot exceed or be less than That isb
R RFm c b

O O .Fm c
b b

O O R R current limitsFm c i Fm c  10:23

Thus the current density is bracketed between two values. These bounding values are

known as limiting current densities and correspond to plateaus on a graph of current

density versus electrode potential, as in Figure 10-9. Physically, the plateaus reflect the

fact that, because a concentration at the electrode surface cannot fall below zero, there is

a limit beyond which the rate of supply to the electrode cannot be increased, however large

the magnitude of the potential. The anodic limiting current density,
an b
lim R R anodic limiting currenti Fm c10:24

is the largest possible current density, acquired at the most positive potentials. The

cathodic limiting current
cath b
lim O O cathodic limiting currenti Fm c 10:25
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1022 If the product O is absent from the bulk solution, the concept of overvoltage is meaningless because there

is no null potential. Nevertheless, the current-voltage curve retains the shape of Figure 10-9, with a cathodic

limiting current of zero.

is the most negative current accessible1022, acquired at the most negative potentials.

Equation 10:22 may be written in terms of the limiting current densities as
cath
lim

1/2 an
lim

ln
RT i i

E E
F i i

 
   

 
10:26

where
cath b
lim O O

1/2 n nan b
lim R R

half-wavln l e potentialn
RT i RT m c

E E E
F i F m c

   
      

   
10:27

is the half-wave potential, the central point of the “wave”.

Multiple Polarizations: the big picture

Each of the three most recent sections has addressed the effect of one of the three

polarizations – ohmic, kinetic, or transport – in the absence of the other two. Figure 10-10

overleaf compares the shapes of the i versus  curves caused by a single polarization of

each kind. Evidently the effect of each polarization is quite distinctive. But what if there

are several simultaneous polarizations?

We may think of the three kinds of electrode polarization as distinct and the three

overvoltages as more-or-less additive. The additivity is strict if one of two polarizations

is ohmic:

ohm kin transif 0      10:28

ohm trans kinif 0      10:29
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1023 Show that equation 10:30 reduces (a) to 10:4 when kinetic and transport polarizations are negligible [let

ko and each m approach ]; (b) to 10:9 when ohmic and transport polarizations are negligible [set Rcell to zero

and each m to infinity]; and (c) to 10:22 when ohmic and kinetic polarizations are negligible [let Rcell  0 and

ko  ). See Web#1023.
1024 By an “explicit” interrelation is meant one in the form i = f() or f(i). Equation 10:30 can be written

in the latter form when   ½.

R( ) e O( )soln soln  O( ) e R( ).soln soln 

but if kinetic and transport polarizations coexist there is considerable interplay between the

two because concentrations are involved, via the Butler-Volmer equation, in both. Figure

10-11 shows the complicated routes involved by which the current density determines the

overvoltage when all three polarizations conspire to polarize the electrode.

Despite the complexities evident in Figure 10-11, it is nevertheless possible to write

a single equation1023, namely

 

   

cell

cell cell

o b b 1 b b
R O O O R R

exp ( ) / 1]

exp ( ) / exp ( ) /1

( ) ( )

F F AR i RT

i

F AR i RT F AR i RT

k c c m c m c 

    

  
 



10:30

interrelating the current density i and the overall tripartite overvoltage . The expression

is not pretty and it cannot be made explicit1024. Figure 10-12 shows the effect of adding



Multiple Polarizations 207



208 10 Electrode Polarization

1025 104 m s1 was chosen for the m’s because this value is appropriate to steady-state voltammetry (Chapter 12)

at an microdisk electrode of area 109 m2, for solutes with the typical diffusivity 1.4 × 109 m2 s1.
1026 With electrode materials of low conductivity, the electronic conductor may also contribute to ohmic

overvoltage.

increasing kinetic polarization, or increasing ohmic polarization, to a polarization curve

with pure transport overvoltage1025. In either case, the wave becomes steadily more

prolonged and less steep. The similarity between the two sets of curves correlates with the

experimental reality that it often proves difficult to distinguish between a small admixture

of kinetic polarization or of ohmic polarization.

Polarizations in Two- and Three-Electrode Cells: the potentiostat

Recognize that the three types of polarization arise from phenomena at different sites.

Kinetic polarization originates at the electrode interface. Transport polarization stems from

processes within the transport layer adjacent to the electrode. Ohmic polarization arises

from the entire ionic conductor1026. We must not forget the reference electrode, either; it

too is liable to suffer polarization. In fact, a two-electrode cell may be affected by a total

of five polarizations:

transport polarization associated with tran

ohmic polari

kinetic polarization at the surface of the

zation arising from the entire ionic condu

sport t

ctor

o the WE

transport p

WE

ola

pola

riza
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tion

ns
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kinetic polarization

ociated with transpo

at the surface of th

rt to the RE

e RE









though the final two should be small for a well-designed reference electrode. Figure 10-13

locates the sites from which the five polarizations originate.
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1027 auxiliary electrode is also used.
1028 Invented in 1942 by Archie Hickling, 19081975, English electrochemist.
1029 See Web#1029 for details.

Notice that, in this two-electrode cell, the RE fills two roles: (a) it provides a location

with respect to which the potential of the WE may be measured; and (b) it provides an

exit/entrance for the current flowing through the cell when the WE serves as an

anode/cathode. In Figure 10-14, these roles have been separated. The smaller portion has

adopted role (a), whereas role (b) is assumed by the larger portion, which takes the name1027

counter electrode (CE). The last two polarizations of the five listed above now effectively

disappear! This is because overvoltages are caused by current flow and, though these still

exist at the CE, their effects are not measured by the voltmeter, which allows no current to

flow across the RE. The penalty paid for this improvement in performance is that a

constant voltage source no longer ensures that the potential experienced by the WE is

constant. Technology, however, comes to our aid in the form of a potentiostat1028. This

is a complicated device described elsewhere1029 that adjusts the current through the CE

pathway to whatever is needed to make the EWE  ERE voltage equal to the value that the

experimenter commands.

Nowadays, commercial potentiostats incorporate many features beyond those described

above, and frequently operate digitally with computer control. Facilities may be included

whereby the user can impose simple or complex potential waveforms, and record the time

dependences of both the electrode potential and the cell current. Thereby, both the

voltmeter and ammeter of traditional instrumentation are, in effect, incorporated into the

potentiostat. Current-voltage and other graphs are plotted automatically and are often also

provided as digitized time series, suitable for numerical manipulations. Many potentiostats
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1030 sometimes called a function generator. Though the voltage source and the potentiostat are often integrated

into a single commercial instrument, we regard them as distinct devices.
1031 also known as a Luggin probe, or colloquially “a luggin”. Hans Luggin, 18631899, Austrian physical

chemist.

are able to function also as galvanostats, controlling the current, rather than the potential.

The use of potentiostat-supported three-electrode cells has become the norm in

investigative electrochemistry and, in most of the remainder of this book, their use will be

assumed. From the viewpoint of the experimenter, the salient features of a potentiostat are:

(a) input connections from the voltage source1030; (b) output connections to the three

electrodes; (c) the ability to measure the voltage between the working and reference

electrodes; (d) the ability to measure the current flowing into the working electrode; and

(e) a switch by which the WE can be isolated from the potentiostat. These features are the

only ones shown on our symbolic representation of a potentiostat, as in Figure 10-15.

Relieved of passing current, the reference electrode can now be much smaller and there

is less call for the “abundant supplies” mentioned on page 106. Because it need only be

small, the RE may be moved much closer to the WE. Alternatively, it can be positioned

externally and connected to the cell by a narrow Luggin capillary1031 as in Figure 10-15.

Both the external and internal diameters of the capillary can be very small, the latter

because no current is carried by the solution inside. The mouth of the capillary is brought

close to the WE surface, thereby reducing the ohmic overvoltage to a small, and often

insignificant, value. The residual resistance is the uncompensated resistance Ru, so called

because the potentiostat is said to have “compensated” for most of the cell resistance1026.

Understand that Ru is not the resistance between the WE and the RE. The potential sensed
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1032 The presence of the capillary will, to some extent, distort the equipotential surfaces. Moreover, if its mouth

is placed too close to the WE surface, the Luggin capillary will shield a portion of the surface. In practice, one

strives to position the capillary as close as possible to the electrode without seriously interfering with the WE’s

operation.
1033 Recognize, however, that some electrochemical process will occur there. Products of that process may

interfere with the WE reaction in some prolonged experiments.
1034 Too small a CE, however, places voltage demands on the potentiostat that it may be unable to fulfill.

by the Luggin capillary is that of the equipotential surface that traverses its mouth1032. For

example, the equipotential surfaces in the case of the trough cell illustrated in Figure 10-5

are simply planes parallel to the working electrode. If the mouth of the Luggin probe is at

a distance xRE from such an electrode surface, the uncompensated resistance will be

RE
u trough cell

x
R

A



10:31

where A is the area of the working electrode. Troughs are seldom employed but, unlike that

of the cell as a whole, the geometry of the space between the WE and the Luggin tip is

usually simple, permitting an estimate of Ru to be calculated from the conductivity. Bear

in mind though that if the Luggin capillary is too large, or positioned too close, it will

interfere with the electric field in its vicinity, because it occupies space that would

otherwise be occupied by the ionic conductor.

The transition from two to three electrodes reduces the demands placed on the

reference electrode and, with a carefully positioned RE, massively reduces the ohmic

polarization. Demands on the counter electrode are even less, since polarization there is

immaterial1033; a short length of platinum wire often suffices1034. There are circumstances

in which two electrodes must be used, as in the systems addressed in Chapters 4 and 5, but

otherwise the use of three electrodes has been adopted by electrochemists, even when

experimental goals can be met equally well by two electrodes, despite the added

instrumentation that the third electrode necessitates.

The transition from two to three electrodes is without effect on the working electrode,

except that it becomes virtually grounded1029. It continues to experience kinetic and/or

transport polarization but, with a well-designed three-electrode cell, experiments benefit

from a greatly reduced ohmic polarization. This confers greater authority on measured

electrode potentials and is beneficial in reducing the RuC time constant (page 276) in

several voltammetries. Not only is the ohmic polarization reduced by the three-electrode

configuration, but the residual uncompensated resistance may become open to calculation

from the conductivity of the ionic conductor and the geometry of the space between the

working electrode and the reference electrode (page 278).

One important consequence of the introduction of the potentiostat-controlled three-

electrode cell is the ease with which many solvents other than water can now serve as ionic

conductors. This development224 has had a major impact, allowing the expansion of

electrochemistry into many hitherto inaccessible arenas.
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View supplementary web material at www.wiley.com/go/EST.

Summary

Three distinct polarizations shift the potential of an electrode when current flows.

Ohmic polarization leads to an overvoltage, the “IR drop”, proportional to the resistance;

its effect can be ameliorated by addition of supporting electrolyte, which has other benefits

too. Kinetic polarization originates in the slowness of the kinetics of the electron-transfer

reaction: it leads to the relation

act act
o b b 1

R O

(1 )
exp exp

( ) ( )

i F F

RT RTFk c c 

    
      

    
10:32

for the simple reaction, when Butler-Volmer kinetics areR( ) e O( )soln soln

espoused. Transport polarization for this same reaction is given by
s b an cath

conc O R lim lim

b s cath an
O R lim lim

ln ln
F c c i i i

RT c c i i i

    
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10:33

and arises from concentration disparities which originate in the slowness of transport of

electroactive solutes from, and particularly to, the electrode. When several polarizations

cooperate, as they frequently do, polarization curves adopt more complicated shapes. The

use of a thee-electrode cell, controlled by a potentiostat, eliminates polarizations suffered

by the second electrode of a two-electrode cell and almost negates the effect of ohmic

polarization at the working electrode.



1101 Addressing each most stable oxide, the data recognize the nonunity activity of oxygen in air because of its

0.21 bar partial pressure. Check one of these data, using Go values from page 391, or see Web#1101.

M a,b 11:1
1kJ mol

G




Au 2,3 83

Ag 2,1 5

Pt 1,1 46

Cu 1,1 129

Zn 1,1 319

Fe 2,3 368

Mg 1,1 568

Al 2,3 790
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11

Corrosion

Though the term is sometimes used in other contexts, the primary meaning of

“corrosion” is the unwanted oxidation of metals by their environment. By gradually

destroying infrastructure, corrosion is a major economic impediment to our metal-based

civilization. The usual oxidizing agents are atmospheric oxygen and/or water. The

mechanism by which these agents corrode metals generally involves electrochemistry.

Vulnerable Metals: corrosive environments

With the sole exception of gold, the aerobic oxidation,
1

22
M( ) O ( ) M O ( )b

a ba a
s air s 11:1

of all metals is thermodynamically favorable, as the adjacent

table1101 illustrates for eight metallic elements. In reality,

however, only the alkali and alkaline earth metals (Na, K,

Ca, etc.) react at all rapidly with dry air. Protection from

rapid corrosion for other metals is provided by the slowness

of the heterogeneous oxidation reaction or, for metals such

as Al, Cr, and Ti, by the formation of an adherent oxide

layer that is impermeable to oxygen.

Airborne pollutants, such as compounds of sulfur, can

increase corrosion, in part because of the increased

thermodynamic driving force:
11 1 1 1

2 2 2 24 2 2 2Ag( ) O ( ) H S(1 ) Ag S( ) H O( ) 121 kJ mols air ppm s g G       11:2

1
2 2 4Cu( ) O ( ) SO (1 ) CuSO ( ) 409 kJ mols air ppm s G      11:3

Comparison with the table above of the Gibbs energy changes for reactions 11:2 and 11:3
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1102 We have chosen to write equations 11:4 and 11:5 in a way that is appropriate when the aqueous

environment has a pH of less than 7. Note, however, that the corrosion reaction will increase the pH. Write

the reactions that take over from 11:4 and 11:5 when the pH exceeds 7. See Web#1102.
1103 Using Eo values from page 392, check one of the entries from this table. See Web#1103.
1104 Salt also detrimentally improves the conductivity of the aqueous layer in Figure 11-1.
1105 Use the data from the table on page 391 to decide whether platinum is liable to corrode at 20oC in air-

saturated hydrochloric acid [ions H3O
+(aq) and Cl(aq)] of concentration (a) 5 M or (b) 5 mM, as a result of

the formation of the chloroplatinum(II) ion, PtCl4
. See Web#1105.

1106 For a dramatic demonstration of the inherent corrodibility of aluminum, see Web#1106.

M n 11:5
1kJ mol

G




Au 3 81+17.1pH

Ag 1 40+5.7pH

Pt 2 19+11.4pH

Cu 2 169+11.4pH

Zn 2 382+11.4pH

Fe 3 357+17.1pH

Mg 2 930+11.4pH

Al 3 838+17.1pH

shows the marked effect of these gases, even at the parts per million level.

Corrosion by water may occur in the absence of oxygen
+

3 2 22M( ) H O ( ) M ( ) H ( ) H O( )n ns n aq aq g n    11:4

but often oxygen is an accomplice1102:
+ 3

2 3 24 2M( ) O ( ) H O ( ) M ( ) H O( )nn ns air n aq aq    11:5

The decrease in Gibbs energy accompanying reaction 11:5

is generally of a similar magnitude to that for reaction

11:1, as inspection of the accompanying table1103 will

confirm. Despite the comparable thermodynamic driving

forces, the corrosion by oxygen in an aqueous

environment is generally faster than in dry air, particularly

when the presence of acids lowers the pH. Recognize that

it is not necessary for the metal to be submerged in water

for accelerated corrosion to occur; a film of water, or even

a humid atmosphere, will suffice. In a marine

environment, or where road salt1104 is used to remove

winter ice, chloride ions facilitate corrosion by

complexing metal ions,
3

2 34

9
2 22

Fe( ) O ( ) 3H O ( ) 2Cl ( )

FeCl ( ) H O( )

s air aq aq

aq

 



  

  
11:6

for example, or by attacking protective oxide layers:

2 3 3 4 2Al O ( ) 8Cl ( ) 6H O ( ) 2AlCl ( ) 9H O( )s aq aq aq      11:7

The effect of the concentration of complexing anions can be dramatic1105.

The adjective noble is used to describe a metal that is inherently difficult to oxidize,

and thereby resists corrosion. The tables in this section are arranged roughly with the most

noble metals towards the top. Aluminum1106 resists corrosion well, as evidenced by the

longevity of aluminum cookware, but its nobility is superficial, being entirely due to its

oxide layer. In air, the layer forms immediately on exposure of a new surface, but

oxidation soon ceases because of the impermeability of that layer.
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M( ) e M ( )ns n aq 

3 2 22H O ( ) 2e 2H O( ) H ( )aq g   

Corrosion Cells: two electrodes on the same interface

The singular equations of the last section do not accurately describe how corrosion

occurs. In most corrosion events, the oxidation of a metal in the presence of water takes

place through two electrochemical reactions, both occurring at the same metal*aqueous-

solution interface. There are two electrodes – one anode and one cathode – occupying

adjacent sites at the junction of an electronic and an ionic conductor, as illustrated in Figure

11-1. The system represents a rudimentary two-electrode cell, a corrosion cell, or local

cell.

The diagram is misleading in suggesting that there is a single anode and a single

cathode. In reality, there are many. Moreover a particular site does not permanently

remain anodic or cathodic. At an anodic site, the Nernst equation

 o anodic siln tenM

RT
E E a

nF
 11:8

demonstrates that a consequence of the build-up of metal ions is to make the site more

positive and therefore less efficient as an anode. Conversely the Nernst equation applicable

to a cathodic site

3
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H Oo

H

catl hodic en sit
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aRT
E E

F p

  
   

  

11:9

shows that a small increase of pH, caused by the cathodic reaction, makes that site slightly

more negative and hence a poorer cathode. What occurs in response to these small

adjustments in the local potentials of the metal is a reversal of roles: what was an anode

becomes a cathode and vice versa. The picture we have, then, is of an ever-changing

mosaic of temporary anodes and temporary cathodes.

What has just been described is an occurrence of generalized corrosion, in which

there are no permanent electrodes and corrosion occurs more-or-less uniformly over the

entire metal surface. There are, however, very many instances of localized corrosion, in

which an anodic region becomes a permanent anode and the site of continuous corrosion,

while much or all of the remaining metal serves as the cathode. Why does one surface
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region of a metal object “decide” to become an anode while a nearby region, ostensibly

similar, becomes a cathode? There may be several reasons:

(a) The object may, in fact, be made of two metals, as when a copper pipe joins an iron

pipe. The more noble metal serves as the cathode and the less noble corrodes. Corrosion

is common in such settings, keeping plumbers in business.

(b) Not infrequently, metals contain impurities in the form of “inclusions” of more noble

metals. The inclusion becomes the cathode.

(c) Similarly, an alloy may not be completely homogeneous. The nobler regions become

cathodes.

(d) Electric fields may induce slight differences in electrical potential. Structures are

said to corrode faster close to high-voltage power lines.

(e) Portions of the surface may have been subjected to different metallurgical treatments.

The head of a steel nail, for example, receives more stress during fabrication than does the

nail’s shaft. The iron on the head’s surface therefore has a slightly greater Gibbs energy,

making it destined to serve as the anode when the nail corrodes.

(f) Metal surfaces are a mosaic of small crystal

faces. Not all these faces have the same crystal-

lographic arrangement of atoms. Faces that have a

high surface energy will become anodes. The

adjacent diagram shows adjoining faces with two

different atomic packing patterns on the surface of

a metal. One of these will likely have a higher

Gibbs energy than the other. Higher still will be the

energy at the disordered “grain boundary” where the

two crystals meet. Grain boundaries are commonly

the sites of corrosive attack.

(g) Different concentrations of oxygen may exist at two sites on the metal surface,

setting up a concentration cell (page 66). This differential aeration is a common cause

of corrosion. For example, a steel pile driven into a river bed to support a jetty will

experience water with a high oxygen activity at the water surface, but much lower

oxygenation in the anoxic mud on the river’s bottom.

(h) Corrosion itself may foster differential aeration. Thus, O2 has difficulty diffusing

into a crevice, which therefore becomes anodic. The ensuing corrosion enlarges the cavity,

concurrently maintaining the difference in oxygen activities. Similarly, the rusty efflor-

escences that form on corroding iron impede access by oxygen to the underlying metal.

(i) Organisms living on or near a metal surface may increase or decrease the oxygen

content, setting up a concentration differential and hence a corrosion cell.

(j) Likewise, biota often perturb the pH in their vicinity, so differential acidity may also

set up a concentration cell, with the site of higher pH being anodic. Dissolved carbon

dioxide can be the agent that creates an acidity gradient.
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1107 Reactions 11:11 and 11:12 are themselves composite processes composed of several mechanistic steps.
1108 Iron(III) ions go on to form the all-too-familiar rust, which is hydrated Fe2O3.

(k) In the case of the corrosion of iron and its alloys, a greater accumulation of corrosion

products in a particular surface region may foster faster corrosion at that site through a

catalytic mechanism. The direct anodic oxidation of iron
2Fe( ) 2e Fe ( )s aq  11:10

is a slow process that yields ions in the +2 oxidation state. But, as these ions accumulate,

some are air-oxidized to ions in a higher oxidation state by the homogeneous reaction1107

2 3
2 3 24Fe ( ) O ( ) 4H O ( ) 4Fe ( ) 6H O( )aq aq aq aq      11:11

Because the produced Fe3+ ions are potent oxidizers of iron, the heterogeneous process
3 22Fe ( ) Fe( ) 3Fe ( )aq s aq  11:12

then ensues. Thus Fe2+ ions play the role of an electrogenerated catalyst in the overall

corrosion reaction, which is1108

3
2 3 24Fe( ) 3O ( ) 12H O ( ) 4Fe ( ) 18H O( )s aq aq aq     11:13

Understandably, but surprisingly, agitation slows corrosion by removing the catalyst.

Electrochemical Studies: corrosion potential and corrosion current

The proximity of the anode and cathode in a corrosion cell prevents any direct

measurement of current, but it is straightforward to measure the corrosion potential, which

is the null potential adopted by a corroding piece of metal, as measured by the apparatus

illustrated in Figure 11-2 overleaf. The corrosion potential is an example of a mixed

potential, one whose value is determined by two (or more) electrode processes. In the case

of a metal being corroded by acid in an aqueous environment, the anodic corrosion reaction

is

M( ) e M ( ) anodic reactionns n aq 11:14

whereas the reduction process, in the absence of oxygen, is

3 2 22H O ( ) 2e 2H O( ) + cathodiH c( ) reactionaq g   11:15

The net current, which is measured in polarization studies of corrosion, is the sum of the

positive current from the metal dissolution process 11:14 and the negative current from

hydronium ion reduction. These two currents sum to zero at the corrosion potential.

Corrosion reactions are slow by their very nature. They are often slow enough that

neither ohmic polarization nor transport polarization (Chapter 10) is significant, whereas

kinetic polarization is severe. Figure 11-3 (page 219) shows the kinetic polarization curves

for reactions 11:14 and 11:15 and locates the corrosion potential. The situation is similar
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1109 In the corrosion literature the potential axis is frequently plotted vertically. This explains why the “b”

parameters, discussed later, are described as “slopes”.

to that discussed on page 137, with the corrosion potential Ecor replacing the null potential,

but there are two important differences. One is that currents now replace current densities,

the latter being inappropriate because the areas of the metal surface devoted to the anodic

and cathodic processes are unknown. The second distinction is that, whereas the upper and

lower curves in Figure 7-4 represent the oxidative and reductive partial currents of the same

reaction, the lime and violet curves in Figure 11-3 represent the net currents for each of two

distinct reactions.

Figure 11-4 conveys the same information, but in a very different mode of presentation.

Firstly, instead of current itself, it is the decadic logarithm of the absolute values of currents

that are plotted against potential1109. Secondly, it is only the partial currents that are plotted

and not the net currents, as in Figure 11-3. Because these partial currents are taken to vary

exponentially with potential, in accord with the Butler-Volmer model, the lines in Figure

11-4 are all straight. Taking reaction 11:14 as an example, the partial oxidative and partial

reductive currents are
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where Aa is the area of the corroding sample serving an anodic role. As in Chapter 7, in and

En respectively denote the exchange current density and the null potential for the metal

dissolution reaction. The ’s are the composite transfer coefficients (page 141). It follows
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1110 Web#1110 derives expressions for the corrosion potential and the corrosion current.
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Transfer coefficients are seldom used in corrosion science; instead, it is customary to

replace each transfer coefficient by a quantity denoted b (sometimes ) and related to 

through
o25 Cln{10} 59.16 m

Tafel slop
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11:18

The b quantities are known as the Tafel slopes; they are the reciprocal slopes of the lines

in such graphs as Figure 11-4. The sign of the slope is generally ignored in citing b values.

In this terminology, the equations in 11:17 become
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A superscript M has been inserted on each pertinent symbol to emphasize that this is a term

relating to reaction 11:14, the M dissolution reaction. The corresponding equations

       
H

H H n
10 ox 10 c

H
H H n

10 rd 10 c n H
rd

n H
ox

andlog lo logg log
E E

I A i
E E

A
b

I i
b


 


  11:20

for the hydrogen evolution reaction 11:15 have been distinguished by a superscript H. The

area term in 11:20 relates to the area Ac of the corroding metal that serves as the cathode.

The four straight lines in Figure 11-4 obey the four equations in 11:19 and 11:20.

Polarization diagrams such as 11-4 prove of great use in understanding the principles

underlying corrosion. The diagramsuperimposes the polarization properties of two distinct

reactions that could occur if current was supplied. In the absence of an external supply of

current, as in a corrosion event, electrochemical reactions can occur only at the point where

the lines intersect because at that point the oxidative partialH
10

M
10 ox rdand log {g } }lo { II 

current for the metal dissolution can be equated to the (negative) partial reductive current

for hydrogen evolution. Notice that the other two partial currents are miniscule at the

potential corresponding to the intersection point, so their neglect is fully justified. This

intersection point, therefore, serves to identify both the corrosion potential, Ecor, that the

corroding metal adopts and the corrosion current, Icor, that flows1110. The corrosion

current resembles an exchange current (page 134) in that there is no net current flow, two

partial currents being equal in magnitude and opposite in sign. Of course, knowledge of

the corrosion current is technologically very valuable in being a quantitative measure of the

amount of corrosion taking place.
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1111 The name arose from the mistaken idea that the polarization curve is linear at the corrosion potential. The

polarization curve is linear there only if M H
ox rd .b b

1112 See Web#1112.
1113 A thin square sheet of zinc, of 5.0 cm edge length, suspended in an aqueous acid solution, lost 12.4 mg of

mass during a 24 h exposure. What was the corrosion current density? Check at Web#1113.

A partial current can be measured experimentally only when its magnitude greatly

exceeds that of its counterpart and therefore approximates the net current’s magnitude.

Thus, to find Icor by the method suggested by Figure 11-4 involves extrapolation from the

large-current regions shown bordered in green on the diagram. This may not always be

possible. Moreover, there is no guarantee that the corrosion mechanismunder high currents

remains unchanged from that operative at the corrosion potential.

There are several other methods of measuring Icor. In the poorly named linear

polarization technique1111, one applies a series of small potentials on either side of the

corrosion potential to delineate the polarization curve (the green curve in Figure 11-3) that

can be shown1112 to obey the equation
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Because Ecor is easily found by examination of the curve, this equation has three unknowns,

namely Icor, , which can be evaluated by a nonlinear regression exercise. MoreM H
ox rd, andb b

crudely, one can determine the slope of the polarization curve at the corrosion potential,

which has a reciprocal equal to the so-named polarization resistance:
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The corrosion current can thus be found from the polarization resistance if the Tafel slopes

are known or can be estimated. Other methods of determining the corrosion current make

use of impedance spectroscopy (Chapter 15) or the loss of weight of a specimen exposed

to the corrosive environment1113.

Concentrated Corrosion: pits and crevices

Because it is locally intense, pitting corrosion can breach the integrity of a metal sheet,

even though the total amount of corroded metal may be rather small. Often the pits may

be of millimeter size, or smaller, and hidden from view by seemingly innocuous corrosion

products, so that no warning of corrosion precedes the penetration of the sheet, with

subsequent, and possibly disastrous, repercussions. Pitting corrosion of copper pipes by

potable water is sometimes a problem in regions of “hard” water925, but here we shall

concentrate exclusively on the pitting corrosion of iron and steels. The chloride ion is

implicated in almost all examples of the pitting of steel, so this variety of corrosion is
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1114 There is some evidence that pitting is initiated preferentially at sites where sulfide inclusions exist.

prevalent in marine environments, where road salt is used, and in chemical plants where

chlorine compounds are employed.

When steels are examined in an experimental arrangement akin to Figure 11-2, with

an aerated chloride-containing neutral aqueous environment, increasingly positive

potentials promote some mild generalized corrosion, but only after a critical pitting

potential is surpassed does pitting commence. For many steels, the pitting potential is

about 0.24 V versus SHE, but increasing the chromium content of stainless steel pushes the

pitting potential positively and delays the onset of pitting.

Neither the initiation of pitting nor its subsequent propagation has a chemistry that is

perfectly understood. The passive layer that coats stainless and other steels may be

regarded as FeOOH and it normally dissolves at a rate that is so slow as to be innocuous.

When chloride is present, however, an accumulation of bound chloride appears on the metal

surface at specific sites1114 where pitting will subsequently occur. It is believed that

dissolution is more rapid at such sites, producing the high-chloride “blanket”, possibly by

the reaction

FeOOH( )+Cl ( ) FeOCl( )+OH ( )s ads s aq 11:23

Under the blanket, the passive layer is eventually breached and the pitting reaction takes

over.

Essential to the maintenance of the pitting reaction is the cap of corrosion products,

mostly gelatinous Fe(OH)3, that forms over the developing pit, dissolving only slowly. This

prevents the liquid within the pit from mixing with, and being diluted by, the solution

outside. Migration of ions through the cap is able to occur and this is the mechanism by

which chloride ions are able to enter the enlarging pit. Below the passive layer, the iron

undergoes dissolution and hydrolysis, perhaps by the reaction sequence
+Fe( ) Cl ( ) 2e FeCl ( )s aq aq   11:24

followed by

2 3FeCl ( ) 2H O( ) FeOH ( ) H O ( ) Cl ( )aq aq aq aq      11:25

Notice that, whereas the initiation of the pitting process increases the pH through reaction

11:23, the content of the pit becomes increasingly acidic as a result of reaction 11:25. The

dissolved Fe(II) species oxidizes as it leaves the acidic pit and some is subsequently

precipitated, augmenting the cap with additional iron(III) hydroxide
1

2 2 32
FeOH ( ) 2H O( ) O ( ) Fe(OH) ( ) OH ( )aq aq s aq    11:26

The electrons liberated by reaction 11:24 are dissipated by reduction
1

2 22
O ( ) H O( ) 2e 2OH ( )aq aq   11:27

at distant sites on the surface of the metal.

Figure 11-5 summarizes the processes that occur as pitting proceeds. Essentially, the
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growing pit contains hydrochloric acid, sheltered by the cap from the outside solution and

maintained by the entry of chloride ions through the cap and by the hydrolysis of the

corrosion products within the pit. Ultimately the engorged pit penetrates to the opposite

surface.

The chemistry of crevice corrosion, illustrated in Figure

11-6, is similar to that of pitting corrosion. Crevice corrosion

benefits from some geometric feature, such as an insulating

washer or gasket, that shields a portion of the metal surface

and provides a ready-made initiation site for corrosion. The

corrosion removes oxygen from the sheltered site, so the

differential aeration can then foster the breakdown of a

passivating layer. Once initiated, crevice corrosion proceeds

in much the same way as pitting corrosion, chloride ions

again being part of the story.

Other mechanisms may be responsible for initiating

crevice corrosion. For example, rainwater will remain longer at certain sites, such as ledges

and beside bolts, and promote conditions that favor a discrimination between nascent

cathodic and anodic regions, the latter being potential sites for crevice corrosion. Likewise

scratching, denting and similar mechanical damage provides sites that eagerly lead to

crevice and other forms of corrosion.

Fighting Corrosion: protection and passivation

Obvious ways to counter the corrosion of a vulnerable metal are to coat it with grease

or paint, or to plate it with a less corrodible metal. These methods are in common use, and

are effective, up to a point. Powder coating with plastics is a more permanent alternative.
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1115 or “electrophoretic painting”. The technique is akin to electrophoresis (page 152).
1116 The ability of a bath to form uniform coatings is called its throwing power and is important also in both

electropainting and electroplating.

Tin-plated sheet steel resists corrosion well, but should the plating be scratched, a site for

anodic corrosion is exposed and, since the entire remaining surface is available to serve as

the cathode of a corrosion cell, vigorous corrosion occurs at the damage site and the

structure may fail more rapidly than were there no plating.

An effective electrochemical technique, used extensively in the metals industry for

applying corrosion resistance to such steel products as car bodies, is electropainting1115.

The paint in this process is an aqueous suspension containing, in addition to pigments,

colloidal particles of polymer which possess carboxylate COO groups. The walls of large

tanks holding the paint are made the cathode of a cell in which the steel object to be painted

is the anode. The negatively charged polymer particles migrate to the immersed object and

adhere. Two processes are believed responsible for the adherent deposition. The oxidation

of water at the anode surface generates hydronium ions that neutralize the carboxylate

groups, and precipitate the particle onto the steel. The anodization of the steel also

encourages a brief corrosion and the Fe2+(aq) ions thereby produced form insoluble salts

with the carboxylates. The electropainted coating is extremely uniform because deposition

occurs preferentially on poorly coated areas, while well coated areas are severely insulated

and attract little current1116.

Electroplating is the cathodic deposition of a metal, usually from an aqueous solution,

onto an electronic conductor, usually a different metal. The purpose of the metal layer may

be to improve corrosion resistance, but electroplating is used for many other reasons, for

instance to construct multilayer solid-state devices in the electronics industry, to reduce

abrasive wear in machinery, to reduce thermal or electrical contact resistance, to deposit

material for magnetic recording, or to impart an attractive luster to jewelry. The item to be

plated must be scrupulously clean and may require pretreatment to ensure the surface will

be receptive to the plate. The anode used in electroplating may be of the metal to be plated,

or it may be an inert electrode from which oxygen evolves. In the latter case, but not the

former, the plating bath will gradually become depleted. In addition to a salt of the metal

in question (or salts of the metals, if an alloy is to be plated), the plating bath may include

some or all of the following: acids or buffers (to control the pH), thickeners (to increase the

viscosity), complexing agents (to reduce the proportion of free metal ions), brighteners (to

affect the luster of the plate), wetting agents (surfactants to make the metal more

hydrophilic), stress reducers (to make it less likely that the plate will flake off), and grain

refiners (to improve the crystal structure). The temperature, salt concentration and current

density are also factors that must be closely controlled. The precise role of these various

factors is not always clearly understood, as electroplating is still in the process of emerging

from an art to a science. As with all electrocrystallization (page 281), there are two stages

in the formation of electroplates. Nanometer-sized nuclei are first formed. Then these
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nuclei aggrandize and become crystals. The rate of nucleus formation and the rate of their

growth affect the quality of the plated metal and it is clear that the role played by many of

the plating parameters is to influence these rates. When awkward shapes (such as a vase

or tube) are to be plated, there is a tendency for the more accessible regions (corners, for

instance) to receive a greater thickness than the more remote regions (such as inner

surfaces), but this tendency can be countered by careful attention to the plating

conditions1116. If the problem is insurmountable, electroless plating may be used instead

of electroplating. In this nonelectrical alternative, the reduction to a metal is carried out

chemically, in a bath that contains, in addition to the metal salt, a mild reducing agent such

as formaldehyde or glucose.

Compounds termed corrosion inhibitors are valuable weapons in the battle against

corrosion. These compounds, often amines or other nitrogen-containing organics, adsorb

on metal surfaces, hampering either or both of the anodic or cathodic corrosion reactions.

Importantly, they absorb especially well on the same “active sites”, such as grain

boundaries and inclusions, that are preferred locations for corrosive attack. Other inhibitors

act by reacting chemically with the metal to produce adherent layers of salts, such as

phosphates and chromates, that then confer protection. “Phosphating” – immersion in a hot

(about 75oC) acidic (about pH 2.5) phosphate bath – is a common anti-corrosion

pretreatment for steel. Oxidizing agents, such as concentrated nitric acid, can be used to

thicken a preexisting oxide layer on iron; or the thickening may be brought about

electrochemically, as in “anodized” aluminum.

Another approach is to add alloying ingredients to a vulnerable metal to improve

corrosion resistance. Examples include the creation of stainless steel from iron, and the

addition of manganese and magnesium to aluminum to improve its corrosion resistance.

Of course, the metallurgist has many other criteria to meet (strength, flexibility, cost, etc.)

besides resistance to corrosion, in designing an alloy for a particular purpose.

One electrochemical strategy to limit corrosion is named cathodic protection. The

idea is to connect the corroding item to a less noble metal and let the latter corrode instead.

Imagine that the corroding metal is iron, with zinc as the substitute victim. Drawn in the

style of Figure 11-4, Figure 11-7 overleaf logarithmically plots the magnitudes of the partial

currents when two metals – iron and zinc – corrode in the presence of an acid, serving as

oxidizer. Because zinc is less noble than iron, its null potential is more negative than that

of iron and, in consequence, its corrosion current is larger. When iron and zinc are both

present, and electrically coupled, the mixed potential that results is that at which
Zn Fe
ox o

H
x rd tripartite mixed potenti0 alII I  11:28

This mixed potential lies between those of the individual metals but, because the corrosion

current is larger, much closer to that of the zinc. In fact the potential is little changed from

the value that the zinc would have adopted in the absence of the iron. Thus, as a resultZn
corE

of the cathodic shift in its potential caused by the presence of the zinc, the iron corrodes at
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1117 Surprisingly, these layers are often electronically conducting.
1118 Friedrich Flade, 18801916, German chemist killed in World War I.



+
3 2 22H O ( )+2e H ( )+H O( ),aq aq  

2+ 2+Fe( ) 2e +Fe ( ), and Zn( ) 2e +Zn ( ).s aq s aq  

a rate close to that indicated by the arrow in Figure 11-7 . The zinc, on the other hand,

corrodes at a much greater rate than the iron did on its own, but the corrosion of iron is

much less, which is the objective. The zinc has protected the iron at its own expense: it is

known as a sacrificial anode. The zinc of galvanized iron serves this purpose for the

humble trash can; unlike the case of tin plating, the zinc coating retains its protective

martyrdom even if it is abraded. The hulls of steel ships and the metalwork of bridges are

similarly protected by sacrificial anodes of magnesium, aluminum or zinc. In suitable

circumstances, instead of a sacrificial anode, cathodic protection may be provided by

electrically imposing a negative potential on the vulnerable metal.

As we have noted previously, the presence of tenacious and impermeable oxide

layers1117 prevents the corrosion of certain metals – notably aluminum, titanium, chromium,

and nickel – that would otherwise corrode rapidly. These metals are said to be naturally

passive. Passivity may also be conferred, at least temporarily, on other metals. As

mentioned earlier, steels can acquire a passivating oxide layer by treatment with

concentrated nitric acid, and iron may be passivated also by anodic polarization. Figure

11-8 shows how, during progressive positive polarization of iron, passivation occurs

dramatically at a particular potential, the Flade potential1118 or passivation potential.
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1119 This is the ratio adopted by Pilling and Bedworth although, because areas are more pertinent than volumes,

the ratio (b/a)(Moxidemetal/Mmetaloxide)
2/3 would seem more appropriate.

Passivity is maintained as long as the potential remains, and this is the idea behind anodic

protection. This strategy preserves the metal’s passivity by applying a positive potential,

either chemically or electrochemically. Sufficiently positive potentials destroy the passive

layer and corrosion resumes.

It can be argued that a passivating oxide layer must prevent the ingress of atmospheric

oxygen to the underlying metal and this will be fostered if the oxide can pack tightly onto

the surface lattice of the metal. Such a tight lattice might be expected to form if the molar

volume of the oxide matches, or is somewhat larger than, that of the basal metal. Such

considerations led Pilling and Bedworth to suggest in 1923 that a quantitative measure of

the protectiveness of a particular oxide MaOb might be provided by the ratio1119

oxide metal

metal oxide

Pilling-Bedworth ratio
M

aM




11:29

where molar masses and densities are represented by subscripted M and  symbols. The

two metallurgists argued that a value of the ratio of less that 1.0 would signify a layer that

was open and unprotective, that a ratio between 1.0 and, say, 2.0 would correspond to a

tight layer offering protection, and that if the ratio exceeded 2.0, the layer would buckle and

then detach. The prediction is not without success as the values for Mg/MgO(0.8),

Cd/CdO(1.2), Zn/ZnO(1.6), Ti/TiO2(1.6), Al/Al2O3 (1.7), Cu/CuO(1.8), Fe/Fe2O3(2.1) and

V/V2O5(3.2) indicate, but the model on which the hypothesis is based is rather simplistic,

and there are frequent exceptions to the rule.

The occurrence of passivation is often pH-dependent. The case of copper is

illuminating in this respect. Copper oxidizes in both acidic and basic media. Figure 11-9
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1120 The diagram relates wholly to unit activities. For clarity, lines for other activities have not been included.
1121 Find such a pH. At what pH values should copper be free from corrosion at any potential, according to the

diagram? See Web#1121.

shows the Pourbaix diagram1120 (page 115) for copper. It predicts, for example, that as

copper is progressively polarized positively at pH 5, it will start to corrode at a potential

of 0.34 V, but will passivate at a potential of about 1.7 V. At other pH values, passivation

may occur at one potential and be lost at another1121. Limitations of diagrams such as this

are that they ignore kinetic factors and assume the absence of complexing agents. The

Pourbaix diagram for copper tells quite a different story if chloride ions, for example, are

present.

Extreme Corrosion: stress cracking, embrittlement, and fatigue

Three related phenomena are responsible for the failure of metal structures under the

joint effects of tensile stress and electrochemical corrosion. The cracks that these engender



Extreme Corrosion 229

1122 See R.N. Parkins, Predictive approach to stress corrosion cracking in: R.P. Gangloff and M.B. Ives (Eds.),

Environment Induced Cracking of Metals, National Association of Corrosion Engineers, Houston, TX, 1990,

pages 1119.

develop rapidly and have been the cause of many disastrous episodes, such as bridge

collapses and aircraft crashes. In all three types of extreme corrosion, the crack develops

perpendicularly to the direction in which the stress is applied, so that the residual metal

experiences a steadily increasing stress, and crack propagation accelerates.

Stress corrosion cracking is failure caused by a

steady tensile stress in conjunction with a corrosive

environment. It was first reported in brass structures in

the presence of ammonia, but has since been found to

occur in a wide variety of alloys in diverse chemical

conditions. Interestingly, pure metals are rarely affected.

Hydrogen embrittlement is the name often given to a

condition that leads to cracking induced by the presence

of hydrogen. Hydrogen gas H2 dissociates and the atoms

dissolve in many metals, entering and weakening the

lattice structure. Because hydrogen is often a byproduct

of electroplating or cathodic protection, these protective measures may ironically render

the metal prone to hydrogen-provoked cracking. Corrosion fatigue cracking results from

a fluctuating tensile stress. It is the number of fluctuations, rather than their frequency, that

appears to be the paramount factor, though very high frequencies can be ineffectual.

Though there are similarities between the three crack-inducing phenomena, there are

also marked differences. The chemical environment is all-important with stress corrosion

cracking, whereas the other modes are less pernickety, and fatigue cracking can occur even

in a vacuum. The morphology of the crack is also different: branched cracks are common

only for stress corrosion cracking; the crack tip tends to be sharp (an acute angle) for a

hydrogen embrittled metal, but blunt when fatigue is the cause. Already mentioned is the

observation that pure metals are not usually susceptible to stress corrosion cracking, but no

such immunity extends to the other modes. Further information is available elsewhere1122.

The mechanism of crack propagation continues to be a matter of debate, and no one

explanation may fit all examples. Undoubtedly, the metal atoms at the crack tip have a

much enhanced activity, which may manifest itself in several ways. These atoms may

dissolve anodically. They may even undergo chemical reactions that unstressed atoms do

not experience. They may migrate outwards along the periphery of the crack, seeking a less

stressful location. The metal lattice at the crack tip may deform, creating a region of

plasticity and allowing local flow. Atoms at grain boundaries are more prone to migrate,

even in the absence of stress, and a recrystallization of the grains may occur, with the

developing crack following the new grain boundaries. The embrittling role of hydrogen

may be more widespread, and it may be a factor also in stress corrosion cracking.
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View supplementary web material at www.wiley.com/go/EST.

Summary

Corrosion cells are unwanted galvanic cells in which the oxidation of a metal is

brought about by the reduction of oxygen and/or water at an adjacent site. Almost all

metals are liable to corrode, but some metals have natural passivity on account of their

impermeable oxide surface layers. Differential aeration, contact with more noble metals,

grain boundaries, complexing anions, inclusions, sulfurous environments, mechanical

stress, and hydrogen embrittlement are among the factors that exacerbate corrosion. Ways

in which metals may be protected from corrosion include alloying, electroplating,

electropainting, treatment with corrosion inhibitors, cathodic protection, and anodic

protection. Cathodic protection occurs by shifting the metal’s potential from its corrosion

potential to a more negative value, thereby decreasing the rate of the M(s) ne + Mn+(aq)

reaction; the negative shift can be achieved electrically or by attaching a less noble metal

to generate a mixed potential and serve as a sacrificial anode. Anodic protection, which

can be provided electrically or by strong oxidizing agents, provides or preserves a

passivating oxide layer on susceptible metals.

Because the economic and environmental consequences of corrosion are considerable,

major research effort is being devoted both to gaining a deeper understanding of the many

facets of corrosion and to mitigating its effects.



1201 Some authors classify periodic experiments as “steady state”.

State
Concen-

trations

Flux

densities

equilibrium constant none

steady constant constant

periodic recurrent recurrent

transient varying varying
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Steady-State Voltammetry

The distinction between an equilibrium state and a steady state was drawn on page 160.

An extended classification of electrochemical experiments according to their temporal

behavior is:

Equilibrium state: No concentrations change with time in an equilibrium experiment and

there are no fluxes of any kind. Cells at equilibrium were discussed in Chapter 3.

Steady state: No pertinent concentrations change with time when an experiment is in a

steady state. Fluxes do occur, but their

densities do not change with time within the

space of interest. This chapter is devoted to

electrochemical cells in a steady state.

Periodic state: When a cell is in a periodic

state, concentrations change with time, as do

fluxes. However, all important concentrations

and fluxes return to their original values after

integer multiples of a specific time interval, the

period. Periodic electrochemical experi-

ments1201 are discussed in Chapter 15.

Transient state: Concentrations and fluxes change nonperiodically with time in transient

studies. Transient electrochemical experiments are discussed in Chapter 16, but already

in Chapter 8 one transient experiment – the potential-leap experiment at a planar electrode

– was introduced.

Steady states develop, rather than being established immediately. Thus a steady state

is always preceded by a pre-steady interval, during which transience exists. In truth, a

steady state is never strictly attained, but only approached as a limit. Nevertheless, a well

designed experiment will have a very brief pre-steady interval prior to there being no

detectable departure from the steady state.

The absence of a time variable is a valuable asset in steady-state experiments. Because
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1202 An exception is provided by stripping voltammetry, discussed in Chapter 9, the goals of which are

decidedly practical.

the electrode potential is unchanging, there is no nonfaradaic current (page 126) to worry

about. Moreover, because the electrical variables are constant, they can be measured with

more certitude than can transient variables. The lack of a time variable makes modeling

electrochemical phenomena simpler because there may be no partial differential equations

to solve.

Before discussing steady-state voltammetry as such, some general features of

voltammetry will be addressed.

Features of Voltammetry: purpose and classification

The goals of the electrochemistry discussed in Chapters 4, 5, 9, and 11 are eminently

clear and practical. The purpose of the broad branch of electrochemistry that has acquired

the name “voltammetry” is less specific. Primarily, the goal of voltammetry is to reach an

understanding of the ways in which materials behave and interact electrochemically,

usually without any direct practical application1202. Experiments are carried out to probe

these behaviors and interactions, but an important part of voltammetry is the attempt to

interpret the outcome of experiments quantitatively. Thus, much of voltammetry is

concerned with modeling electrochemical phenomena, either to try to explain experimental

results, or to suggest further experiments. The modeling is carried out by mathematical

analysis or by computer simulation, or sometimes by a hybrid of the two.

There are many different forms of voltammetry, but common to most are the features

that we cite below. Bear in mind that there will be exceptions.

(a) Voltammetry is carried out in three-electrode cells, served by a potentiostat (or

galvanostat).

(b) The size, shape, and material of the working electrode are carefully chosen.

(c) The ionic conductor is a liquid: either an ionic liquid or a molecular solvent (often

not water) with a high concentration of an appropriate supporting electrolyte.

(d) A single electroreactant species is predissolved in the ionic conductor, at a known

uniform concentration, typically in the millimolar range.

(e) Attention is directed to excluding other electroactive species: high purity reagents

are used; atmospheric oxygen is removed and excluded; the range of applied voltages is

carefully chosen to avoid oxidation or reduction of the solvent, the electrode material, or

the supporting electrolyte.

(f) Except when a rotating disk (or other convective) electrode is being used, the

electrolyte solution is allowed to become quiescent prior to the experiment, and care is

taken to avoid sources of natural convection.
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1203 Occasionally, in difficult circumstances, a quasireference, such as a small platinum wire is employed. The

electrochemistry at this electrode is unclear, but it is hoped that its potential remains constant.
1204 Semiinfinite transport refers to conditions in which the ionic conductor may be treated as if it were of

infinite extent. The “semi” prefix signifies that the ionic phase extends to infinity in one direction (outwards

from the electrode) but not in the other. A distance of one millimeter is adequate to be treated as “infinite”

because this length exceeds in a voltammetric experiment.Dt
1205 However, there is now a minute amount of the product present, whereas there was none initially. This

might sometimes be significant, especially if the product adsorbs.

(g) Some means of referencing the working electrode’s potential is provided1203: either

a traditional reference electrode (pages 105109), or an internal reference (page 353).

(h) Except in thin-layer voltammetry, the counter electrode is at least one millimeter

from the working electrode and the space between the two is unimpeded, so that the

transport field is essentially semiinfinite1204.

(i) The cell is large enough that there is no significant depletion of the electroactive

species overall. Thus, after stirring and a subsequent rest period, the result of a repeated

experiment should duplicate the original1205.

(j) Because the product of the electrode reaction under study is usually absent, the initial

potential of the working electrode is not well controlled. Often the cell is in an open-circuit

state prior to the experiment.

(k) The initial absence of the product also implies that the otherwise useful concepts of

“null potential” and “overvoltage” become meaningless and are seldom used in discussions

of voltammetry.

(l) An accurately generated potential program – such as a step, many steps, ramp(s), or

more complex waveforms – is applied to the working electrode with respect to the reference

electrode, starting at a well-defined instant. The resulting current is accurately recorded.

Less often, the converse procedure is followed: a current program is applied and the cell

voltage recorded.

(m) The experiment concludes before there is a danger of natural convection. 100

seconds is sometimes considered an upper limit to the duration of a well designed

voltammetric experiment.

(n) Close attention is paid to two common voltammetric interferences addressed in

Chapter 13: uncompensated resistance and capacitive current. These are reduced as far as

possible and the residual effects are taken into account, or shown to be negligible.

(o) The results are displayed as a voltammogram – a graph of current versus potential

– though other graphical representations of the data are sometimes preferable.

(p) The experimental voltammogram is compared with a model, which may be

analytical, semianalytical, or simulated. Concurrence between the experiment and the

model permits some conclusion, qualitative or quantitative, to be drawn.

(q) Frequently, a comparison of several voltammograms, measured with slightly changed

conditions, is needed to reach some conclusion.
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An incomplete classification of voltammetry is shown below. Some voltammetric

techniques have acquired distinctive names; these are noted in the chart, though they are
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Microelectrodes and Macroelectrodes: size matters

The establishment of a voltammetric

steady state can be mediated by

convection, but in the absence of this

transport mode, a steady state can be

established only at an electrode surface

that is small in all its linear dimensions.

What “small” means will be illustrated

by making a detailed examination of

the voltammetric behavior of the hemi-

spherical working electrode pictured in

Figure 12-1.

It was shown in Chapter 8 that, for

the reaction R( ) e O( )soln soln 

taking place under conditions of planar
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1206 See Web#1206 for details of the solution, via Laplace transformation, to give equations 12:7 and 12:8.

diffusion, the equations describing the concentration profile and the current in response to

a potential leap are

b
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Recall that, in a potential-leap experiment, the working electrode’s potential is suddenly

changed to a destination potential sufficiently positive that the concentration of R at the

electrode surface is immediately diminished to zero, remaining at zero thereafter.

How are equations 12:1 and 12:2 modified if the electrode is a hemisphere, as in

Figure 12-1? Repeating equation 8:23, Fick’s second law takes the extended form
2

R
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12:3

when the diffusion takes place with spherical symmetry. This equation must be solved

subject to the following three boundary conditions:

b
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These are strictly analogous to equations 8:24, 8:25, and 8:27 for the planar case. The

solutions1206 for the concentration profile and the current are
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where erfc denotes the error function complement829, erfc{y}  1erf{y}. These



236 12 Steady-State Voltammetry

1207 Integrate equations 12:2 and 12:8 with respect to time, thereby deriving expressions showing how the

charge Q(t) increases. Show that at long times the charge increases linearly with t for the hemisphere but

as for the plane. Draw a graph showing curves for the charge following a potential leap for a planart

electrode, and for a hemispherical electrode of equal area. Check at Web#1207.
1208 The terms nanoelectrode and ultramicroelectrode are also in use.

Radius of

hemisphere

Time up to which the

electrode behaves as a

macroelectrode

Time beyond which the

electrode behaves as a

microelectrode

0.1 m 40 ns 0.4 ms

1 m 4 s 40 ms

10 m 0.4 ms 4 s

100 m 40 ms 400 s

1 mm 4 s 11 h

equations1207 are exact, irrespective of the size of the electrode.

At short enough times, the first bracketed term in expression 12:8 is dominant, whereas

at long times the second term overwhelms the first, so that:

2
b R hemi
R

R

b 2
bR R hemi
R R hemi

hemi R

12
hemispherical electrode

potential-leap experiment

sho

:9 (short )

and

12:
rt or long ti

10 (lon
me

) 2
s

g

D r
I t FAc t

t D

FAc D r
I t Fc D r t

r D


 

  





   
 





We see that, early in the experiment, the current at the hemispherical electrode exactly

matches that at a planar electrode of the same area (compare with equation 12:2), whereas

eventually the current becomes time-independent, signifying a steady state. What exactly

“early” and “eventually” imply is made clear in the table below. A macroelectrode is an

electrode that is, or behaves as if it were, large and planar; a microelectrode1208 is one at

which a diffusion-mediated voltammetric steady state can be established conveniently. In

constructing this table, the typical value DR  8 ×1010 m2 s1 was assumed; moreover, the

“ ” and “ ” symbols in 12:9 and 12:10 were interpreted as meaning that the linked 

terms differ by at least a factor of 100. Only the times shown in red are easily accessible

in a typical voltammetric experiment. The table suggests that a particular hemispherical

electrode can serve as a macroelectrode or a microelectrode in an appropriate time range,

but never as both. If the radius of the hemisphere is greater than about 30 m, the curvature

of the electrode is of no account in a potential-leap experiment and the electrode functions

as a macroelectrode, at least early in the experiment. If the hemispherical radius is less than
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about 30 m, a steady current will be attained during the time window accessible

voltammetrically. Between the two times listed in the table, the electrode is in a transient

state, but the current has departed from simple cottrellian behavior.

Figure 12-2 shows the response of a typical microelectrode to a potential leap. The

current rapidly achieves a steady state. Bear in mind that, even though the current may

have attained a steady value, there is not a true steady state uniformly throughout the entire

cell. Obviously, since species R is being steadily removed from the cell, the depletion zone

must continue to expand, even though the concentration profile near the electrode (and

therefore the current) has become unchanging. Figure 12-3 overleaf illustrates this.

Steady-State Potential-Step Voltammetry: reversibility

Continuing to use the steady-state hemispherical microelectrode and the R(soln) e

+ O(soln) electrooxidation as our exemplar, we next consider the effect of a sudden

permanent positive change in the potential of a previously inactive electrode to a constant

value E that is inadequate to cause total transport polarization. Such an experiment is

described as a potential-step experiment. For the potential-leap experiment of the
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1209 Perform two integrations of equation 12:12 to arrive at 12:13. See Web#1209.

previous section, it sufficed to examine the concentration profile of R, but now the

concentration of O also must be tracked. Thus, to predict the outcome of this experiment,

the equations to be solved are two instances of Fick’s second law for spherical diffusion,
2
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12:11

together with a number of boundary conditions. In this section, however, our interest will

be restricted to the steady state itself, to the exclusion of the pre-steady interval. That being

so, the left-hand member of equation 12:11 is taken as zero and the law becomes abridged

to
2

i i2

d 2 d
( ) ( ) 0 i ,

d d
R Oc r c r

r r r
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This is an ordinary differential equation that easily integrates1209 to

i
i i( ) ORi ,

a
c r b

r
  12:13

where the a and b terms are constants. The boundary conditions andb
R R( )c c 
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1210 Employ Fick’s first law to derive expressions for jR(r) and jO(r); then use them to confirm equations 12:16

and 12:17. See Web#1210.
1211 They are portions of rectangular hyperbolas in different orientations.
1212 Notice that equation 12:16 incorporates the assignment of transport coefficients reported in the table on

page 169.
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These steady-state concentration profiles1210 are seen to have the very simple shapes1211

displayed in Figure 12-4. From equation 12:14, the concentration gradient of the reactant

R is and its value at the electrode surface is thereforeb s 2
R R hemi( ) /c c r r b s

R R hemi( ) ./c c r
Similarly, from equation 12:15, the concentration gradient of O at the electrode surface is
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12:16

lead to alternative expressions for the current1212. Equating these two expressions gives a
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1213 As in Web#1213, show that the more general relation is valid throughout theb
R R R O O[ ( )] ( )D c c r D c r 

ionic conductor when a steady state is attained. A relationship of this kind, known as a contradiffusion

relationship, is general in voltammetry in the absence of homogeneous reactions, though in transient

voltammetry the diffusivities are replaced by their square roots, while for a rotating disk electrode they are raised

to the two-thirds power.
1214 Carry out the algebra to derive equation 12:19 and convert it into 12:20; or see Web#1214.
1215 Note that equation 12:19 simplifies to 12:10, when E is so positive that the “step” becomes a “leap”.
1216 Our notation distinguishes between the actual half-wave potential E1/2 and the nernstian half-wave potential

E h. The two are identical for a reversible process, but otherwise E1/2 is more extreme (more positive for an

oxidation).
1217 If the two diffusivities are close in value, the distinction between Eh and Eo is often insignificant. A 4%

disparity between the two D values generates a one millivolt difference.

simple relation
b s
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linking the concentrations1213 of R and O. But there is a second linkage; the form that this

adopts depends on whether or not kinetic polarization is present.

If kinetic polarization is absent, because the reaction is sufficiently fast, Nernst’s law

applies in the form of the equation
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In voltammetry, the adjective nernstian is applied to reactions taking place without

significant departure from the Nernst equation. It is now a matter of straightforward

algebra1214 to combine equations 12:16, 12:17, and 12:18 into

 
b

O R R hemi

o
O R

nernstian steady-state

voltammetry at a hemi
2

e
-

spherical microelect
xp ( ) /

rode

FD D c r
I

D D F E E RT




  
12:19

This equation1215 relates the current to E, the destination potential of the step. An

alternative is
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where Eh is the nernstian half-wave potential1216 given, in this case, by1217
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We see from equation 12:20 that each choice of E results in a distinct steady current I. The

set of black points in Figure 12-6 (ahead on page 244) illustrates how the current depends

on the destination potential. The points outline a typical “wave” shape, rising to a limiting-
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1218 See Web#1218 for the derivation of equation 12:22, using equation 7:26.
1219 Convert equation 12:22 to 12:23 or consult Web#1219.
1220 Mathematicians refer to 12:23 as a harmonic relation; I is the harmonic sum of Ikin, Irem, and Ilim.

current plateau. We have more to say about the shape of such voltammetric waves in a

section later in this chapter.

If kinetic polarization exists – that is, if the reaction is slow enough that its rate is

pertinent – then, instead of Nernst’s equation, we must use the Butler-Volmer equation

7:26. Combination of this relationship with equations 12:16 and 12:17 leads, after

considerable algebra1218, to a complicated equation similar to the relationship 10:30 on page

206
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This is an equation more general than 12:19, to which it reduces as ko . Equation

12:22 reveals terms originating from three participating polarizations: kinetic polarization,

plus the transport polarizations of each species. The expression may be made more

transparent by rewriting1219 it as a reciprocal sum formula1220:
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To establish uniformity with the findings of the next section, we have replaced by2
hemi2 r

the area A in the expression for Ikin. We have also replaced rhemi by the superficial

diameter d (Figure 12-1) in the Irem and Ilim expressions.

A current obeying such a reciprocal sum formula is largely governed by whichever of

the three component I’s has the smallest magnitude. Here Ikin is the kinetically-controlled

current; it alone would apply, so that I would equal Ikin, if there were no transport limitation

whatsoever. Irem is the removal-controlled current, the current that would flow if the

diffusion of O away from the electrode provided the sole limitation to the current. Ilim is

the limiting current; this is the maximum current possible, invariably attained at the most

positive potentials; it is governed by the diffusion of R to the electrode. The

electrochemistry requires three processes: supply of R to the electrode, conversion of R to

O, and removal of O from the electrode; each of the subscripted I’s is the current that would

flow if only one of these processes were slow enough to overwhelmingly control the rate

of the oxidation process.
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1221 Derive an expression for  in terms of E1/2E h and thereby, as in Web#1221, show that 1/ 

2sinh{F(E1/2Eh)/2RT } if   ½.
1222 Confusingly “reversibility” has other meanings in some branches of chemistry, including electrochemistry.

Reversibility is a property of an experiment, not of a reaction. When electrochemists incautiously speak of a

“reversible electrode reaction” they mean a reaction that behaves reversibly in a particular experiment.

Note that the three contributions to the right-hand side of equation 12:23 depend

differently on potential. This is brought out most clearly by plotting the logarithm of the

current versus potential, as in Figure 12-5. These three diagrams display the linear graphs

of the logarithms of the component currents, Ikin, Irem, and Ilim, together with the resultant

current I, which is a curve whose shape is determined, through equation12:23, by the

locations of three green straight lines relative to the red and blue lines. Observe that the

resultant current never exceeds any of its components and is always close to the smallest

of the three, as the reciprocal sum formula requires.

The three diagrams differ only in the magnitude of the important dimensionless

parameter

 
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that we term the reversibilty index1221. Reversibility1222 reflects the importance of kinetic

polarization compared with other polarizations in a particular experiment. If kinetic

polarization is trivial, because the reaction is sufficiently fast, the experiment occurs

reversibly.

In diagram (a),  has a large value. Notice that here Ikin is never close to becoming the

smallest of the three component currents and therefore has almost no influence on the

resultant current I, which obeys (1/I)  (1/Irem) + (1/Ilim). Electrochemists use the term

reversible to describe this type of behavior, in which the kinetics is fast enough to be

unimportant. The resulting voltammogram is identical to that described in the nernstian

case; in fact the terms “reversible” and “nernstian” are often used interchangeably.

In diagram (b), the reversibility index has an intermediate value such that each of the

three component currents – Ikin, Irem, and Ilim – serves as the smallest in different potential

ranges, so none of them may be ignored. The full equation 12:23 must be used in this

circumstance, to which the term quasireversible is given.

Except at the most negative potentials (where the current is miniscule anyway), Irem is

always much larger than the other two components in diagram (c) of Figure 12-5 and

therefore plays no significant role in the resultant current, which obeys (1/I)  (1/Ikin) +

(1/Ilim). This scenario is described as irreversible voltammetry, and is encountered when

the reversibility index is small.

Figure 12-6, on page 244, shows a voltammogram corresponding to each of the three

diagrams, (a), (b), and (c), in Figure 12-5 providing an example of a reversible, a

quasireversible and an irreversible steady-state voltammogram at a hemispherical
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1223 See Web#1223 for a graphical approach to analyzing steady-state voltammograms. Analysis is simple in

reversible cases; of course ko cannot be found. Analysis is also straightforward for irreversible voltammograms;

 can be found but ko and Eh cannot be disentangled. Information content is greatest, but hardest to extract,

in the quasireversible case.

b
Rc

microelectrode. Each voltammogram is a collection of points, not a curve. From

experimental pointwise steady-state voltammograms, similar to these, it is possible to

calculate such quantities as the reversibility index, diffusivities, transfer coefficients, and

rate constants. There are many methods1223 of doing this, the most sophisticated being to

perform a nonlinear regression analysis based on equation 12:23.

To make the measurements needed to construct each of the voltammograms shown in

Figure 12-6 requires twenty distinct experiments. Not only is it tedious to perform so many

experiments, but the elapsed time will exacerbate the danger of electrode contamination.

Can a steady-state voltammogram be obtained in a single experiment? This is the goal of

near-steady-state voltammetry, in which a change in the applied potential is made slowly

enough that the current is very close to being continuously in a steady state. Then the

principles discussed above almost hold, and the near-steady-state voltammogram almost

matches a steady-state voltammogram. Of course if the potential is swept too slowly, the

experiment will take longer than a convection-free regime can endure. On the other hand,

too fast a potential sweep will lead to a transient current close to those discussed in
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1224 The potential program is the same as that in the popular cyclic voltammetry (pages 346362), with a slow

sweep rate.

Chapter 16, producing a voltammogramvery different from the sought steady-state version.

In practice, a compromise is struck.

As might be expected, if one starts at a

potential at the foot of the steady-state

oxidation wave, and gradually increases the

potential, one obtains a near-steady-state

voltammetric wave that is somewhat lower than

the true steady-state wave, as in the red curve

of Figure 12-7, but which eventually reaches

the correct plateau. If one now reverses the

direction of potential change1224, the current

returns along a path that mostly lies somewhat

above the true steady-state wave, as does the

blue curve. If the red and blue experimental

curves nearly overlap, the inference is that a

steady state was almost attained and that a

curve interpolated between the two gives a

good representation of the true steady-state

voltammogram.

One feature of steady-state voltammetry is that it does not matter whether one applies

a constant potential and measures the ultimate current, or vice versa (apply I and measure

E). Thus a rapid way of finding E1/2 is to apply a current one-half the size of Ilim.

The Disk Microelectrode: convenient experimentally, awkward to model

As we have just seen, the modeling of electrochemistry at a hemispherical

microelectrode is straightforward. Unfortunately such electrodes are extremely difficult
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1225 Mathematical analysis of steady diffusion to a disk under reversible conditions, though complicated, is

tractable, as described in Web#1225. The lack of uniform accessibility to the electrode surface is not then a

difficulty, because the electrode surface serves as an equiconcentration surface. In the absence of reversibility,

however, this is not so. Only numerical methods can handle quasireversible and irreversible steady-state

voltammetry at microdisks.

1226 Rewritten as where P is the perimeter (edge length), thisb
R R R(short ) / ( / ) ( / 2),I t Fc D A D t P  

equation applies to an inlaid electrode of any size or shape, not only one in which the inlay is circular.

to fabricate. Moreover, once fabricated, they are difficult to clean. In comparison, the disk

electrode1008, shown in cross section in Figure 12-8, is rather easily made, even in small

diameter versions, by encasing a wire or rod in glass or plastic, and then grinding the end

flat. Polishing the end between experiments can restore the electrode after its surface has

become contaminated. This is the way that the vast majority of microelectrodes are made

and refurbished.

Diffusion to a small disk electrode is quite different from diffusion to a hemispherical

microelectrode, and considerably more difficult to model1225. At short times, the disk

behaves as if it consists of two portions: the central region, to which the diffusion is planar,

and an edge region to which diffusion occurs convergently, as suggested in Figure 12-8.

This dichotomy is evident in the formula1226
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that describes the early response of the disk electrode to a large potential step. Notice the

similarity of this result to that for the current given in equation 12:8. However, unlike the

behavior of the hemispherical electrode, this initial formulation does not endure. Instead

the current comes to be described by the precise but complicated bipartite formulas
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The long-time formulation is seen to be
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This equation predicts that the steady-state current, attained at times far greater than

is2 3
disk R4 / ,r D

b
R R disk steady-state disk current following a potential lea4 pI Fc D r12:28
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1227 Y. Saito, Review of Polarography (Japan), 15, 1968, 177.

This important result is know as the Saito equation1227.

Saito’s result is one of the items listed in the table below. Features of currents at disk

and hemispherical microelectrodes subjected to a potential leap are compared in this table.

It might be expected that the two kinds of microelectrode would have the same current if

their areas were identical. This is true of the initial current, but not when the steady state

is reached. To have equal steady currents, the two electrodes must have identical

superficial diameters. The superficial diameter d is the distance measured across the

electrode, as illustrated in Figures 12-1 and 12-8. The table shows that the steady-state

response to a potential leap is identical for a microdisk and a microhemispherical electrode,

provided that their superficial diameters are the same, even though the disk then has an area

about 23% larger than the hemisphere.

Hemisphere Disk In terms of d

Superficial diameter, d hemir disk2r

Area, A 2
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Because of the difficulty in modelingsteady-state voltammetry at a disk microelectrode

other than when the behavior is reversible, it is common practice to treat the electrode as

if it were a hemisphere of identical superficial diameter, in effect applying the reciprocal

sum formula 12:23. Even though this is known to be inexact, the errors thereby introduced

may often be less than other errors inherent in the experiment. However, the formulation
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1228 The formula is empirical and comes from fitting to a numerical simulation. The formula and the simulation

data never differ by more than 0.3%.
1229 Instead of Hz, the units of are often equivalently cited as “radians per second”. In the laboratory, rotation

speeds are usually expressed in revolutions per minute. Convert rpm to Hz by multiplying by/30; for example

1000 rpm is 104.7 Hz.

which is precise1228, corrects the errors in the reciprocal sum formula 12:23 when it is

applied to a disk microelectrode. The subscripted I symbols have definitions unchanged

from those in 12:23. All degrees of reversibility are embraced by equation 12:29.

Small electrodes necessarily generate small currents, which maybe difficult to measure

accurately. For this reason, and to improve reproducibility, microelectrode arrays are

sometimes used. The spacing of the individual microdisks is made sufficient to avoid

interference between the depletion zones surrounding each disk. They generate volt-

ammograms resembling Figure 12-9, with half-wave potentials that match Figure 12-10.

Rotating Disk Voltammetry: a spinning disk electrode without and with a ring

The rotating disk electrode was mentioned on page 118 and is described in detail on

pages 161165. This electrode is occasionally used in the transient or periodic state, but

its main feature is its ability to provide robust steady-state data without a time constraint.

The rotating disk electrode provides more powerful access to voltammetric steady states

than is attainable with microelectrodes. One advantage over microelectrodes is that a

steady current is reached rapidly and is maintained indefinitely. This means that one may

scan the applied voltage without the hysteresis problem that attends near-steady-state

voltammetry with microelectrodes, provided that the scan rate is sufficiently slow. Another

advantage is that the variability of rotation speed provides a tool by means of which the

thickness of the transport zone may be adjusted, albeit only over a restricted range. The

practical outside limits on the rotation speed are roughly1229

10 Hz 1000 Hz  12:30

in aqueous solution. Above the upper limit there is danger of turbulent flow developing;

below the lower limit there may be interference from natural convection.

For our standard reaction with O initially absent, equationR( ) e O( )soln soln 

8:49 shows that the current is given by
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which confirms the transport-coefficient assignment tabled on page 169. The analogy to

equation 12:16 is evident. In fact, apart from the difference in transport coefficients, a

voltammogram at the rotating disk mirrors a steady-state microhemisphere voltammogram.
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1230 Decide whether an electrode reaction of formal rate constant 104 m s1 would behave reversibly,

quasireversibly, or irreversibly at (a) a microelectrode, (b) a rotating disk electrode. Base your decision on the

typical values See Web#1230.9 2 1 6 2 1 5100 Hz, 10 m s , ( / ) 10 m s and 10 m.D d          
1231 Web#1231 demonstrates that the formula E1/2  Eh + (2RT/F)arsinh{1/(2)} holds when   ½ and that

more complicated analytical formulas also exist when   There is no general formulation.1 2
3 3or .

In particular, a reciprocal sum formula holds that is identical in form to equation 12:23
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The nernstian half-wave potential is, however, defined slightly differently:
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Alternatively, the reciprocal sum formula may be written in terms of transport coefficients
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in which form it applies with wide generality to steady-state processes.

The reversibility index in the case of a rotating disk electrode is
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As before, it is the magnitude of this parameter that determines the degree of reversibility.

If  is close to unity, the reaction behaves quasireversibly; if  is much greater than, or

much less than, unity the reaction behaves reversibly1230, or irreversibly. Exactly what

“much greater” and “much less” mean depends on the quality of the experimental data but

“by a factor of about 16” would be a conservative estimate.

The presence of in the reversibility index means that, by adjusting the rotation speed,

one can “tune” the behavior. Only to a small extent however, because  appears in 12:35

as its square root, and is constrained by the inequalities in 12:30. Less than a tenfold

variation in  is feasible. Figure 12-9 overleaf illustrates how  affects the shape of volt-

ammograms. Notice how, initially, decreasing  leads to a decreasingly steep wave, but

that once irreversibility is established, the wave is unchanging in shape and simply moves

towards positive potentials. This movement is quantified in Figure 12-10 which plots the

change1231 in half-wave potential with the logarithm of the reversibility index.



250 12 Steady-State Voltammetry

1232 Jaroslav Koutecký, 19222005, Czech electrochemist; member of the famous Prague school of

polarography.

The rotating disk electrode is a convenient tool with which to investigate the

irreversible regime. Then the Irem term is large enough that its reciprocal may be ignored

in the reciprocal sum formula and therefore
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It follows that if one carries out the same experiment at a number of rotation speeds and

then graphs 1/I versus1/2, a so-called Koutecký-Levich plot1232,849, the result is as shown

in Figure 12-11. As is true for all voltammetric methods, investigations in the irreversible

regime can yield values of  but not of ko itself, the composite parameter

o o( / ) ln{ }RT F k E  12:37

alone being accessible. It requires analysis of the quasireversible regime to disentangle the

two terms in 12:37.
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1233 For details, see A.J. Bard and L.R. Faulkner, Electrochemical Methods, 2nd edn, Wiley, New York, 2001,

page 643.

1234 in fact, the very complicated function where  23 ( ) ( ) ( ) / 2 ,N a b c b       3 3 1/ 3
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For example, when r1  2.00 mm, r2  2.01 mm, and r3  4.00 mm, the collection efficiency is 0.623.
1235 Show how this equation derives from the reciprocal sum relationship, equation 12:23. See Web#1235.

The rotating ring-disk electrode resembles a rotating

disk electrode but has an additional annular electrode

outside the disk, as shown in plan here. The width of the

gap between the two electrodes, r2r1 is usually very

narrow, even as small as 100 m or less. In use, the disk

and ring serve as two distinct working electrodes, both

sharing the same reference and counter electrodes, but with

the potential of each separately controlled. A specially

designed bipotentiostat1233 is required to control the four-

electrode cell. In a typical application, a reaction at the

disk generates some product or intermediate, which then gets swept across the ring, where

it can be detected and assayed electrochemically. We now address the question: What

fraction of the amount (moles) of a reducible product O, formed at the disk, can be

“recaptured” at the ring by applying a sufficiently negative potential, assuming that no

other reaction befalls O en route? This fraction is called the collection efficiency N and

it turns out to be independent of the rotation speed, being a function1234 only of the three

radii r1, r2, and r3.

Shapes of Reversible Voltammograms: waves, peaks and hybrids

The reversible wave, diagrammed in Figure 12-12, is one of three standard shapes in

voltammetry. This current-voltage relationship is described most succinctly in terms of

the hyperbolic tangent function (see Glossary)
h
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but is more often encountered as its exponential equivalent1235
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or in the inverted form
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1236 Inversion symmetry of a curve about a point Q, means that if the straight line connecting any point P on

the curve to Q is extrapolated a distance equal in length to PQ, to a point P, then this third point also lies on

the curve.
1237 Electrochemists are not always careful to distinguish among the nernstian half-wave potential E h, the

formal potential Eo and the standard potential Eo.
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The shape is well known in statistics, where it would be described as the cumulative

function of the logistic distribution with a mean of E h and a variance of The/ 3 .RT F

wave has inversion symmetry1236 about Eh, the half-wave potential.

Waves arise from steady-state, and some other, voltammetries. Those of the reversible

variety occur when Nernst’s equation is obeyed, implying that the rate of the electrode

reaction is inherently much faster than the rates of the transport processes. Thus a

reversible wave contains no information about the kinetics of the electrode reaction. It

does, however, contain information about the transport processes, primarily as the wave

height, equal to Ilim. Moreover, the thermodynamics of the electrode process is reflected

by the nernstian half-wave potential Eh, which differs from the formal potential1237 Eo only

to the extent that there may be an imbalance between the efficacies of transport to and from

the electrode:

h o O
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ln
mRT

E E
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 
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12:41

There is interest in the steepness of a voltammetric wave, as this is the criterion by

which the wave may be identified as reversible or not. The steepness may be characterized

by the slope of the wave at its mid-point which, for the reversible case, is
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1238 Confirm formula 12:43; see Web#1238.
1239 Find replacements for equations 12:42, 12:43, and 12:44 for an irreversible steady-state wave at a rotating

disk electrode. They are given in Web#1239.
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Another way of assessing the reversibility of a voltammetric wave is to use the Tomeš

criterion1238, based on measuring the difference between the three-quarters-wave and one-

quarter-wave potentials. For a reversible wave:

o
3 / 4 1/ 4 ln{9} 56.5mV at 25 C reversible wave

RT
E E

F
  12:43

A third method makes use of linearization through equation 12:40, which shows that a

graph versus potential of the logarithm of (IlimI)/I is linear with a slope of

-1 olimd
ln = 38.9 V at 25 reversibleC

d
wave
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Irreversible1239 and quasireversible waves are less steep; they have subnernstian slopes.

Not all voltammetric methods lead to a wave-shaped voltammogram. There are two

other characteristic shapes exhibited by reversible voltammograms. The procedures that

generate these shapes are not steady-state experiments, but we mention them here because

of their close relationship to the classical reversible wave.

The non-steady-state experiments described on pages 270, 321, and 343 lead to peak-

shaped voltammograms. If such an experiment is performed under reversible conditions,

the voltammogram has a shape described by the equation

2 h
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or equivalently by
h

peak

h 2

4 exp{ ( ) / }
( )

[1 exp{ ( ) / }
reversibl

]
e peak

I F E E RT
I E

F E E RT

 


  
12:46

Again, this shape has statistical importance: it is the probability function of the logistic

distribution. As Figure 12-13 shows, the summit of this reversible voltammetric peak

occurs at the nernstian Eh potential. The voltammogram has bilateral symmetry and inverts

to

peak peak

peak reversible pel akn
I I IRT

E E
F I

   
   

  
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Akin to the Tomeš criterion is the characterization of reversibility by the peak width, which

is the separation between the two half-peak potentials,
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1240 The term {3/2} is the lambda number (see Glossary) of argument 3/2, equal to 1.6888.
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Under conditions that are otherwise similar, voltammetric peaks measured under

irreversible or quasireversible regimes have peaks that are lower and wider than reversible

peaks, but which enclose the same area.

The third standard shape encountered in reversible voltammetry results from a linear-

scan experiment (page 346) under reversible conditions. This shape, which lacks symmetry

of any kind, has not acquired a distinctive name akin to “wave” or “peak”; here we shall

call it a “hybrid”, because it has properties intermediate between a wave and a peak, as

evident in Figure 12-14.

The shape of the reversible voltammetric hybrid is described by the equation1240
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1241 These are cited, along with commentary, in Web#1241.
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where I(E h) is the current at the nernstian half-wave potential and where we are again

using the abbreviation   F(EE h)/RT. The quantity is the Randles-Ševik  

function1630. It is sometimes falsely written that this function cannot be expressed

analytically. In fact there are several analytical representations, as presented elsewhere1241.

The most generally useful is the formula
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where . Notice that only odd values of the summation index n are2 2 2
n n    

employed in this summation.

As illustrated in Figure 12-15, the reversible hybrid has a blunt peak at a potential more

positive (by 1.1090 RT/F or 28.5 mV at 25oC) than E h and is higher than I(E h) by a factor

of 1.1726. The peak height is easily measured, but the corresponding potential is less

easily located, because the peak is broad and flat. Accordingly, the half-peak potential

h o
pk/2 1.0934 28.1 mV revat 25 C ersible hybrid

RT
E E

F
  12:51

provides a more accurate route to the nernstian Eh. The peak width being inconveniently

large, the criterion of reversibility for the hybrid, corresponding to the Tomeš criterion

12:43 for the wave and the peak width 12:48 for the peak, is more often taken as the voltage

separating the peak from the half peak Epk/2:

o
pk pk/2 2.2024 56.6 m reveV at 25 C rsible hybrid

RT
E E

F
  12:52

The effect of nonreversibilty on a hybrid curve is to make the hump lower and wider.
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1242 See Web#1242 for mathematical definitions and further information.
1243 A transmission line173 will semiintegrate the current passed through it or semidifferentiate a potential

applied across it. In practical devices, the transmission line is replaced by a finite collection of resistors and

capacitors.

Each of the three shapes – wave, peak, and hybrid – may be converted to either of the

others by an operation of the calculus, as the chart below explains, though electrochemists

seldom make use of these convenient conversions.

The operation of semiintegration and semidifferentiation may be unfamiliar, but

conceptually they are, as their names imply, just half-way houses in carrying out ordinary

integration or differentiation. In electrochemistry the operations are generally carried out

with respect to time t, though E is an alternative1241. The symbolism
1/ 2

1/ 2
current semideri

d
( va)

d
tiveI t

t
12:53

represents the semiderivative of a time-dependent current. Such an operation would, for

example, convert a reversible hybrid into a reversible peak. Similarly, the symbol
1/ 2

1/ 2
current semi

d
i( n e)

d
t gralI t

t




12:54

depicts the semiintegral of a time-dependent current. Semioperations may be carried out

by a variety of techniques: computationally by computer, mathematically1242, or

electronically1243. For data in the form of equally spaced time series, convenient algorithms
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1244 See Web#1244 for several algorithms.
1245 Use the Excel® spreadsheet algorithm provided in Web#1245 to explore the conversions illustrated on page

257. Instructions for these, and more generalized, conversions are included in the Web.

View supplementary web material at www.wiley.com/go/EST.

for semiintegration and semidifferentiation are presented elsewhere1244. They can be used

to interconvert the various voltammetric shapes1245, whether reversible or not.

Summary

Steady-state voltammetry is observed at microelectrodes and at the rotating disk

electrode. The reciprocal sum relationship
h
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is obeyed accurately by hemispherical microelectrodes and by rotating disk electrodes,

though only approximately by disk electrodes. The Ilim and Irem terms respectively represent

the supply of reactant to, and the removal of the product from, the electrode, while Ikin is

the term representing the reaction kinetics. With their literal meanings of “able to reverse”,

“partly able to reverse” and “unable to reverse”, the words “reversible”, “quasireversible”

and “irreversible” only vaguely match the significance ascribed to these terms in

voltammetry. They actually reflect the rate, measured at the nernstian half-wave potential,

at which the product of the electrode reaction reconverts to reactant compared with its rate

of escape from the electrode by transport. Reversibility is indexed by the parameter

Reversible voltammograms adopt one of three standard shapes that areo 1
R O/ .k m m  

closely interrelated.



1301 At a metal*aqueous solution interface with a typical charge density of 0.10 C m2, a univalent ion would

share the surface with about 15 water molecules. Confirm this estimate, or see Web#1301.
1302 Hermann Ludwig Ferdinand von Helmholtz, 18211894, renowned German physicist.
1303 Values measured at the Hg*aq interface are typically in the range 0.20.4 F m2, depending on the applied

potential, and the nature and concentration of the ions.
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The Electrode Interface

Up to this point we have regarded the electrode as nothing more than a surface. On

one side of this surface there exists a homogeneous electronic conductor; on the other side

there is an ionic conductor, usually a solution. Although we have not insisted that the

solution be homogeneous, the tacit assumption has been made that gradients of

concentration and potential extrapolate smoothly from the bulk to the surface. In reality,

the electrode interface is much more than a passive junction between two phases. In this

chapter, several of the ways in which the electrode interface impinges on the properties of

electrochemical cells will be explored.

Double Layers: three models of capacitance

On pages 15-17 we introduced the idea of a double layer, formed when an electric field

is applied to a totally polarized electrode. The model presented there – a layer containing

ions1301 on the ionic-conductor side of the junction confronting a layer of

equal and opposite electronic charges on the electronic-conductor side – is

that of Helmholtz1302. The two layers of charge constitute a capacitor and,

because the separation of the layers – the “L” in equation 1:18 – is of

atomically small dimensions, the capacitance of a double layer should be

huge, as indeed it is1303. The relationship

H H

H

Helmh
d

oltz m d l
d

o e
C q

A E x


 13:1

represents the capacitance according to this simple model. Here xH is the thickness of the
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1304 Especially those of David C. Grahame, 1912 1958, a skilful and meticulous U.S. physical chemist.

Consult his writings, or one of the many textbooks that report his results, for further information.
1305 Growing mercury drops, formed as in Figure 13-1, provide the working electrodes in the technique known

as polarography, which was the predecessor of voltammetry. Polarography is not discussed in this book, but

a précis of the method will be found at Web#1305.
1306  often replaces . The surface tension of an air*water interface is 0.07198 N m1 (or J m2).

layer, the Helmholtz layer, and H is its permittivity, but the precise significance that

attaches to each of these quantities separately is open to interpretation.

The most numerous and successful experimental studies1304 that have been made in

attempting to understand the double layer have focused on the junction between aqueous

ionic solutions and mercury. There are three reasons for the choice of mercury, all

stemming from its liquidity. As for stripping analysis (pages 177 182) and transient

voltammetry (Chapter 16), this metal is chosen for the ease with which its surface may be

renewed and thereby kept clean. The second reason for choosing mercury is that its surface

area may be increased easily, for example by flowing mercury into the droplet1305 shown

in Figure 13-1.

The third reason arises from the structureless state of liquid mercury compared with

the crystalinity of solid metals. A sample of a solid metal is usually a polycrystalline

mosaic which presents regions of different crystallographic indices to the electrolyte

solution, as well as intergranular regions of chaotic structure (page 216). Thus

measurements made on solid metals usually provide only average values, the precise

composition of the average being dependent on the metallurgical treatment that the sample

received in its fabrication. Some very exacting experiments have been made on metal

surfaces carefully prepared to have only a single crystallographic face exposed. Those

experiments reveal that, indeed, the electrochemical properties change from one

crystallographic plane to another.

The interface between any two phases possesses an energy – the interfacial energy

– that is proportional to its area A and equal to the product A, where  is the surface

tension of the interface1306. It is the goal of minimizing the interfacial energy that causes

small volumes of liquids to adopt their characteristic near-spherical shapes. For a charged

mercury*ionic-solution interface, this tendency is opposed by the lateral repulsion between

the charges. Accordingly, the surface tension is dependent on the charge density on the
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1307 Gabriel Jonas Lippmann, 18451921, Luxembourger physicist who worked in both France and Germany;

Nobel laureate 1908 for his development of interferometry. A derivation of equation 13:2 will be found at

Web#1307.
1308 Perform two differentiations of equation 13:4 to confirm 13:3. See Web#1308.
1309 The name originates from a method of measuring  by locating the liquid’s meniscus in a capillary tube.

electrode in accordance with the Lippmann equation1307

Lippmann eq
d

d
uationq

E


 13:2

where E is the electrode potential. In this discussion, q is the charge density on the surface

of the electronic conductor; electroneutrality mandates that there be an equal and opposite

charge on the ionic conductor and close to the surface. On differentiating the Lippmann

equation, an expression, namely
2
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d d

d d
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E E A


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is obtained for the capacitance.

If the capacitance were a constant, a graph of surface tension versus potential would

give a parabola, as in Figure 13-2. The parabola, which has the equation1308

 
2

zc zc electrocapillary rel
2

ationship
C

E E
A

    13:4

peaks at the potential of zero charge, Ezc. Such graphs, called electrocapillary curves1309,

are, indeed, found experimentally to be very close to parabolic in many interfaces, such as

between mercury and a 100 mM aqueous solution of sodium fluoride. In those cases the

coordinates of the maximum in the electrocapillary curve are
1

zc zc230 mV versus SHE; 0.43 N mE    13:5

There are three distinct ways of measuring the electrode capacitance:

(a) doubly differentiating the electrocapillary curve, as evident from equation 13:3;
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1310 What value has the d(ln{A})/dt term if mercury flows into the droplet of Figure 13-1 at a constant rate?

See Web#1310.
1311 Louis Georges Gouy, 18541924, and David Leonard Chapman, 18691958, respectively French and

English physical chemists. Gouy addressed not only solutions, such as those of NaF and MgSO4, with equal

populations of ions of anions and cations, but also the more difficult problem in which there is a two-to-one

ratio, as for K2CO3 or CaCl2. Chapman’s rederivation was restricted to the former class.
1312 The word “diffuse” means “spread out” or “dispersed”. Though both share the same etymology, this

adjective has no connection here to the verb “diffuse”, which refers to a particular dispersion mechanism.

(b) electrically, using a.c. as described in Chapter 15 or by less satisfactory d.c. methods;

(c) by measuring the current flowing to an expanding electrode held at a constant

potential E. Because method (c) implies a constant charge density q, it follows that1310
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d d d d d
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There is broad agreement between results from the three methods but unless both

conductors – electronic and ionic – are liquids, only method (b) is applicable.

Double-layer capacitances generally behave nonideally, displaying dependence on the

applied voltage. Changes by a factor of 2 or more over a one-volt range are not uncommon.

In this circumstance one must distinguish two measures of capacitance: the differential

capacitance

(differential)
d

dE
C

Q
13:7

and the integral capacitance

zczc zc
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E
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It is the differential capacitance that is the more important in the present context and that

is henceforth implied, unless we state otherwise.

Except perhaps at the highest charge densities, the Helmholtz model of the double

layer at a metal*(electrolyte solution) interface implies that the capacitance should not

depend on potential or on the bulk ionic concentration, whereas both these dependences are

observed. Another model, the Gouy-Chapman model1311, does predict such effects. The

premise of this model is that the counterions neutralizing the charges on the electronic part

of the double layer are not in contact with the interface but are distributed throughout a

diffuse zone1312. In employing Poisson’s equation (page 8) and Boltzmann’s distribution

law (page 38), the treatment closely parallels the Debye-Hückel model (pages 4145),

which it predated. In both the Gouy-Chapman and Debye-Hückel models, ions reach a

compromise in a competition between Nature’s tendency to lower the system’s energy and

her entropic urge towards disorder.

For an electrolyte consisting of two singly-charged ions, Poisson’s equation 1:14
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1313 See Web#1313. The derivation is restricted to the zC  1, zA  1 case, but other values are also tractable.
1314 A rope or chain, sagging under gravity, adopts a catenary shape, described by a hyperbolic cosine.

relates the second spatial derivative of the local potential  to the local charge density ,

and hence to the difference between the cation and anion concentrations, through the

relation
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Electroneutrality demands that the total net charge in solution be equal and opposite to the

charge on the electronic conductor, so that
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where x is the rectilinear coordinate measured from the interface into the solution. By

comparing 13:10 with the integral of equation 13:9, one concludes that the field at the

surface of the solution is
s
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If the charge density q on the surface of the electronic conductor is positive, anions will

outnumber cations in the diffuse zone, which will acquire a positive potential compared

with the bulk potential.

Boltzmann’s distribution law, equation 2:26, provides a link between the equilibrium

concentrations of an ion at two sites in a solution and the work needed to carry the ion from

one site to the other. Choosing the departure site as at x, and the destination site as “at

infinity”, where  is defined as zero, the law predicts that
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Making use of equations 13:9, 13:11, and 13:12, the Gouy-Chapman model predicts the

capacitance of the double layer to be given by
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The derivation of this exact result is presented elsewhere1313.

The Gouy-Chapman model predicts that the capacitance will increase with the bulk

ionic concentration, as generally observed. A catenary-shaped1314 dependence of

capacitance on potential is predicted by the model, with its minimum at the potential of

zero charge, as in the green curve of Figure 13-3 overleaf, and, indeed, such a minimum

is observed experimentally. However, at potentials well removed from Ezc, capacitance

values predicted by equation 13:13 grossly exceed measured values.
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1315 Otto Stern, 18891969, German physicist who emigrated to the U.S. in 1933; Nobel laureate 1943 for

researches on molecular beams.
1316 Also known as a Helmholtz layer or a Stern layer.
1317 to Web#1317 where, not only are the profiles of , X, and  derived, but those of cA and cC also. Draw a

diagram showing the concentration profiles of the ions under the conditions listed for Figure 13-5.

Stern1315 recognized that the experimental capacitance results were

better matched by a melding of the Helmholtz and Gouy-Chapman

models, some of the counterions being in a diffuse zone and some in a

compact layer1316 immediately adjacent to the interface. Capacitances

arising from the two regions would be in series and so the overall

capacitance158 would be calculable from the formula
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The red curve of Figure 13-3 is predicted by the Stern model. The permittivity enters

equation 13:14 twice, but its significance differs between the two instances. The

permittivity  in the disordered diffuse zone will be close to that of pure water, about 790.

However, the permittivity H in the compact layer is that of water-plus-ions confined in a

narrow region, compressed, and ordered by an intense local field; estimates suggest that the

permittivity here is much lower, perhaps as small as 50. A refinement to the Stern model

allows for different values of xH on either side of the capacity minimum, a narrower

compact layer being hypothesized when occupied by unhydrated anions, whereas the

strongly hydrated cations are believed to occupy a wider layer, as pictured in Figure 13-4.

We have yet to address the question of how the electrical parameters vary within the

double layer; that is, how do the potential , the field X, and the charge density  in the

solution depend on the distance from the electrode. The mathematics to establish these

profiles according to the Stern model is quite elaborate and has been relegated1317;
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nevertheless, Figure 13-5 overleaf shows examples of the profiles. That the potential, field,

and charge density decay to values close to their bulk values within about two Debye

lengths (page 42), is evident from that figure.

Capacitance measurements1304, and other experiments at the interface between mercury

and aqueous solutions of inorganic ions, suggest that the Stern model, elaborated where

necessary by the adsorption-induced effects described later, captures the essentials of

double layer structure. While the model provides understanding of the Hg*aq interface,

the current state of theory is far from being of predictive quality: capacitance and other

properties of the electrode interface must be measured; reliable values cannot be calculated.

Sadly, the interfaces between aqueous solutions and solid metals are even less well

understood, as are those at electrodes in which the ionic conductor is a nonaqueous solution

or an ionic liquid.



266 13 The Electrode Interface

1318 Sometimes the phrase “specific adsorption” is used, but the adjective is redundant. Unless one regards,

as we do not, ions driven to the interface by electrical forces as being “adsorbed” then all adsorption is specific.
1319 It appears that all anions, except OH(aq) and F(aq), adsorb to some extent at a mercury surface whereas

no inorganic cations, except Tl+(aq), do so.

Adsorption: invasion of the interface

Adsorption occurs also at liquid*gas, solid*gas, and liquid*liquid interfaces, but our

attention here is confined to those interfaces of the solid*ionic-solution or mercury*ionic-

solution types that function as electrodes. If a solute i, molecular or ionic, has a lower

energy when located on the electrode surface there is a tendency for it to occupy such a site,

temporarily or permanently, rather than remaining dissolved. This phenomenon is called

adsorption1318. When a solute greatly prefers the dissolved state, it may shun the surface

region to some extent, leading to “negative adsorption”.

Studies of adsorption have often been made at mercury electrodes, for reasons with

which readers of the previous section will be familiar. Many ions, particularly anions1319,

are adsorbed at electrode interfaces, entering the compact portion of the double layer. For
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1320 Notice that an average value of C/A is about 0.3 F m2. Thus a disk electrode of radius 1.8 mm would have

an interfacial capacitance of close to 3 microfarads. This is a value of C that we use in calculations elsewhere

in this book.

example, at the junction of a mercury electrode with

an aqueous solution of potassium bromide, the

bromide anions are adsorbed so that, even at the

potential of zero charge on the mercury, there are

many Br anions in the compact layer. This brings

K+ cation partners into the diffuse zone, along with

some extra Branions. The maximum in the electro-

capillary curve shifts in a negative direction, as

illustrated here.

Neutral, and especially organic, molecules

generally adsorb over a range of potentials that

includes the potential of zero charge. Their effect,

exemplified in Figure 13-6, is twofold. Firstly, to

depress the differential capacitance1320 over that range, because the content of the compact

layer is replaced by larger molecules that endow a lower permittivity. Secondly, to enhance

C, sometimes dramatically, at the edges of the adsorption range, because a small change in

potential may cause a larger change in double-layer composition in these borderline

regions. At extreme potentials of either sign, the adsorbed molecules are desorbed to make

room for ions driven by strong coulombic forces to the interface.

Presence on a two-dimensional surface is a more ordered situation than the freedom

enjoyed in three-dimensional space, so the adsorption of a solute is entropically opposed,

even if energetically favored. An equilibrium generally exists between a dissolved solute

and its adsorbed counterpart
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1321 The unexpected term “isotherm” is a carryover from adsorption studies with gases in which the extent of

adsorption is measured as a function of temperature and pressure. When pressure alone was changed, the

relationships were termed “isotherms” because they were conducted at constant temperature.
1322 So called by analogy with Henry’s Law of gas solubility (William Henry,17751836, English physician

and chemist).
1323 Irving Langmuir, 18811957, multitalented U.S. scientist; Nobel laureate 1932 for his work on

unimolecular films.
1324 Alexander Naumovich Frumkin, 1895 1976, preeminent Russian electrochemist; and his colleague

Mikhail Isaakovich Temkin, 19081991, Russian physical chemist.

i( ) i( )soln ads13:15

Such an equilibrium could be described in terms of an equilibrium constant (with

dimensions of length)

i

i

K
c


13:16

where i denotes the surface concentration (mol m2) of i. However, it is more usual to

specify the extent of adsorption by the fraction i of the available surface that is occupied

by adsorbate i. Relationships between  and c are called adsorption isotherms1321. In

these terms equation 13:16 becomes

Henry isotherm1322
i iBc 13:17

and is widely applicable provided that  is small. B is known as an adsorption coefficient.

As the coverage increases, the adsorbed entities interact repulsively with each other,

leading to departure from proportionality to the solute concentration. If there is a limit to

the extent of adsorption, as in the common case in which only a unimolecular film may

form, then  will approach unity at high values of c. A number of isotherms have been

proposed to address this behavior, the simplest being

Langmuir isotherm1323

i i

1 1
1

Bc
 


13:18

Others, including the isotherms of Frumkin and Temkin

Frumkin isotherm1324 i
i i

i

exp
1

g Bc


 
 

13:19

Tempkin isotherm1324 i iln Bc  13:20

incorporate additional parameters designed to address interfaces that offer sites of a range

of attractiveness to the solute species.

The presence of one adsorbed species may limit the space available for a second. A

particularly simple situation arises when a strongly adsorbed species, present as a

unimolecular film on an electrode, is electroactive and undergoes an electron-exchange

reaction to form a second species, which is also strongly adsorbed:
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1325 Of course, transportation is required for the counterions, but these would generally be in excess, and cause

no polarization.

ORR ( ) e O ( )zz ads ads 13:21

Such a process is described as a surface-confined reaction. Only one of R and O need be

an ion, but both could be. Associated with any unimolecular film is a quantity max that

represents the surface concentration (mol m2) of adsorption sites. The actual charge

density of the film in our example is

     max R R O O max R R R R max R R( 1)(1 ) 1q F z z F z z F z                13:22

Any change in the composition of the film will be accompanied by the flow of faradaic

current, the current being

R
max

d d

d d

q
I Ai AF

t t


   13:23

Nernst’s law will apply, almost certainly when such a cell is at rest and perhaps under

transient conditions too. From equation 6:20 the electrode potential will be
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R

Nernst’s laln w
aRT

E E
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13:24

and in accord with the activity assignment noted in approximation 2:15, this means that
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The second equality in 13:25 is valid if the entire surface of the electrode is covered by a

unimolecular layer that is an assemblage of equally sized R(ads) and O(ads) species.

Inversion of equation 13:25 leads to

 
o

R
o
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What voltammetry results from this cell? We have a situation, almost unique in

voltammetry, in which neither electroactive species requires transport1325. Consider that the

potential, initially sufficiently negative that the adsorbate is entirely in the R state, is then

scanned positively at a rate v in the manner typical of linear-potential-scan voltammetry

(page 346). Then

o
R initial

linear scan

reversib

1 1
tanh (

l
)

2 2 2 e

F
E t E

RT

      
 

v13:27

This expression gives the fractional coverage of the electrode by species R, but note that

it is the derivative of this quantity that equation 13:23 shows to be proportional to the

faradaic current density. It follows that
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1326 Cytochrome-c is an electron-transporting protein of the mitochondria, owing its logistic power to changes

in the oxidation state of an iron atom located in a heme group. Cytochrome-c peroxidase is an enzyme based

on the cytochrome-c structure and able to reduce hydrogen peroxide to water.
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You will recognize this sech2{F(EEo)/RT} term from equation 12:45 as describing the

reversible peaked curves illustrated in Figure 12-13. Thus the voltammogram is described

by
2

2max
peak

surface-confined reversible

voltammetry; linear-potential
sech

sca2 n
( )

4

F A F
I E E

RT RT

  
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 

v
13:29

Of course, other degrees of reversibility are also encountered. A practical example is

shown in Figure 13-7.1326
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1327 though it does not necessarily follow that the nonfaradaic current is unchanged by the concomitant reaction.

Adsorption is an essential precursor to, or component of, many electrode reactions; for

example, in the reactions discussed on pages 7879. It also plays a role in preventing many

reactions that would otherwise occur, as in offering protection from corrosion (Chapter 11).

Adsorbed species playing a role in mechanisms may influence voltammetry. The next

section discusses other ways in which interfacial properties affect voltammetry.

The Interface in Voltammetry: nonfaradaic current, Frumkin effects

In our discussion of surface-confined voltammetry in the previous section, the I in our

equations represented the faradaic current arising from reaction 13:21. But, because the

potential of the electrode was being changed, there was necessarily also a continuous

current flow to recharge the capacitance of the double layer. The magnitude of this

nonfaradaic current or charging current in that experiment, as in any experiment in

which the potential is scanned linearly, is given by

nf

charging current

scanned potentia

d d

d l

d

d d

Q Q E
I C

t E t
   v13:30

where v is the scan rate (volts per second) and C is the (differential) capacitance of the

working electrode. This nonfaradaic current simply adds1327 to the faradaic current I, only

the total current being measurable:

meas nfI I I 13:31

This is an ever-present problem in transient voltammetry. Voltammetric interest is

predominantly in the magnitude of the faradaic current as the potential changes. Yet the

potential cannot be changed without eliciting an unwanted nonfaradaic current.

Unfortunately, the differential capacitance of the double-layer is by no means constant.

This was demonstrated by the green curve in Figure 13-6 for the case of a

mercury*(aqueous-solution) electrode, which is one of the “best behaved” interfaces. In

addition to the capacitive current that flows across an interface, there are often additional

currents that can be attributed to heterogeneous chemical reactions, not involving the

species of voltammetric interest. These masquerade as capacitances inasmuch as they may

yield a brief transient current when the potential is changed. Such reactions are not

generally classified as “faradaic”, though in reality they are. They are components of the

so-called background current, which is the current that flows across the electrode in the

absence of any dissolved reactant species. The chart overleaf identifies four other possible

contributors to the background current other than double-layer capacitance. Though the

figure legend attributes it to “capacitance”, the sharply rising current towards the right-
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1328 Write its equation or see Web#1328.


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margin of Figure 13-6 is more likely due to a very slight oxidation reaction1328 forming

Hg2Cl2; such contributions to the background current occur close to the edges of the

polarization “window” (page 130). Currents due to film formation and to adsorbed species

may be identified in Figure 13-8, which shows the current when a polycrystalline platinum

electrode is slowly polarized from 0.0 V to 1.5 V and back to 0.0 V. There is only a small
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1329 The initial and reversal potentials are chosen to be well inside the “window”, so as to avoid appreciable

formation of O2 or H2.
1330 In fact, the peaks at about 0.25 V correspond to the Pt(100) face, while those at about 0.10 V are from the

110 face. The “100” and “110” are Miller indices (see crystallographic texts).

range (from about 0.3 V to 0.7 V on the positive-going scan) in which the platinum behaves

as a totally polarized electrode, with a small current that is wholly capacitive. At more

positive potentials a current attributable to the reaction
+

2 3Pt( ) 3H O( ) 2e PtO( ) 2H O ( )s s aq   13:33

is observed. After the scan direction reverses1329 at 1.5 V, a cathodic current gradually

builds, corresponding to the removal of the oxide layer by the reverse of reaction 13:32.

The cathodic peak at 0.6 V represents the conflict between the increasing rate of reduction

of the oxide, as the potential becomes less positive, and its decreasing amount. Most of the

PtO has gone by 0.3 V, but a new cathodic reaction, the formation of adsorbed hydrogen

3 2H O ( ) e H( ) H O( )aq ads    13:34

commences. After potential reversal at 0.1 V, H(ads) is reoxidized. Notice the near-

mirror-image relationship of the anodic and cathodic current in the 0.1 V  0.3 V range,

suggesting that reaction 13:33 is behaving reversibly. This contrasts with the offset in the

PtO peaks, which implies severe irreversibility of reaction 13:32. When the experiment is

repeated with single-crystal samples of platinum metal, only one pair of adsorption

peaks1330 is found, strongly suggesting that the twin peaks arise from different crystal faces

in the polycrystalline platinum experiment.

The H(ads) and PtO(s) deposits on the platinum electrode do not impede that

electrode’s ability to support faradaic processes. Indeed, the presence of such layers

probably goes a long way to explaining why one “inert” metal will readily support a

particular electrode reaction that requires a more extreme potential at another. Differences

of this sort are responsible for the phenomenon of electrocatalysis (Chapter 4).

Much effort in designing and implementing transient voltammetry is aimed at lessening

the contamination of the faradaic “signal” by the intrusive “background”, or at least being

cognizant of the magnitude of the interference. This may, or may not, involve measurement

of one or more values of the double-layer capacitance C. Among the strategies that have

evolved, in various contexts, in pursuit of this goal are:

(a) Systematically subtract the constant Cv where C is a measured or estimated value,

from I. This is better than nothing, but it assumes the double-layer capacitance to be

independent of potential, which it rarely is.

(b) Performa separate “blank” experiment, identical in every respect to the voltammetric

experiment of interest except that the electroactive species is absent. Then assume I 

Imeas  Iblank and make a point-by-point subtraction. This is a very common procedure and

it certainly helps. However, the blank experiment is made on a totally polarized electrode

and conditions may be significantly different in the real experiment. Different species are
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1331 Derive these formulas; see Web#1331. Also suggest a procedure if many different scan rates were

employed.

then present, at varying concentrations, and the hope that these do not affect the

composition, and therefore the capacitance, of the double layer is probably in vain.

(c) Often there is at least one region in a voltammogram where it is believed that no

faradaic process occurs. The current trace in this (these) region(s) is therefore purely

nonfaradaic and can be extrapolated (interpolated) into the faradaicly active region,

providing a basis for subtraction. An example of a faradaic current badly contaminated by

background is shown in Figure 13-9. Amazingly, the peak shown in Figure 13-7 was

extracted from this figure by just such a process. Of course, interpolation procedures are

not limited to surface-confined reactions.

(d) Comparison of equations 13:29 and 13:30 shows that, in the case of surface-confined

voltammetry, both I and Inf are proportional to the scan rate v. This is unusual however;

more often the faradaic current is proportional to the square root of the scan rate (page

346). It then follows that lowering the scan rate will lessen charging-current interference.

There will usually, however, be a limit imposed by other considerations on how low the

scan rate can be. Of course, in the limit of a very slow scan rate, we are back to near-

steady-state voltammetry (Chapter 12), in which the nonfaradaic current is indeed

negligible.

(e) Make use of the different scan-rate dependencies of I and Inf by running two or more

voltammograms at different scan rates. For only two scan rates, the formulas1331



The Interface in Voltammetry 275

1332 How would you proceed to eliminate the nonfaradaic current if several concentrations were studied? See

Web#1332.
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permit the individual currents to be disentangled. Use of such formulas is based on the

assumption that only the height, and not the shape, of the voltammogram and its

nonfaradaic counterpart are affected by the scan rate. Thus it could be taken to apply to

reversible voltammograms but not to the rising portion of a quasireversible voltammetric

wave.

(f) In a similar way, and with similar reservations, the fact that the faradaic current is

proportional to the bulk concentration of the electroactive species, whereas the charging

current is expected to be electroactive-concentration-independent, may be exploited by

running voltammograms at different bulk concentrations of the electroreactant. For only

two concentrations1332 the correction formulas are
b b b
1 meas 2 meas 1 2 meas 1 1 meas 2

1 nf 1b b b b
2 1 2 1
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(g) For a.c. voltammetry (pages 318322) the different phase shift appropriate to

faradaic and nonfaradaic currents provides a vehicle for the

removal of charging current. The net a.c. current is analyzed

in terms of the equivalent circuit shown to the right, in which

Ru represents the uncompensated resistance (page 210). A

subsidiary a.c. measurement is sometimes made to elucidate

C and Ru, even when the prime investigatory tool is a d.c.

technique.

(h) For large-amplitude a.c. voltammetry (pages 322327) capacitance does not

contribute to the second and higher harmonics.

(i) For cyclic voltammetry (pages 347354),

point-by point addition of the currents from the

forward and backward scans should remove the

nonfaradaic component exactly. The resultant net

faradaic current, shown as the red curve in the

diagram on the right must then be compared with an

unfamiliar theory that similarly melds the two

currents.

(j) A less drastic application to cyclic voltammetry is to use the current drop, 2Cv, that

occurs at the reversal potential (see Figure 13-8 for an example) to estimate the double-

layer capacitance, though the presence of uncompensated resistance often corrupts the

sharp drop the would otherwise occur.
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1333 This equation serves our purpose here, but it is inexact inasmuch as it ignores the flow of faradaic current

through the uncompensated resistance, a complicating factor.
1334 As in Web#1334, use equations 13:37 and 13:30 to compare the nonfaradaic currents for a staircase and

the equivalent ramp, for an experiment in which Estep  3.0 mV, tstep  30 ms, C  3.0 nF and Ru  10 k, 5.0

k, 2.0 k, 1.0 k, or 0.50 k.
1335 The faradaic distinction between a ramp and a staircase fades asEstep and tstep decrease, their ratio being

kept constant. In fact, many function generators that purport to output ramps, actually produce staircases with

very small (about 0.1 mV) potential increments. Inferior instruments use larger Estep values.

(k) Replace the ramped voltage by a staircase in

which the potential changes in many abrupt steps.

Moreover, do not measure the current continuously,

but only during a brief interval immediately prior to

the next step, that is at a time of almost tstep after

the previous step. Here tstep and Estep are the

“tread” and “riser”of the staircase, so that the

quotient Estep/tstep plays a role equivalent to the

rate v of a scan. The motivation here is to provide

an interval during which the potential does not

change, so that the nonfaradaic current can decay to

a negligible value. The dE/dt derivative is

theoretically infinite during the application of a

potential step to a capacitor, and equation 13:30

therefore predicts a charging current that is instantaneous and infinite. Of course, infinite

currents are never observed, in part because there is always some uncompensated resistance

present in the cell. As the circuit shown on the previous page makes clear, the nonfaradaic

current flows through a series combination of a capacitor and a resistor, as described on

pages 2123. The nonfaradaic component of the current1333 at the measurement instant is

step step
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u u
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and this will generally be much smaller1334 than the nonfaradaic current that would have

been recorded in the equivalent ramped experiment. Reducing the uncompensated

resistance, Ru increases the nonfaradaic current immediately after the potential step but,

more valuably, decreases the time constant, RuC, so that the interference dies away

rapidly. This is one of several reasons for making Ru as small as possible, as advocated on

page 211 and discussed later in this section. Of course, replacing a ramp by a staircase also

has repercussions on the faradaic current, but fortunately these are much less dramatic1335

(page 339).

() Pulse voltammetries of various kinds (pages 339346) employ a discriminatory tactic

similar to staircase voltammetry: the current is measured only at instants that follow a
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1336 not necessarily a single value of C. The model might incorporate a formula that allows for potential

dependence.

period of constant electrode potential, that period being long enough for the nonfaradaic

current to have decayed almost to zero.

(m) The experimental voltammogram is accepted as having a substantial nonfaradaic

component. An estimated value1336 of the capacitance (perhaps of the uncompensated

resistance, too) is built into the voltammetric model, which thereby seeks to predict the

combined faradaic-plus-nonfaradaic voltammogram. A penalty paid for endorsing this

approach is that theoretical predictions of the voltammetric behavior are no longer valid

because the simplicity of the applied signal has been corrupted.

(n) An unknown value1336 of the capacitance is built into the model. That is, C is

regarded as one of the parameters of the model (others might be rate constants, transfer

coefficients, etc). Subsequently, using a multiparameter fitting routine, the capacitance is

evaluated by a comparison of experiment with the model.

Voltammetry is the search for a relationship between the potential E and the current

I. It must be appreciated, however, that, unless the double-layer capacitance C and the

uncompensated resistance Ru are negligible, neither E nor I is directly measurable. The

voltammetrically pertinent potential is that applied to the boxed “reaction” element in the

diagrammatic circuit shown in Figure 13-10. It is related to the applied voltage (measured

by the potentiostat’s voltmeter) by

appl RE meas u voltammetrically pertinent potentialE E E I R   13:38

where Imeas is the total current – faradaic plus nonfaradaic – that is measured by the

potentiostat. Likewise, the voltammetrically pertinent current is the faradaic current, the

current flowing through the boxed element. Its relation to measurable quantities is
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1337 See Web#1337.
1338 Show that the uncompensated resistance is 34  when the RE is positioned 1.0 mm from the center of a

disk WE of 1.0 × 105 m2 area and the aqueous electrolyte solution is 0.1 molar KCl. See Web#1338.
1339 by placing a resistor in the lead connecting the potentiostat to the working electrode.
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Equation 13:37 shows that, in voltammetry, the true electrode potential E can be

established with confidence only if the uncompensated resistance has a reliably known

value, or is negligible. Similarly, equation 13:38 shows that uncompensated resistance is

also a hindrance to the accurate determination of the faradaic current. The problem is

particularly severe with many nonaqueous solvents, in which the conductivity cannot be

increased as easily as in water. Just as with the capacitance, there are several strategies

aimed at measuring, or reducing, the uncompensated resistance:

(a) Use a well designed Luggin capillary (page 210), closely spaced to the working

electrode, to diminish the uncompensated resistance.

(b) Because Ru is inversely proportional to the conductivity  of the cell solution, use as

high a concentration of supporting electrolyte as is compatible with the goals of the

experiment. A particular problem arises with the many organic solvents in which most salts

dissolve only sparingly.

(c) Knowing the solution’s conductivityand the geometry of the reference electrode with

respect to the working electrode, calculate1337 Ru. For example,

equation 10:31 could be used for a large working electrode, while

the equation

 RE disk

u
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arctan /

2

x r
R

r



13:40

is applicable to a small RE mounted above the center of a disk

working electrode1338.

(d) A useful diagnostic tool is to add a known increment1339 to the uncompensated

resistance by inserting a resistor into the WE lead. While this provides no solution to the

problem, it does allow a valuable experimental assessment of how severely a particular

resistance affects your voltammogram.

(e) Using a.c., measure the impedance of the cell at an applied d.c. potential where

faradaic current is absent. Analysis of the frequency dependence (Chapter 15) provides

both Ru and C. The measurement may be made in an independent experiment following the

voltammetry, but with the cell undisturbed. This experiment will measure not only solution

resistance that is uncompensated, but any resistance present in the electronic conductor.

(f) In the current-interruption method, the current flowing through the cell is suddenly

interrupted. The voltage across the uncompensated resistance immediately falls to zero,
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1340 For an explanation, see Web#1340.
1341 Web#1341 contains details.
1342 For the circuitry used, see A.J. Bard and L.R. Faulkner, Electrochemical Methods, 2nd edn, Wiley, 2001,

Section 15.6.3.

but that across the other elements remains initially unchanged1340. Accordingly, there is an

immediate diminution of magnitude IRu in the voltage, from which the uncompensated

resistance can be found. Adsorption can lead to false values, however.

(g) Another method1341 of measuring Ru is available whenever ferrocene is used as an

internal reference (page 353) in cyclic voltammetry.

(h) With Ru known, the potentiostat circuit may be modified1342 to add a quantity ImeasRu

to the applied voltage, thereby entirely compensating for the ohmic loss. However, such

a positive feedback procedure, while feasible in concept, is difficult to execute

successfully. If one tries to make a 100% correction in this way, minuscule time delays

between the measurement of the current and the implementation of the compensatory

voltage can throw the potentiostat circuitry into destructive oscillations. Partial

compensation can be effective, however, and positive feedback is sometimes used to

ameliorate, rather than remove, uncompensated resistance. Often this approach is used

heuristically: compensating resistance is progressively added until oscillation is

encountered, then backed off until stability is restored.

(i) As with double-layer capacitance [items (m) and (n), page 277] the uncompensated

resistance may be treated as a component of the model and evaluated in a multiparameter

fit.

Another way in which interfacial structure has a bearing on voltammetry is through the

so-called Frumkin effects. Though our discussion of the double layer, earlier in this

chapter, was based on a totally polarized electrode, there is no reason, in the absence of

adsorption, to believe that double-layer structure is significantly different during the

occurrence of an electrode reaction. Frumkin1324 realized that there are two ways in which

the presence of a double layer would modify the traditional theory of electrode kinetics

(pages 130136). These effects arise because, at the instant at which electron exchange

occurs, the reactant is located within the double layer. For lack of a better measure, the

reaction site may be identified at a point distant xH, the width of the compact layer, from

the geometric interface.

The first Frumkin effect represents an adjustment to the concentration of reactant R

at the reaction site. This is an equilibrium effect; we are not here concerned with transport

or kinetics. From Boltzmann’s distribution law, the reactant concentration is

H b R
R R H first Frumkin effectexp

z F
c c

RT

 
  

 
13:41

at the site. Here, as before, we have assigned a value of zero to the potential in the bulk

solution. If the reactant is an anion, its concentration is enriched, becauseH will generally
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1343 If the potential is 5.9 mV at the Helmholtz plane, calculate the ionic concentrations there in a 100 mM

solution of calcium chloride, CaCl2. See Web#1343.
1344 See Web#1344.
1345 There is some evidence, however, that the reducible species is actually a singly-charged ion pair, such as

2 8NaS O ( ).aq

be positive during an oxidation. The concentration1343 of the product O will obey a formula

similar to 13:40.

The second Frumkin effect addresses the influence that the double layer has on the

kinetics of the electrode reaction. Recall that, at a fundamental level, the reason why

increasing the electrode potential, say by E, accelerates a one-electron electrooxidation

reaction is that the Gibbs energy barrier is thereby lowered by FE and this appears as an

increment of (1)FE/RT in the logarithm of the forward rate constant together with a

decrement of FE/RT in the logarithm of the backward rate constant. This is the story

that the Butler-Volmer model tells. Frumkin, however, recognized that, when the reactant

is sited at xH, only a portion of the E increment serves as a reaction accelerant, the

remainder being “wasted” on the diffuse double layer. He postulated that, for example

 o
ox H second Frumkin effe

(1
c

)
ln( ) texp

F
k E E

RT

  
    

 
13:42

The quantitative repercussions of the second Frumkin effect are reported elsewhere1344.

Dramatic evidence supporting the existence of Frumkin effects comes from

voltammetric study of the irreversible reduction of such multicharged anions as the

peroxydisulfate
2 2

2 8 4S O ( ) 2e 2SO ( )aq aq   13:43

With low concentrations of supporting electrolyte, and in a range of potentials removed

from the vicinity of Ezc, conditions are encountered in which the reaction rate actually

decreases as the potential becomes more negative. This surprising result can be explained

by the Frumkin effects. According to equation 13:40, the concentration of a doubly-

charged anion1345 at xH is decreased tenfold by a 30 mV negative shift of H, and this can

more than offset the increasing electroreduction rate.

There is no doubt that the Frumkin effects are real and important. Nevertheless,

electrochemists seldom make the appropriate double-layer corrections to calculate “true”

values of the kinetic parameters ko and  from the “apparent” values measured assuming

Butler-Volmer kinetics. The reason for this is that data needed to make the corrections

reliably are not available other than for mercury electrodes and, even when the kinetic

experiments are performed at mercury, the conditions are seldom compatible with those

required for double-layer studies. Because H is smaller and more constant in solutions of

high ionic strength, Frumkin effects are minimized by using large concentrations of

supporting electrolyte, as earlier remarked upon (page 199).
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1346 As it does when ebullient victors shake champagne bottles, thereby introducing many tiny bubbles to serve

as nucleation sites.
1347 The curve obeys the equation G  4r2(4RT/3M)r3 ln{p/po}, for water vapor at 0oC, where M/ is the

molar volume of liquid water and p/po, here equal to 4.0, is the ratio of the prevailing pressure to the vapor

pressure. G is the free energy of the droplet with respect to the vapor from which it is formed. At the peak in

the curve, corresponding to the critical nucleus size, about 90 water molecules are present in the droplet.

Nucleation and Growth: bubbles and crystals

For the most part, electrochemical processes do not produce new phases. Exceptions

include the creation of crystals of a metal on an electronic conductor not of that metal,
M

MM ( ) e M( )z soln z s 13:44

and bubble formation at electrodes. Two stages are involved: nucleation, which is the

creation of a minute sample of the new phase, and the subsequent growth of the nucleus

into a macroscopic phase. When the new phase is crystalline and is formed electro-

chemically at an electrode, as in equation 13:44, the term electrocrystallization is used.

Electrocrystallization has much in common with such phenomena as the boiling of

superheated liquids, precipitation fromsupersaturated solutions, and droplet formation from

supercooled vapors. In all these cases, the process involves a metastable system: one in

which progress to the final state is favored by a substantial negative Gibbs energy change,

but in which the process has difficulty getting started, because the initial steps along the

road toward equilibrium involve an increase in G, as illustrated in Figure 13-11. Perhaps

the most familiar illustration is the supersaturated carbon dioxide solution formed by

removal of pressurization from a carbonated beverage. Thermodynamically, the process

CO2(soln) CO2(g) should occur readily1346, but this would require microbubbles of gas

to form within the solution. The pressure within a bubble is augmented by the term1347

162

bubble

the Laplace bubble-pressure equa
2

tionp
r


 13:45

where  is the surface tension. This equation predicts huge pressures when the bubble
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1348 Calculate the pressure within a gas bubble in water containing 1000 gas molecules, on the basis of

Laplace’s equation and the gas law pV  nRT. See Web#1348.
1349 Very pure liquid water has been cooled to 40oC without freezing!
1350 The formula is appropriate only for a two-dimensional crystal sheet.

radius is small1348, implying that small bubbles are unstable; the gas inside them “wants”

to redissolve. Big bubbles, once formed, are stable and will increase in size by capturing

dissolved gas. But if small bubbles won’t endure, how can they ever grow? In the absence

of impurities or blemishes that foster nucleation, some metastable systems do retain their

metastability almost indefinitely1349, but in the carbonated beverage example there are

usually enough nucleation sites on the walls of the bottle to foster the growth of a few

small bubbles to a size at which spontaneous growth becomes possible. These nucleation

sites are suitably shaped blemishes: perhaps a small pit within which gas can reside without

having a curved pressure-inducing boundary with the beverage.

Similar, though less easily quantified, considerations apply to electrocrystallization.

There is a limited number of nucleation sites on the electrode surface, often locations where

the atomic packing of the electrode material has gone awry. Moreover, as one might

expect, the more negative the potential of the electrode, the more nucleation sites come into

play. The dependence of the rate of nucleation on the applied overvoltage  is found to

obey an equation of the form

 
2

nucleation
rate of nucleus constant

exp
creation

    
   

    
13:46

and there is theoretical support for a relationship of this shape from consideration of the

statistical probability of unlikely configurations occurring spontaneously.

The formation of a new phase of area A at an electrode creates two surfaces – one

between the electronic conductor and the new crystal (with a surface tension ec), and

another between the ionic conductor and the new crystal (surface tension ic) – but destroys

part of the preexisting surface – that between the electronic and ionic conductors (surface

tension ei). The net surface Gibbs energy created by this replacement is1350

 ec ic eiA   13:47

and this may be a significant (positive or negative) addition to the usual G term that

determines the null potential of the system.

Studies of the nucleation and growth of electrodeposited crystals are often conducted

by studying the time-evolution of current in the early stages of a reaction such as 13:44.

Firstly consider a single nucleus, formed at t  0 and growing thereafter without a transport

impediment. If the growth occurs along the surface, a disk-shaped deposit will form and

grow by accretion at a rate proportional to the area of the circular perimeter

M( ) (2 )I t z Fck rh  13:48

where c is the concentration of ions, h is the thickness of the crystalline layerMM ( )z soln
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1351 Derive equation 13:52 or see Web#1351.

and k is a potential-dependent rate constant with the m s1 unit. The total charge needed

to produce a disk-shaped deposit of radius r is
2

M M

M

( )
r hz F

Q t
M

 
13:49

where MM/M is the molar volume of the crystalline layer. The time-derivative of 13:49

must equal expression 13:48, from which it follows that

M

M

d

d

cM kr

t



13:50

Integration produces r  cMMkt/M and when this result is substituted back into 13:48, one

finds
2

2M M

M
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
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with the important conclusion that the current should increase linearly with time and

depend on the square of the ion concentration. On the other hand, if growth of the nucleus

can occur in three dimensions, a hemispherical deposit will develop with the rate of

accretion being proportional to the growing hemisphere’s area. Reasoning similar to that

just presented leads to the prediction that1351

3 2
3 2M M

2
M

single nucleus, 3-D growth

no transpo

2
( )

rt restriction

z Fk M
I t c t

 
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
13:52

These equations assume that the supply of metal ions poses no limitation, but if the rate of

crystallization is governed by the diffusion of those ions to a growing hemisphere, the

current obeys a relation that is approximated by

3 3
M M

M

single nucleus, 3-D growth

diffusive tr

8
( )

3 ansport control

z F D M c t
I t
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


13:53

One seldom finds a solitary nucleus in nature. Nevertheless, it is possible to study

instantaneous nucleation. A small and constant number of nuclei is formed by briefly

pulsing the electrode to a large negative potential that fosters nucleus creation, then

studying their growth at a lesser overpotential at which new nuclei are unlikely to form.

Another technique is to study a system in which new nuclei are forming at a slow but

constant rate. This is termed progressive nucleation. The measured current is then the

sum of the currents from all the growing nuclei, some old, some new:

( ) ( ) 0n n n
n

I t I t t t t   13:54

Here tn is the time of birth of the nth nucleus and In is the current that it contributes. If

nuclei are being born frequently and at a constant rate vnuc, then the summation may be
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1352 through the statistical theory associated with the names of Kolmagarov and Avrami.
1353 a semiconductor device that uses the presence of a field on a p-type “gate” to control the flow of electrons

between two n-type regions.
1354 acronyms for “ion-selective field-effect transistor” and “chemical sensing field-effect transistor”.

replaced by an integral

nuc single

0

( ) ( )d
t

I t I t t v13:55

For example, if individual nuclei obey equation 13:53, the net current will be
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Ultimately, of course, the growing nuclei compete for space and begin to overlap. Even

this may be taken into account mathematically1352, but we shall not pursue that

complication.

A metal M electrocrystallizing on a foreign substrate will adopt a crystal habit that

seeks to minimize the Gibbs energy term in expression 13:47. This may not be a

configuration conducive to further crystallization of M atoms. That is, a monolayer of M

may form at a potential less than that predicted by the Nernst equation for the deposition

of bulk metal. This underpotential deposition yields a metal layer with properties distinct

from the bulk metal: such layers have found applications in electronics and catalysis.

Multilayer crystallization of a salt is eventually limited by the exhaustion of one of the

ions. The ion that is not exhausted will often adsorb on the crystal, forming a partial layer

as illustrated in Figure 13-12. Because the extra ions fit so perfectly onto the preexisting

lattice, this tends to be a rather specific effect, of which advantage is taken in a particular

type of sensor. The adsorbed ions create a field within the salt crystal and this field can be

detected by a field-effect transistor1353 placed behind a thin layer of the crystal. Such

sensors are called isfets or chemfets1354.
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View supplementary web material at www.wiley.com/go/EST.

Summary

Many features of the electrode interface affect electrochemical reactions. The double

layer that always exists at the junction between an ionic and an electronic conductor has

a large capacitance and gives rise to nonfaradaic currents whenever the electrode potential

is changed. Frumkin effects allow the double layer to perturb both the concentration of

ions close to the electrode and the rate of the electron-transfer reaction. The interface is

also the site of adsorption, which frequently plays a role in electrochemical reaction

mechanisms. New phases are often reluctant to form at electrode interfaces because

nucleus formation is statistically infrequent and small nuclei may be stillborn.
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14

Other Interfaces

In the previous chapter, we addressed phenomena at an

electrode; that is, at the interface between an ionic conductor

and an electronic conductor. There are, however, several

other types of interface that are of interest to

electrochemists, and three of these will be discussed in the

present chapter. The first is the interface between an ionic

conductor and a semiconductor. Inasmuch as electrons cross

this interface, it earns the name “electrode”. However, in

the other two interfaces to be addressed here, there is no

direct role played by electrons: the interfaces are not

electrodes. One of these electron-free interfaces is formed

at the junction between two distinct ionic conductors. The

most common manifestations of this type of interface are

those formed when two immiscible liquids, each containing

a dissolved electrolyte, meet. The final type of interface

discussed in this chapter is that between an ionic conductor

and an insulator; in particular, the junction of an aqueous

solution and glass or silica.

Semiconductor Electrodes: capturing the energy of light with photochemistry

When, in the previous chapter, we were discussing the diffuse distribution of charges

in the ionic conductor at a polarized electrode, did you wonder why there was no diffuse

layer on the electronic-conductor side? The answer is that metals are such good conductors

of electricity that any such layer would be of subatomic size. Electrodes having poorly

conducting electronic conductors do, however, support diffuse charges as part of a double-

layer interface. The phenomenon is particularly important in the case of semiconductor

electrodes, in which the conductivities of the electronic and ionic conductors may be
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1401 Enrico Fermi, 19011954, Italian physicist. Following his 1938 Nobel Prize, he emigrated to the U.S.A.,

where he worked on nuclear transformations.
1402 When, as in solid-state physics, energy is measured in electron volts, the distinction between a difference

in potential and a difference in energy becomes largely one of units and, accordingly, the symbol E is often used

for both potential and energy. Here we make a distinction and use E for potential difference and  for an

energy difference. For electrons, the relation between the two is   Q0E.
1403 An electron infinitely remote and in free space in said to occupy the vacuum level.
1404 Attempts to quantitatively relate the electrode potential to the Fermi level rely on the concept of the

absolute electrode potential, based on models such as that of Kanevskii602.

comparable. However, you will not find the effect discussed in the literature in terms of

a diffuse layer. In view of the band structure124 associated with semiconductors, it is

referred to as band bending.

An important concept in solid-state physics is that of the Fermi1401 energy, which is

the energy that an electron would have in the Fermi level. We write “would have” because

the Fermi level is not actually occupied; it represents a weighted average of the energies

of the electrons occupying the valence and conduction bands. Apart from its sign, the

Fermi energy1402  is essentially the work function of the solid, which is the energy

required to remove (to infinity1403) an electron from a phase; it represents the average

energy of an outer electron. In semiconductors the Fermi level lies somewhere between the

energy levels of the conduction and valence bands, depending on the occupancy of those

bands. In an intrinsic semiconductor, the Fermi level lies midway between the two bands

because the population of electrons in the conduction band equals the population of holes

in the valence band. In an n-type semiconductor, the level is just below the level of the

conduction band, because the carriers  electrons  are predominantly in that band.

Conversely, the Fermi level is just above the energy level of the valence band, in a doped

semiconductor of the p-type. The Fermi level of a semiconductor reflects the electron

activity in a semiconductor in a way analogous to that in which the standard potential1404

of a metallic electrode governs the activity of its electrons.

When the working electrode of an electrochemical cell is metallic, there is always an

abundance of electrons to take part in an electrochemical reaction. This is not necessarily

the case, however, when the electrode is a semiconductor. For example, reductions readily

occur at an n-type semiconductor, because there are plenty of conduction-band electrons,

whereas oxidations are disfavored, because of the paucity of holes to accept electrons into

the valence band. Of course, the opposite is true of semiconductors of the p-type, for which

their abundance of holes facilitates the oxidation

R( ) h ( ) O( )aq sc aq 14:1

In fact, the rate of oxidation can be regarded as proportional, not only to the concentration

of R at the interface, but also the concentration of valence-band holes there. One can

observe limiting currents that represent hole depletion. At more positive potentials, the

more conventional reaction



Semiconductor Electrodes 289

1405 which may go by the name depletion layer in semiconductor parlance.

R( ) e ( ) O( )aq sc aq 14:2

comes into play, with the electrons entering the conduction band.

Notwithstanding that the term “double layer” is not used in the semiconductor

literature, a space charge, structured akin to a Gouy-Chapman diffuse region, generally

forms inside the semiconductor when it is brought into contact with an aqueous solution.

Typically, it is several nanometers wide. Unlike a double layer in solution, however, the

diffuse region appears not to be accompanied by any compact layer. The space charge1405

forms by a redistribution of the charge carriers brought about by the intense field caused

by the juxtaposition of the ionic conductor, as illustrated in Figure 14-1. In consequence,

the conduction and valence bands “bend”; that is, the energy levels of the bands near the
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1406 Rutile, a semiconducting form of TiO2, absorbs light only of wavelengths < 420 nm. Calculate the band

gap. See Web#1406.

interface come to differ in energy from those deep inside the semiconductor. If the aqueous

solution contains a redox pair, so that the electrode potential is adjustable, the bands within

the semiconductor can be “tuned” to some extent. In particular, it may be possible to

inhibit band bending. The potential needed to accomplish this is spoken of as the flat-band

potential; it is analogous to the potential of zero charge in a traditional electrode.

Seldom are semiconductor*ionic-conductor junctions as efficient as other types of

electrode in promoting chemical reactions. Interest in semiconductor electrodes is

primarily motivated by a property that other electrodes do not share: their ability to absorb

light energy. Semiconductors can capture photons when the energy of the photon matches

the band gap of the semiconductor. Because photon energies are equal to Planck’s

constant840 h multiplied by the light’s frequency, light can be absorbed if

gap CB VBhv      14:3

Fortunately, many semiconductors have band gaps that correspond to frequencies present

in sunlight. That, of course, is how they function in photovoltaic cells. For example, the

band gap in cadmium sulfide is 2.4 eV, so the minimum light frequency able to promote an

electron from the valence to the conduction band is
19

gap 140
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which is equivalent to a wavelength of
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corresponding to green light1406. In a photoelectrochemical cell with an n-type semi-

conductor working electrode, illumination has the goal of increasing the population of holes

in the valence band and thereby allowing oxidation to occur at a lower cell voltage than

would otherwise be required. Alternatively, with an illuminated p-type working electrode,

electrons populating the conduction band more readily perform reductions.

To pursue practical applications of photoelectrochemistry, two-electrode cells may be

configured in several ways, with only one of the electrodes being a semiconductor. In a

photovoltaic electrochemical cell, the goal is to have a galvanic cell that converts light

energy to electrical energy. One of the simplest arrangements would be to have an n-type

photoanode at which the oxidation

semiconductor photoR( ) h ( ) O( ) anodesoln sc soln 14:6

coupled with a conventional cathode

O( ) e ( ) R( conventional cath) odesoln metal soln 14:7

both utilize the same redox couple. Figure 14-2 illustrates the processes involved in such
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1407 Though planar to macroscopic viewing, such junctions are surprisingly irregular at a molecular level.

a cell. An alternative to this direct way of operating a galvanic photocell, is to use a

mediator which more readily reacts with holes. Dyes often fill this role, being converted

to an excited state at the semiconductor interface and subsequently reacting with the O/R

couple. Another configuration has electrosynthesis as its objective. It is exemplified by

the photosplitting of water, in which the reactions are
+

2 2 36H O( ) 4h ( ) O ( ) 4H O semiconductor photoano) de(soln sc g aq  14:8

and

3 2 24H O ( ) 4e ( ) 2H ( ) 4H O( ) conventional cathodeaq metal g    14:9

This process has not been realized as a self-sustaining operation, but photoassisted

electrolysis can reduce the cell voltage below that required in the dark.

Phenomena at Liquid*Liquid Interfaces: transfers across “ITIES”

Though (aqueous solution)*(ionic liquid) interfaces have been investigated, most

electrochemical studies of the junction between two ionic conductors are made with two

immiscible liquids, each containing dissolved electrolyte, meeting at a plane1407. One of the

liquids is usually water and, to ensure immiscibility, the other is a hydrophobic organic

solvent, such as nitrobenzene, C6H5NO2, or 1,2-dichloroethane, (ClCH2)2. Whereas most

simple salts, lithium chloride for example, dissolve readily in water to provide ions, such

as Li+(aq) and Cl(aq), that confer conductivity, only bulky ions with lipophilic groups are

sufficiently soluble in organic liquids to provide an adequately conductive path. Tetra-

butylammonium tetraphenylborate is an example of a salt that yields such ions, namely
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1408 Pioneering studies were carried out by Ernst Hermann Riesenfeld (German physical chemist, 18771957,

who worked in Sweden during the Nazi era); he was Nernst’s brother-in-law. For a review of ITIES, see H.H.

Girault, Electrochemistry at Liquid-Liquid Interfaces in: A.J. Bard and C.G. Zoski (Eds.), Electroanalytical

Chemistry: A Series of Advances, Vol. 23, CRC Press, Boca Raton, FL, 2010.

(C4H9)4N
+(org) and (C6H5)4B

(org).

The acronym ITIES1408, standing for the interface between two immiscible electrolyte

solutions, is commonly used to describe the interface in a cell such as that shown

diagrammatically in Figure 14-3. A bipotentiostat1233 serves the four-electrode cell

permitting a known, constant or ramped, voltage to be applied across the interface, while

measuring the current flowing through it. When modest constant potentials are applied

across such an ITIES, no current is observed because the cell is totally polarized, no

reaction or transfer being possible. Of course, the interface is the site of two Gouy-

Chapman-style double layers, one in each of the liquids, and the possibility also exists of

the adsorption of ions or molecules at the junction. Hence, if the potential is scanned, a

current is observed corresponding to the recharging of those layers, paralleling similar

behavior at a polarized electrode.

If a larger d.c. voltage (about 200 mV) is applied, the aqueous layer being positive,

some of the tetraphenylborate anions will overcome their reluctance to enter the aqueous

layer,
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1409 Such currents may be considered “faradaic”, though not in the usual sense of that term.
1410 Of course, one inevitably deals with the simultaneous transfer of two ions (one via the reference electrodes).

As in other contexts, the hydrogen ion is taken as the reference standard and is assumed to have the same

standard Gibbs energy in all solvents. As in Web#1410, predict the interfacial potential difference if the

chloride ion, Cl, exists in 100-fold excess on the aqueous side of a water*nitrobenzene ITIES. Which side is

positive? Explain the polarity.

6 5 4 6 5 4(C H ) B ( ) (C H ) B ( )org aq 14:10

causing an ion transfer current1409. At a somewhat more positive potential, some lithium

ions will desert their preferred aqueous environment and leak into the organic phase

Li ( ) Li ( )aq org 14:11

further enhancing the current. If the polarity is reversed, it is the cations that travel from

the organic phase into the aqueous phase

4 9 4 4 9 4(C H ) N ( ) (C H ) N ( )org aq 14:12

and/or the anions that make the converse journey.

Cl ( ) Cl ( )aq org 14:13

prompting a flow of current in the opposite direction.

Electrochemical measurements in aqueous systems are based on assigning a potential

of zero to the SHE, as explained on page 106. This scale can serve the aqueous chamber

of the Figure 14-3 cell, but some convention is needed to provide an interpretation of

voltages measured across an ITIES. Because ferrocene, (C5H5)2Fe (frequently abbreviated

to Fc), is soluble in many liquid solvents, and because it easily establishes an electron-

transfer equilibrium with the ferrocenium cation

Fc( ) e Fc ( )soln soln 14:14

in most of those solvents, the potential of this couple has become the accepted way of

intercomparing electrode potentials measured in diverse solvents. It is appropriate,

therefore, to adopt the same convention in seeking to interpret intersolvent potentials in

ITIES cells. That is, the standard potential of reaction 14:14 in one of the two ITIES

solvents is equated to that in the other. A vindication of this approach comes from the

observation that, if decamethylferrocene ((CH3C)5)2Fe (abbreviated dmFc) is used as an

alternative calibrant, exactly the same result is obtained. Figure 14-4 shows the joint

scales and how several redox pairs fit into the scheme.

If a particular ion i is present on both sides of an ITIES at equilibrium, a version of

Nernst’s law exists in the form
w o o

o i i

w
i

lnw

i i

G RT a
E

z F z F a

  
        

 
14:15

where is the standard molar Gibbs energy change accompanying the transfer1410 ofw o
iG 

an ion from water (superscript w) into the organic liquid (superscript o). Studies of ITIES
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1411 See pages 191 192 for the formula of acetylcholine and to read of its role as a neurotransmitter.

can thereby be used to determine, for example, that the standard Gibbs energy change is

43.9 kJ mol1 for the transfer of a chloride ion, Cl, from water to nitrobenzene. Moreover,

the application of a voltage across an ITIES can be employed to alter the surface

composition of one or both of the phases. For example, protons can be “pumped” out of

the aqueous phase into an organic phase containing a lipophilic base B to effect the

transfers illustrated in Figure 14-5. Thereby the local pH of the aqueous phase is increased,

while the acidity of the organic phase is enhanced locally by a change in the B/BH+ buffer

ratio in the organic phase.

However, equilibrium across an ITIES may be established only slowly. Investigations

of the rate of transfer of the organic cation acetylcholine1411 from dichloroethane across its
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1412 Write equilibrium constants for the processes 14:1614:20. The five constants are not independent; find

a relationship between them. Consult Web#1412.
1413 Which of these three is affected by changing the voltage across the ITIES? How might a positive change

in that voltage affect the overall reaction? See Web#1413.

interface with an aqueous solution, and vice versa, show transfer rates proportional to

exp{FE/RT}, with  values close to 0.5. In this respect, the transfers show strong

parallels with electron-transfer kinetics, as interpreted through the rival treatments of

Butler-Volmer and Marcus-Hush (Chapter 7).

With great relevance to the mechanism of ion-selective electrodes (Chapter 6) are

studies of facilitated transport across ITIES. An example of a facilitator is provided by

the ionophore valinomycin (page 172) which is able to assist the potassium K+ ion in

crossing an ITIES into the organic phase. Without the facilitator, the process

K ( ) K ( )aq org 14:16

is slow, but equilibrium is much more rapidly approached in the presence of valinomycin,

which will be represented by Vm in the equations that follow. One can envisage several

mechanisms whereby this facilitation might occur. Some of the following processes

Vm( ) Vm( )org aq14:17

+ +K ( ) Vm( ) KVm ( )aq aq aq 14:18

KVm ( ) KVm ( )aq org 14:19

and
+ +K ( ) Vm( ) KVm (org)org org 14:20

could be involved1412. Experiments suggest that, at least in this case, the complexation of

the ion occurs wholly on the organic side of the interface, the ionophore’s role being to

accelerate the dispersal of the ion out of the double layer there. That is, reactions 14:16 and

14:20 are the important ones. Of course, the ultimate equilibrium state is independent of

the details of the mechanism and must satisfy the laws governing the various equilibria.

Figure 14-5, on the facing page, illustrates a proton transfer taking place at an ITIES,

but electrons may be transferred in a similar fashion, as pictured in Figure 14-6 overleaf.

Evidently a reduction, of hexacyanoferrate(III) to hexacyanoferrate(II), occurring wholly

within the aqueous phase, couples with an oxidation, occurring wholly in the organic phase,

of ferrocene to the ferrocenium cation, with an electron crossing the interface. This has

been called a biphasic electron-transfer reaction. The analogy of this ITIES to an

electrode is apparent. But note that whereas an electrode can bring about either an

oxidation or a reduction, both of these processes occur simultaneously at an ITIES. Notice,

moreover, that a process with this result needs not necessarily occur by a purely

heterogeneous route. Indeed, at least for certain concentrations of the four iron compounds,

it has been demonstrated that the pictured reaction incorporates the three processes1413



296 14 Other Interfaces

1414 Write balanced equations to demonstrate that both protons and electrons are transferred across the ITIES

in the processes pictured in Figure14-7. Is there necessarily an accompanying current flow? See Web#1414.

Fc( ) Fc( )org aq14:21

3 4
6 6Fc( ) Fe(CN) ( ) Fc ( ) Fe(CN) ( )aq aq aq aq   14:22

and
+ +Fc ( ) Fc ( )aq org14:23

at the water*nitrobenzene interface.

If the interfacial potential of the ITIES cell discussed in the previous paragraph is

adjusted until no current flows, then a null condition exists, but not necessarily an

equilibrium state. Transfer 14:21 generates no current, and could occur unnoticed.

Moreover, if there exist trans-ITIES flux densities of the three ions that satisfy the

condition

+ 3 4
6 6

o w w o w o

Fc Fe(CN) Fe(CN)
j j j 

   14:24

then there is no net current, but no equilibrium either. A situation akin to an electro-

chemical “mixed potential” (page 217) would exist. Thus, caution is needed in recognizing

the existence of equilibrium. However, if it is confidently known that no trans-interface

transfers occur, then Nernst’s law may be taken to hold in the form

+ 4
6

3
6

o w

Fc Fe(CN)

n o w
Fc Fe(CN)

( ) ln
a aRT

E constant
F a a





  
    

  

14:25

The “constant” could be regarded as the standard potential for the ITIES cell.

Joint proton and electron transfer across an ITIES, shown in Figure 14-7, has also been

demonstrated. Oxygen in the aqueous phase may be reduced by the oxidation of a

hydroquinone in the organic phase1414. A potential difference applied across the ITIES,

using the arrangement diagrammed in Figure 14-3, may radically modify processes such

as this. Thus, the applied voltage in the pictured transfer can determine whether the

product of oxygen reduction is water or hydrogen peroxide.

The expectation that certain ions and molecules will adsorb at an ITIES is well
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1415 A zwitterion is a species containing both positively and negatively charged groups.
1416 All phospholipids incorporate a phosphate unit, and most have a glycerol unit, as shown in Figure 14-8.

Various bases are incorporated, the choline option being illustrated. There is variety also in the two fatty acid

units that give rise to the long hydrocarbon chains: those shown in Figure 14-8 arise from palmitic and oleic

acids. Ester linkages bond the units together.

realized. Adsorption, particularly of surfactants, can lead

to the mechanical instability of an ITIES: the

gravitational stabilization provided by the density

differential between the two liquids may be unable to

counter a tendency of the surface to buckle in an attempt

to increase the contact area. Establishing an association

with the material discussed on page 187, is the

observation that phospholipids (which are zwitterions1415

at pH values of biological interest) strongly adsorb at an

ITIES, forming a monolayer, rather than the bilayer that

is the structure of overwhelming biochemical

importance.1416Monolayer formation arises from the

hydrophilicity of one end of the phospholipid molecule

contrasted with the lipophilicity of the other end.

Evidently there are pores in the phospholipid monolayer,

because the small tetramethylammonium cations,

(H3C)4N
+, are able to transfer through such an ITIES film

whether or not the phospholipid monolayer is present,

though with a smaller current in its presence. In contrast,

an enhanced current has been observed for the transfer of

Na+ and K+, unexpectedly showing that an unaugmented
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1417 There is no direct relationship to “electrode kinetics”, despite the similar name.

phosopholipid monolayer can mimic the properties of an ionophore.

Because it has become the default investigatory tool of electrochemists, phenomena

at ITIES are commonly studied using the triangular controlled-potential waveformof cyclic

voltammetry (Chapter 16). While qualitative conclusions have often been reached in this

way, it has proved difficult to apply the theory of cyclic voltammetry quantitatively, in part

because the necessary conditions of semiinfinite planar diffusion are not easy to attain

reproducibly. In an effort to ameliorate this situation, some “micro-ITIES” experiments

have been conducted1408 with the interface between the solvents being made at the mouth

of a micropipette.

Electrokinetic Phenomena: the zeta potential

In recent sections we have encountered instances of double layers formed at junctions

between an ionic conductor and another conductor. However, double layers also form at

junctions between an ionic conductor and an insulator. Clearly, no electric current can flow

across a junction of this kind, but the double layer may make its presence known in other

ways. Because double-layer effects scale with the interfacial area, phenomena associated

with double layers at ionic-conductor*insulator junctions are most noticeable in systems

of large area-to-volume ratios, such as porous materials, suspensions, nanoparticles, dust

and mist clouds, colloids, and so on, as well as in tubes of narrow bore. Electrical double

layers can initiate movement and this is the source of the adjective electrokinetic [

“electrically generated motion”] used to describe these phenomena1417.

Other than those at electrodes, the most extensively studied double layers are probably

those at interfaces between glass or silica and an ionic aqueous solution. Fused silica

consists of a disordered network of silicon and oxygen atoms, each oxygen forming a

bridge between two silicon atoms. Figure 14-9 illustrates how the oxygen atoms on the

surface find themselves as groups. In an aqueous environment, these groups becomeSi=O

hydrolyzed to , which is weakly acidic and ionizes as follows2Si(OH)
+ 6

2 2 3Si(OH) ( ) H O( ) Si(OH)O ( ) H O ( ) 3 10s s aq K       14:26

Glasses have structures similar to silica, but some of their oxygen atoms are already ionized

in the dry state, their charges being countered by those of metal cations. In either case, the

surface of the solid becomes the negative member of a double-layer, with compensatory

cations occupying a diffuse zone within an aqueous solution in contact with the insulator.

The intensity of charge on the solid surface reflects the pH, being most negative at high pH

values. Occasionally, the adsorption of highly-charged cations, for example
3 +

2 3Si(OH)O ( ) H O( ) Al ( ) SiOAlO ( ) H O ( )s aq s aq       14:27
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will reverse the polarity of the double layer, but generally the insulator surface is negative.

Because this geometry enhances the area/volume ratio, studies of electrokinetic

phenomena are often conducted in capillary tubes, especially those of glass or silica.

Figure 14-10 illustrates such a tube connecting two chambers, each equipped with an

electrode (possibly Ag*AgCl) and filled with an ionic solution, as is the capillary tube. A

double layer exists at the solution*solid interface, with the latter usually being negatively

charged, so that a solution layer enriched in cations occupies a hollow cylinder or “sleeve”

adjacent to the capillary wall. Of course, the thickness of this layer is very much narrower

than the bore of the capillary.

Now imagine that the electrodes are used to apply an electric field along the capillary

tube, acting in the direction diagramed in Figure 14-11 overleaf. The effect of this field on

a positively charged sleeve is to promote its motion in the rightwards direction. The motion

is not just that of the sleeve, the entire capillary contents within the sleeve will be dragged

to the right in a phenomenon known as electroosmosis or electroosmotic flow. If the flow

is allowed to continue, a head will build up in the right-hand vertical tube, opposing the
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1418 This uniformity is essential for the success of electrophoresis, the technique described on page 153.
1419 See Web#1419 for the derivation of 14:28 and for a definition of electroosmotic mobility.
1420 though it is actually a potential difference, measured with respect to the solution in the center of the tube

at the same value of x.

V



flow, until eventually an electroosmotic pressure is attained, inhibiting further motion.

Electroosmotic flow is laminar, but it does not have the quadratic dependence of

velocity on radius, as described on pages 161162, that is seen in Poiseuille flow. This is

because electroosmotic flow is not pressure-driven; instead, it is induced by friction from

the motion of the field-driven sleeve. Thus the velocity profile is as shown in Figure 14-11:

it is uniform1418 apart from within the narrow double-layer region. As is demonstrated

elsewhere1419, the electroosmotic flow rate (m3 s1) is given by
2

osm

R X 
 


V14:28

where X is the applied field, equal to cell voltage (left electrode minus right) divided by the

length L of the capillary tube. Here is the potential in the diffuse layer at the “slip plane”

where the moving solution meets the static surface layer. This quantity is known as the

electrokinetic potential1420 or more often as the zeta potential, after its usual symbol.

There are sound reasons for suspecting that might be more or less identical to the H of

double-layer theory, but there are no experiments by which both can be measured. In

practice the zeta potential is measured via equation 14:28 or in a similar way. In dilute

neutral aqueous solutions containing only singly charged ions at 25oC, the zeta potential is

close to 150 mV at a glass surface, decreasing slightly with concentration, or about half

that value at silica.

Equation 14:28 may be rewritten as
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1421 This is the usual name but it is actually the difference in potential of two electrodes.
1422 By comparing the SI units of its three members, confirm that equation 14:32 is dimensionally

homogeneous. See Web#1422.

osm electroosmotic flow caused by voltage
A

E
L


 


V14:29

where A is the cross-sectional area of the capillary tube and E is the applied cell voltage.

If the electrodes are depolarized, the applied voltage will not only cause the electroosmosis,

it will also generate a current, of magnitude AE/L. One may therefore write 14:29 as

osm electroosmotic flow caused by currentI





V14:30

where  is the conductivity of the solution. It is just as valid to think of this current as the

cause of the electroosmotic flow, as it is to regard the applied voltage as the causal agent.

Indeed, by replacing the potential source in Figure 14-10 by a current source, one can drive

a current through the cell, and observe exactly the flow described by 14:30 and a potential

drop described by 14:29. In a similar way, when flow has ceased because of the buildup

of a reverse head, the electroosmotic pressure may be considered to be generated by the

voltage or the current

osm 2

electroosmotic pressure

caus

8 8

ed by voltage or current

L
p E I

A A

    
   


14:31

In an alternative experiment, one may use the three-position switch to disconnect the

source in Figure 14-10, and instead apply pressure (by a gravitational head or otherwise)

so as to force solution through the capillary tube. Whereas, in the previous paragraph, an

electrical stimulus (voltage or current) gave rise to a mechanical effect (flow or pressure),

we now find the converse: mechanical stimuli produce an electrical effect. Thus, one has

a choice of measuring a so-called streaming potential1421 with the ammeter open-circuited

or a streaming current with the ammeter shorting the voltmeter. Being pressure-driven,

the flow through the capillary now obeys Poiseuille’s law842, which can be written as

. The streaming potential may be considered to be caused by the2
Pois osm /(8 )V A p L   

forced flow of solution or by the pressure differential1422

2

streaming potential

caused by flow or pressu e

8

r

L
E V p

A

   
   

 
14:32

and these alternative causes may likewise be considered to engender the streaming current

streaming current

caused by flow or pressure

8 A
I V p

A L

  
  


14:33

We have described a total of eight experiments, but they are all closely related. In fact,

when the appropriate sign is selected, they are all incorporated into the universal
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View supplementary web material at www.wiley.com/go/EST.

dimensionless relationship

2
or or

1 8L L
I E V p

A A

     
      

      

14:34

The remarkable inclusiveness of this relationship is explained by the branch of physics

known as irreversible thermodynamics and pioneered by Onsager819.

Another important phenomenon, closely related to streaming potential, is

sedimentation potential1421. If colloidal particles, of a density different from that of the

solution in which they are suspended, are subjected to a gravitational or centrifugal force,

their motion can lead to the loss of some of their diffuse double layer. In consequence an

electric field (and therefore a potential difference) develops, restraining the motion. This

is a hindrance if the object is to separate the particles from the medium and is commonly

countered in ultracentrifugation by increasing the ionic strength of the medium, thereby

reducing the zeta potential.

Summary

Three rather diverse junctions have been discussed in this chapter, though all arise

when an ionic solution, and primarily an aqueous solution of an electrolyte, meets another

phase. In all cases a double layer is created. In the case of the interface with an insulator,

the presence of the double layer causes motion or pressure in a direction parallel to the

surface. In the case of the interface with a semiconductor, there is a region of charge

imbalance, not only in the ionic conductor, but also in the semiconductor phase, caused by

a gradient of electron and/or hole concentrations; electrode reactions may occur and these

may be fostered by the capture of photons. In the case of an ITIES, there are two double

layers and their junction may allow the interphase transfer of molecules, ions or electrons,

or may be the site of adsorption, with or without the passage of current.



1501 The misleading term “stationary state” is also in use.
1502 As demonstrated in Web#1502, when the signal |E|sin{t} is applied across a resistor R in series with a

capacitor C, there is a transient current of magnitude |E|Cexp{t/RC}/[1+2R2C2] that must be allowed to

decay to insignificance before the current becomes wholly sinusoidal. Other loads lead to similar transients.
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Electrochemistry with Periodic Signals

When a periodic voltage signal is applied to an electrochemical cell, the current may

settle, after a few cycles, into a repetitive pattern. The cell is then in a periodic state1501, as

defined on page 231. A periodic state is always preceded by transience1502, but here we are

concerned only with the state achieved after the initial transient has decayed to a negligible

magnitude.

A voltage signal of period P is one in which the potential of the working electrode

obeys the requirement that

p( ) ( eriod i) ic tyE t P E t 15:1

at all times t within a wide window. For the most part, our discussion will concern

sinusoidal voltages

( ) sin{ }EE t E t   15:2

and currents

( ) sin{ }II t I t   15:3

As in Chapter 1, |E| and |I| are the amplitudes of the voltage and current,  is the angular

frequency and the ’s are phase angles. Much of this chapter is devoted to examining the

electrochemical effects of these signals and the methodologies that employ them.

Also addressed in this chapter are two techniques that might be termed near-periodic

voltammetries in which a slowly changing d.c. potential is applied, as well as the periodic

excitation. The responding current has both d.c. and a.c. components, but analysis of the

experiment is generally restricted to the periodic response. If the amplitude of the a.c.

component is small, the response is linear – that is, the a.c. current is proportional to the a.c.

voltage amplitude – then the behavior can be described in terms of an equivalent circuit.

Larger amplitudes destroy linearity.
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1503 or simply a resistor in series with one capacitor of magnitude equal to one-half of C. Explain why or see

Web#1503.
1504 Typically in the kilohertz range. Recall that the impedance of a resistor is frequency-independent, but that

of a capacitor is inversely proportional to .

Nonfaradaic Effects of A.C.: measuring conductance and capacitance

Before turning to the major topic of this chapter, which concerns how electrochemical

reactions respond to alternating electricity, the effect of a.c. on a totally polarized cell (page

193) will be addressed. No d.c. current can flow through such a cell, because there is no

electrode reaction available at one or more of the electrodes. However, the capacitance that

exists at all (electronic conductor)*(ionic conductor) interfaces, by virtue of the double

layer there, provides a route for a.c. to cross each polarized electrode; the conductance of

the ionic conductor completes the a.c. circuit through the cell.

Simple two-electrode cells similar to that illustrated in Figure 15-1 are generally used

to measure the conductance of aqueous solutions of electrolytes and other liquid ionic

conductors. Such a conductivity cell has the equivalent circuit

shown here1503, with each electrode represented by a capacitor and

with the intervening conductor represented by a resistor. When a.c.

current flows, there is a voltage drop across each of the three

elements. In a conductivity measurement, one seeks to minimize the effect of the

capacitors and this requires using a high frequency1504 and having electrodes of large area.

Often “platinized” platinum electrodes are used; these are coated with a finely granular

layer of platinum, greatly enhancing their effective area. This often enables the

capacitances to be completely ignored, so that the conductivity is computed from

L IL

AR A E
  15:4
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1505 Conductivity cells are rarely of perfectly cylindrical shape. The quantity L/A is known as the cell constant.

The resistance of a conductivity cell filled with the standard solution described above is 35.73 . What is the

cell constant? What is the conductivity of a solution that, in the same cell, provides a resistance of 83.67 ?

See Web#1505.
1506 For one sinusoid to be “out of phase” with another means that their phase angles differ by/2, as do a sine

and a cosine of the same argument.

Here A is the nominal cross-sectional area of the cell and L is the effective interelectrode

distance1505. Alternative to using the unmodified equation 15:4, some conductivity meters

further discriminate against capacitance by measuring only that component of the current

that is in phase with the applied voltage.

For highest precision, conductivities are determined by comparing the outcome of a

conductivity measurement, in a particular apparatus, with a similar measurement of the

conductivity of a standard solution. For example, a solution made by dissolving 7.43344 g

of KCl in exactly one kilogram of water has a molarity of 0.l and an accurately measured

conductivity of 1.2886 S m1 at 25.00oC, and this fact can be used to calibrate the cell.

Alternating current is also employed in the measurement of the capacitance of an

electrode under conditions of total polarization. The criteria are now reversed; one needs

to minimize the effect of the resistance component, and accentuate the importance of the

capacitance. Thus a potentiostat-controlled three-electrode cell is generally used, thereby

reducing the resistance to a small “uncompensated” fraction, Ru. The

equivalent circuit is now the simple one shown to the right. If the

current flowing through this series combination is I(t) 

|I|sin{t + I}, then the voltage generated by each component is

u u( ) ( ) sin{ }R IE t R I t R I t    15:5

by Ohm’s law and

( ) 1
( ) sin{ }d cos{ } sin

2
C I I I

I IQ t
E t I t t t t

C C C C

 
           

   
15:6

by relationship 1:19. Notice that the phases of the two voltages differ by /2, and that the

amplitude of the component of the voltage that is out of phase1506 with the current is |I|/C,

from which the interfacial capacitance is calculable. The results of measurements such as

this are often described in terms of impedance, as later in this chapter.

Faradaic Effects of A.C.: impedance, harmonics, rectification

A periodic variation in the potential of a working electrode does not necessarily result

in a periodic current response from a faradaic process. Essential to ensuring current

periodicity are the requirements that the working electrode not behave irreversibly and that

there be an ample concentration of each member of the redox pair. The latter condition
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1507 likewise admittance, defined as |I|/|E|, is analogous to conductance, both sharing the siemens unit.
1508 See Web#1508. This formula incorporates the contradiffusion relation (see Web#1213).

may be met either by having both members present in the bulk or by applying an

unchanging d.c. potential, in addition to the periodic signal, to generate the member that

is absent from the bulk.

The concept of impedance was introduced in Chapter 1. It may be measured by

applying an a.c. voltage and measuring the resulting current, or by applying an a.c. current

and measuring the voltage. If the voltage and current are respectively andsin{ }EE t 

then the impedance is defined assin{ },II t 

definition of impedance
E

Z
I

15:7

Its analog in d.c. electricity is resistance, with which impedance shares the ohm unit1507.

In addition to the impedance, however, a second quantity, the phase shift IE may be

measured. The table on page 26 lists values of the impedance and phase shifts for several

circuit elements and other loads. In a sense, the chemistry occurring at an electrode

interface introduces other “elements”. These are additional to the nonfaradaic elements –

the double-layer capacitance C and uncompensated resistance Ru – that are present even

when an electrochemical reaction is absent.

Our first task in this section is to elucidate the faradaic effect of imposing a sinusoidal

signal of frequency :

ap( p) lsin{ } ied a.c. signalEE t E t  15:8

on an electrode at which the simple one-electron reaction

R( ) e + O( )soln soln15:9

occurs. We seek to find how the amplitude |I| and phase angle I of the current

assumed a.c. response( ) sin{ }II t I t   15:10

are related to the corresponding properties of the applied signal. If there are ample

concentrations of R and O present in the solution, then one might expect this current to

elicit a sinusoidal response in the concentrations of the two species at the electrode surface
s b s s
i i i i( ) sin{ } i = R,Oc t c c t    15:11

These expectations prove to be correct, as will now be demonstrated, provided that the

amplitude of the applied signal is sufficiently small.

We assume typical voltammetric conditions: transport solely by semiinfinite diffusion

to an electrode that is flat (or that can be treated as if it were) and of sufficient area A that

edge effects are negligible. The Laplace transformation approach to modeling is

inappropriate in this scenario and, as an alternative, we turn to the Faraday-Fick relation

(derived elsewhere1508 and reproduced in equation 15:13) that links the current to the



Faradaic Effects of A.C. 307

1509 See Web#1242 and especially entry (206).
1510 Because the phase angle of the sinusoidally varying surface concentration of R is equal to each4 ,I

 
minimum in the R’s concentration precedes (“leads”) that of the current (see Figure 15-2).

1511 Because .3
4 4I Isin{ } sin{ }t t          

concentrations of R and O at an electrode surface. The linkage operates via the

semiintegral1509 M(t) of the current, and so the first step is to semiintegrate equation 15:10.

One finds that
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and, because the semiintegral is linearly related to the surface concentrations through the

expressions

b s s b
R R R O O O
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[ ( )] [ (
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]

o
)
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one is led immediately to the results
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These equations match prediction 15:11 and provide expressions for the amplitudes and

phase angles of the concentration excursions. The concentration of O is seen to lead1510 the

current by /4 or 45o, whereas the concentration of R lags the current by1511 3/4. For

future convenience it is useful to abbreviate these latest equations as
s sss
R OOR

4 4b b b b
R R O O

( )( )
1 sin{ }; 1 sin{ }I I

c cc tc t
t t

c c c c
          15:15

where equal to , is the amplitude of the concentration excursion of Rs
R ,c R/I FA D 

at the electrode, and is similarly defined. Note that each of these excursions cannots
Oc

exceed the corresponding bulk concentrations, as otherwise the equation would imply a

nonsensical negative concentration at some point in the cycle. In this derivation, however,

we shall later impose a much stronger restriction that ensures that the concentration

excursions are small in absolute terms. Figure 15-2 overleaf illustrates that the

concentration excursions differ in phase by  or 180o from each other, the total

concentration being almost constant.s s
R O( ) ( )c t c t

The question that must now be asked is whether the current postulated in 15:10 and the

consequential concentration excursions expressed in equations 15:15 are consistent with

the applied potential given in expression 15:8. To answer this we turn to the Butler-Volmer

equation. Written in the style of 7:27, it states that
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where in is the exchange current density, equal to Because of theo b b 1
R O( ) ( ) .Fk c c 

stipulation that the a.c. perturbation be of small magnitude, the potential E(t) will differ

only modestly from its null value. Therefore only minor errors are introduced on replacing

each exponential function in equation 15:16 by the first two terms in its expansion. Thus
s s
R O
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Notice that I(t) has also been substituted from equation 15:10. When the two concentration

ratios in this expression are replaced from the expressions in 15:15, some welcome

cancellations occur and there remains
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after a regrouping of terms. The potential excursion E(t)En is seen to be the sum of two

sinusoidal terms and is therefore itself sinusoidal and able to be represented as

as predicted. This allows equation 15:18 to be reorganized intosin{ },EE t 

n
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1512 Demonstrate, as in Web#1512, that if R and O each have a bulk concentration of 1.0 mM and the formal

rate constant ko equals 1.0×104 m s1, then the charge-transfer resistance at an electrode of area 1.0×105 m2

is 270 .

1513 Elsewhere you may find the symbol replacing W. A typical value is W  1.7 k s1/2 for2 or 2 

a disk electrode of radius 1.8 mm. Confirm this by taking R and O each to have millimolar concentrations and

diffusivities of 1.0 × 109 m2 s1. See Web#1513.

1514 are analogous to the kinetic and transport overvoltages of Chapter 10.ct and /I R I W 

where the terms in square brackets are constants. The first one of these constants will be

recognized from page 202 as the charge-transfer resistance Rct:
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and incorporates the kinetic parameters of the electrode reaction1512. The second square-

bracketed term in equation 15:19 is given the symbol W 1513
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This term reflects transport to and from the electrode surface, but not the electron transfer

itself. With these notations introduced, equation 15:18 becomes

ctsin{ } sin{ } sin
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The electrode potential is seen to equal the sum of two sinusoidal terms, each proportional

to the current amplitude. This exactly parallels the behavior of an a.c. current passing

through a series combination of two “elements”. Thus the voltage across an electrode

carrying an alternating faradaic current of sufficiently small amplitude is analogous to two

elements in series, one of which is characterized by Rct and involves kinetic factors,

whereas the second, characterized by W, involves transport terms1514. Because the first

right-hand term in 15:22 shows a response with an amplitude that is independent of

frequency and with a phase angle identical to that of the current, it emulates a resistor, as

its Rct symbol implies. The second right-hand term in 15:22 shows a potential response

with an amplitude that is inversely proportional to the square-root of the frequency, and a

phase angle leading the current by /4. Reference to the table

on page 26 shows that these are exactly the properties of a

Warburg element172. In other words, the second element W

behaves exactly like a transmission line in which the ratio of

the resistance to capacitance is given by R/C  W 2.

If the reaction behaves reversibly, ko is so large that the charge-transfer resistance is
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1515 Sometimes a Warburg element is regarded as a resistor and a capacitor in series, each of the same

impedance. Such a representation, however, fails to capture the frequency dependence of the element.

negligibly small and the electrode is represented by the Warburg element alone1515. As for

steady-state voltammetry on page 242, and rotating-disk voltammetry on page 249, it is

useful to allocate a reversibility index, which for the present experiment is
1b bo

O R

b b
R Oct R O

reversibility index
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1 1
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c cW k
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If  1, the reaction is reversible and, as noted earlier, the Warburg element is then the

dominant member of the faradaic impedance. If  is in the neighborhood of unity, the

experiment is quasireversible and both the charge-transfer resistance and the magnitude of

the Warburg element can, in principle, be measured by a.c. experiments. Notice that the

reversibility index includes the frequency so that it is possible to “tune” the experiment into

quasireversibility and, moreover, to use the frequency to distinguish between the

impedances of the two elements. One might think that, with  1, irreversibility would

cause the impedance to be purely that of the charge-transfer resistance, but recall that

faradaic periodicity cannot be attained when an electrode behaves irreversibly.

Recognize that, provided the excursions are sufficiently small, one can apply the

sinusoidal current 15:10 and measure the resulting potential response as in 15:8, with
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1516 In practice, many of these instruments apply a large number of frequencies simultaneously rather than

sequentially. It is essential the phases of the multiple frequencies be adjusted to avoid the total amplitude

exceeding the “small amplitude” limit.
1517 Correspondingly, a faradaic rectification voltage results from imposing an a.c. current of large amplitude.

precisely the same result as applying the voltage and measuring the current. Though the

derivation is then simpler, the latter is the far more common option experimentally.

Appreciate that what is measured in practice is not the faradaic response alone, but its

parallel combination with the non-faradaic response of the double-layer capacitance and

their serial combination with the uncompensated resistance. The four elements that

represent the overall load are included in Figure 15-3, which shows the essential circuitry

for a.c. electrochemistry. The outcome of such an experiment is commonly reported in

terms of impedance, as elaborated in the next section. Potentiostats specially designed for

a.c. and capable of providing data over wide ranges of frequency1516 are known as

impedance spectrometers or frequency-response analyzers and they often provide

graphical data output in a variety of formats, for example as the Sluyters plots discussed

in the next section.

The approximation made in equation 15:17, namely that exponential functions may be

replaced by the first two terms in their expansions if their arguments are small, is valid if

|E| is small in comparison with the quantity RT/F, which equals about 26 mV at room

temperature. But what happens if an a.c. voltage of larger amplitude is applied? There are

then three faradaic repercussions:
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The fundamental response is the current where |I| remains similar to,sin{ },II t 
though somewhat smaller than, the value predicted by the small-signal theory. The

harmonic responses are currents of frequencies that are multiples of the frequency. The

component that has a frequency of n is referred to as the nth harmonic174. The higher

harmonic frequencies are generally of smaller magnitudes that are not linearly proportional

to the applied amplitude |E|. In electrical technology, the conversion of a.c. into d.c. is

known as “rectification”, and so the term faradaic rectification in 15:24 implies that, in

addition to sinusoidal currents of various frequencies, a d.c. current is also generated when

an alternating potential of sizeable magnitude is applied to an electrode1517.

Let us address the questions of why faradaic rectification occurs and how harmonics

are generated. To capture the concepts in a nonrigorous fashion, it is useful to think of the

a.c. properties of an electrode as arising from the change  in the overvoltage  E(t)En

eliciting a sinusoidal change I  |I |sin{t+I} in the current. Pictorially, one can imagine
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1518 unless   ½. Third harmonics and accompanying rectification are, however, generated irrespective of .
1519 See Web#1519.

the sinusoidal voltage repeatedly sliding up and down a small portion of the polarization

curve and thereby generating a periodic current. Especially if the polarization curve is

more-or-less linear, a small sinusoidal variation in voltage will generate a sinusoidal

current, as in the blue scenario in Figure 15-4. A larger amplitude in the voltage will be

more likely to encounter a curved portion of the polarization curve and generate distortion;

the periodic current will no longer be sinusoidal, it will resemble the red scenario in the

figure. The distorted current is the source of the harmonics and of rectification.

To see more quantitatively how these effects arise, return to equation 15:17 and note

the effect of adding one more term in the expansion of each exponential. This introduces

several new terms into the right-hand member of equation 15:18, the major one of which

will usually be the quantity shown on the left of equation 15:25 below. Trigonometric

identities allow conversion to the quantity on the right
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Thus one sees that a second harmonic (one of frequency 2) is generated1518, as well as an

aperiodic potential (from the “1”). Both these are of a magnitude proportional to the square

of the potential amplitude. Of course, adding further terms in the expansions of the two

exponential terms leads to additional harmonics and to extra contributions to the

rectification voltage. Fourier transformation (pages 26 and 323) is useful in establishing

the magnitudes of harmonics and phase angles. More information on faradaic rectification

will be found elsewhere1519.
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1520 See U. Retter and H. Lohse in: F. Scholz (Ed.), Electroanalytical Methods, 2nd edn, Springer, 2010, pages

159177, for details.
1521 This is misleading terminology! Z is a real quantity; it is jZ that is imaginary.
1522 The complex conjugate of the quantity x + jy is x  jy.
1523 Joseph Henry, 17971878, U.S. physicist and founding director of Washington’s Smithsonian Institute.

Element Z Z

resistor R R 0

inductor L 0 L

capacitor C 0
1

C





Warburg

element W 2

W

 2

W



Equivalent Circuits: deciphering the impedance

When a large-amplitude a.c. signal is applied to an electrode, the nonlinear phenomena

of rectification and harmonic generation come into play, and the possibility of representing

the impedance of an electrochemical cell by a network of elements ceases to be useful. In

this section, therefore, we return to a consideration of small a.c. signals and investigate how

impedance measurements1520 can help to provide information about the working electrode.

Through equation 15:22, we were able to identify the response of a faradaic interface

to a sinusoidal voltage of small amplitude as equivalent to a resistance Rct and a Warburg

element of magnitude W. It is said that a resistor in series with a Warburg element is the

equivalent circuit of the faradaic process at an electrode under the conditions being

discussed. One might be tempted to say that the impedance was but thatct“ / ”,R W 

would be erroneous. Because a.c. properties incorporate a phase angle, impedances are

vectors that require two quantities to be cited in order that the impedance may be specified

unambiguously. A useful system for taking phase angle diversity into account is to use

complex algebra and represent the impedance as the sum of two terms

j where j 1 complex notationZ Z Z    15:26

The two components go by a variety of names. The Z term is called the resistive

component, the in-phase component or the real component. The Z term is variously

named the reactive component, the out-of-phase component, the imaginary

component1521 or the quadrature component. Taking the square root of the product of

the impedance and its complex conjugate1522 yields the impedance

2 2( jZ ) ( jZ ) = (Z ) ( ) impedanceZ Z Z Z         15:27

while the rule
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relates the phase angle of the current flowing through

the impedance to that of the voltage across it. The

impedance components of four common elements are

listed in the table here. Though seldom encountered in

electrochemistry, an inductor possesses the property of

inductance L, present in coiled wires, which is

measured in the henry (H) unit1523.
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1524 As in Web#1524, derive equations 15:30 by appreciating that, for a parallel arrangement of elements, it is

the admittances (Y, equal to 1/Z) that add in a simple manner analogous to equation 15:29.
1525 Boris Vladimirovitch Ershler, 19081978, Russian electrochemist and radiation chemist.

When two elements are connected in series, the impedance of the pair is related to the

individual impedances by the very simple formulas

1 2 1 2 elements 1 and 2 in seran iesdZ Z Z Z Z Z        15:29

The formulas for impedances in parallel are considerably more complicated1524:
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In Figure 15-3, the four-element equivalent circuit that represents the working

electrode is often known as the Randles-Ershler circuit1630,1525. With circuits of such

complexity as this, a useful pictorial device is to draw the circuit diagram with the elements

having lengths proportional to the magnitudes Z of their impedances, and at angles that

correspond to the phase angle differences. Showing the four elements involved, Figure

15-5 is such a diagram for a working electrode exposed to a small-amplitude a.c. voltage.

Such a diagram allows trigonometric analysis of the behavior of the network.

Alternatively, one may use the formulas in 15:29 and 15:30 to build up expressions for

the overall component impedances of the Randles-Ershler circuit. Firstly, using 15:29, one

derives the impedances of the series combination of the charge-transfer resistor and the

Warburg element as

ct and
2 2

W W
Z R Z


   
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15:31
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1526 Derive equations 15:32 or see Web#1526.
1527 For a frequency of 1.25 kHz, calculate the in-phase and out-of-phase impedances for a Randles-Ershler

circuit with the following elements: C  5.0 F, W  2.0 k s1/2, Rct  200 , and Ru  50 . Hence find the

amplitude and phase angle of the a.c. current that is passed by the circuit when interrogated by an a.c. voltage

of 5.00 mV amplitude. See Web#1527.
1528 or from the same experiment, but at a d.c. potential at which the reaction does not occur.

Then, using the rules in 15:30, one can add the double-layer capacitance in parallel with

the earlier pair, to discover1526 that
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Finally, the uncompensated resistance may be added in via formula 15:29. This leaves the

out-of-phase impedance unchanged, but adds Ru to Z. Thus
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With this addition, we have now analyzed the impedance “seen” by the potentiostat1527.

The object of measuring an electrode impedance is, of course, to determine the

magnitudes of the four component elements, Rct being particularly interesting because it

opens the way to measuring electrode kinetics. It may seem a daunting task to compute

four quantities from only two measurements: those of Z and Z. However, the

experimenter has a number of tools. One is the ability to employ a very wide range of

frequencies; values of  ranging from 101 to 105 Hz being available in well equipped

laboratories. The values of the double-layer capacitance and the uncompensated resistance,

C and Ru, are sometimes treated as “known”. They may be determined from another

experiment1528 without the electroactive couple, but otherwise similar, though there is no

guarantee that the change in conditions does not cause a significant perturbation in the

value of the double-layer capacitance. Another strategy is to vary the bulk concentrations:

this has an inversely proportional effect (see equations 15:20 and 15:21) on both the

resistance Rct of charge transfer, and the magnitude W of the diffusional Warburg element,
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1529 As in Web#1529, simplify equations 15:33 to show that the Z and Z components are linear functions of

. Then calculate the slopes and intercepts, at low frequency, of the lines in Figure 15-6 for elements of1/ 
the values given in the caption of Figure 15-9.
1530 Jean-Robert Argand, 17681822, French bookseller and amateur mathematician.
1531 Jan H. Sluyters and Margaretha Sluyters-Rehbach, a productive team of electrochemists in The Netherlands.

This method of data presentation is also called a Cole-Cole plot or, a Nyquist1545 plot.
1532 by rearrangement as a cubic equation in (ZRu)/Z and then solved by the standard procedure detailed in

K. Oldham, J. Myland, and J. Spanier, An Atlas of Functions, 2nd edn, Springer, 2009, page 142.
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but is without major effect on the capacitance C of the double layer or the resistance Ru that

remains uncompensated by the potentiostat.

When the frequency is sufficiently small, equations 15:33 simplify1529 and show that

both components are linear functions of , as illustrated in Figure 15-6. The lines1/ 

should have the same slope, from which the magnitude W of the Warburg element may be

measured. Other useful information may be accessed from the intercept.

Commonly the results of a set of impedance measurements, made over a range of

frequencies, are plotted as an Argand diagram1530; that is, as a graph of the out-of-phase

impedance as a function of the in-phase impedance. In such a plot, the frequency varies

steadily as one proceeds along the graph line. In electrochemistry, Argand diagrams may

go by the name of Sluyters plots1531. When the electrode reaction behaves reversibly, so

that Rct is zero, equations 15:33 simplify considerably and the in-phase and out-of-phase

components of the impedance may be combined into

  2 2 2 2
u u u( ) ( ) ( ) 2 ( ) reversibleZ Z R Z Z R W C Z R             15:34

by elimination of the frequency term. This may be rearranged to a cubic equation that can

be solved1532. However, when an electrode behaves reversibly, the lion’s share of the a.c.

current passes through the faradaic branch of the Randles-Ershler circuit, permitting the

capacitive branch to be ignored at all but the highest frequencies. In such circumstances,

the Sluyters plot resembles Figure 15-7.
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1533 Equation 15:35 is derived in Web#1533.
1534 See Web#1534 for the derivation of equation 15:36.

An analysis of the impedance of the Randles-Erschler circuit at low and high

frequencies is given elsewhere1533, along with the derivation of equation 15:35. Towards

the other end of the reversibility spectrum, the charge-transfer resistance may often be so

large that the Warburg element becomes irrelevant. If all terms involving W are omitted

from equations 15:33, the residue may be manipulated1533 into the equation

   
2 221 1

u ct ct2 2
neglig) i( bleZ R R WZ R     15:35

This is the equation of a semicircular graph with the coordinates and characteristics shown

in Figure 15-8. It is rare, however, for W to remain insignificant over a range of

frequencies wide enough to delineate an entire semicircle. Instead, at the lowest

frequencies, the relationship1534

2
u ct low frequencyZ Z R R W C     15:36

applies. This is the equation of the straight line shown on Figure 15-9 overleaf. In practice,
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1535 invented by Grahame1304.
1536 such as a lock-in amplifier or phase-sensitive analyzer. Nowadays, both the input and output are handled

digitally (page 27).

experiments often yield spoon-shaped Sluyters graphs. Figure 15-9 is an example drawn

by using the data from the full equations 15:33 without approximation.

A.C. Voltammetry: discriminating against capacitive current

It was noted earlier that faradaic a.c. can cross an electrode interface only if both

partners of a redox couple are present at ample concentrations. In a.c. voltammetry1535, only

one member, say R, is present in the bulk. Its partner, O, is generated by a d.c. current that

accompanies the a.c. The experiment is carried out under typical voltammetric conditions

(pages 233234). Sophisticated instrumentation1536 is needed to apply both a.c. and d.c.,

to separate the responses, and to measure such properties as the phase angle shift and the

fundamental and harmonic responses.

The diagram in Figure 15-10 shows the potential waveform that is applied to the

working electrode during a.c. voltammetry: it consists of a small (typically 10 mV)
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amplitude sinusoid superimposed on a slow ramp:

   0 dc( ) sin sinE EE t E t E t E E t          v15:37

For the one-electron oxidation, the ramp would start at aboutR( ) e O( ) ,soln soln 

150 mV before (more negative than) the nernstian half-wave potential of the R/O couple

and end close to 150 mV beyond E h. What is measured is the amplitude |I| of that

component of the a.c. current that is in phase with the applied potential and its dependence

on the d.c. potential. The d.c. current is not constant and is of minor concern. The purpose

of the d.c. is merely to adjust the ratio of the concentrations of R and O at the electrode

surface.

Recognize that it is possible for a reaction to behave reversibly on the timescale of a

slow scan, but not to respond reversibly to the rapid alternations of a high-frequency a.c.

potential. It is to just such circumstances that a.c. voltammetry is directed. The Nernst

equation then determines the ratio of the average concentrations at the electrode surface

 
av

oO
dcav

R

Nernst equatioexp n
c F

E E
c RT

   
 

15:38

This, together with the linear relationship1508

av b av
O O R R R[ ]D c D c c 15:39

that links the two surface concentrations, enables the average concentration of R to be

related to the d.c. potential by
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1537 See Web#1537 for an explanation of the second equality in 15:41.

1538 In the general case an extra factor of appears on the(2 1) / 4 h
O R dc( / ) exp{(2 1) ( ) / 2 }D D F E E RT   

right-hand side of equation 15:42.

   

b b
av R R
R ho

dcR dc
1 exp ( ) /1+ / exp ( ) /

c c
c

F E E RTD F E E RT
 

 OD
15:40

This concentration is the center point around which the sinusoidally varying R

concentration oscillates, with O behaving similarly. The situation closely resembles that

discussed earlier in the chapter, except that the R/O mixture varies progressively in

composition during the experiment.

The Randles-Ershler equivalent circuit, with its four elements, governs small-amplitude

a.c. voltammetry. The magnitude of the Warburg element is given by equation 15:21 with

the bulk concentrations replaced by the average concentrations; that is1537:

 2 h
dc2 av av 2 b

O O R R R R

1 1 4
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   
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15:41

This demonstrates the very dramatic dependence of the Warburg impedance on the d.c.

potential, with a deep minimum around E h. The charge-transfer resistance also displays

a minimum in a similar, though less pronounced, fashion. The general formulation of Rct

is elaborate1538, so we shall only describe its behavior in the special, but nonetheless typical,

case when   ½; then

 h
ct dc

2 o av av 2 b o
R O R

1
2

2
cosh

2

RT RT F
R E E

RTF Ak c c F Ac k

 
   

   
 15:42

It is the relative magnitudes of that determine the relative importance ofct/ andW R
kinetic and transport polarization and hence the reversibility of the experiment. As for

other types of voltammetry, we can allocate a reversibility index as the ratio of these

impedances at the nernstian potential E h

h

o

ct

reversibility index

for a.c. v

/

oltam etry

2

m
RE

W k

R D

  
      

15:43

As always, a reversibility index much larger than unity implies reversibility and, in the case

of a.c. voltammetry, that the Warburg element is the dominant impedance. When  1 the

charge-transfer resistance is dominant and the reaction behaves irreversibly. As for

impedance spectroscopy, the presence of  in the expression for the reversibility index

opens the way to “tune” the experiment to suit different rate constant values.

What is measured in a.c. voltammetry is the current that is in phase with the applied

a.c. voltage. As Figure 15-11 illustrates, this is made up of a faradaic and a nonfaradaic
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1539 See Web#1539.
1540 Demonstrate the simplification that occurs if Ru  0. Then, as in Web#1540, go on to derive equation

15:45.
1541 Donald E. Smith, 19361985, American electrochemist.

W sin{ }I t 

sin{ }II t 

sin{ }EE t 

component. It is demonstrated elsewhere1539 that this in-phase current is given by
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Frequently the uncompensated resistance is negligible1540. If, in addition, the system

behaves reversibly, then equation 15:44 reduces to

 
2 b

R 2 hR
dcsech

2 4 2
reversible

F Ac ED F
I E E

RT RT

  
   

 
15:45

after incorporating equation 15:41. The a.c. voltammogram then has the typical shape of

a “reversible peak” as discussed on page 255. One such curve is included in Figure 15-12

overleaf. The peak occurs at Eh and its height is
2 b

rev RR

peak 2 4

reversible

peak current

F Ac ED
I

RT


 15:46

Another curve in this figure is for irreversible conditions, for which

 
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E F Ac k E F

I E E
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 
15:47

and the other two are for intermediate, quasireversible cases. Notice that the hyperbolic

secant term is squared in the reversible case, but not when the reaction behaves irreversibly.

Used with mercury drop electrodes, and especially in the skilled hands of Smith1541, a.c.

voltammetry provided some of the earliest accurate measurements of electrochemical rate

constants.
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1542 These are often called Euler equations. Leonhard Euler, 17071783, gifted Swiss mathematician.

Fourier-Transform Voltammetry: the harmonic response to an a.c. signal

Fourier175 demonstrated that it is possible to represent any periodic signal of period P

by a series (usually an infinite series) of cosines and sines of frequencies that are multiples

of   2/P. The case of the square-wave was exemplified on page 27. With per(t)

representing any periodic signal, the general formula of a Fourier series is

0

1

per( ) cos{ } si Fouriern{ ser
2

ies}m m
m

c
t c m t s m t





    15:48

As this equation shows, an aperiodic term is often present; this constant may be regarded

as a cosine of zero frequency. The coefficients in the Fourier series may be found from the

formulas1542
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1543 Find the c0, c1, s1, s2, and s3 coefficients of the square-wave shown in Figure 1-22 and formulated in 1:42.

Compare your results with equation 1:43 and with Web#1543.
1544 or sometimes twice this quantity or even its logarithm
1545 For some further details on Fourier analysis, see Web#1545.
1546 Multiple sinusoids may be employed, however, or even signals, such as square-waves and “white noise”,

that incorporate an infinity of harmonics.
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The process of determining the Fourier series of a periodic function is known as Fourier

analysis1543. The result of Fourier analysis is often presented in the form of a Fourier

spectrum, as in Figure 1-21, or as a power spectrum in which the quantity1544 is2 2
m mc s

plotted versus m.

Though mathematicians define the operation differently, the procedure that has come

to be popularly known as Fourier transformation is an adaptation of Fourier analysis

designed to handle data available as a time series rather than as a continuous variable. The

effect of the transformation is to convert a set of measurements, taken at evenly spaced

instants, into a second set of digitized data that describes the measurements in terms of

frequency. Usually, inverse Fourier transformation is employed subsequently, to

regenerate those segments of the time series whose frequencies are of particular interest.

Fourier transformation/inversion has been applied beneficially to many fields of science

and technology. In most of these, including electrochemical applications, there are three

stages in the overall procedure1545

transformation filtration inverse

transformation

time- transformed the component of

series data (all segment frequency

data frequencies) of transform in original data

m

m



   15:51

the second and third being repeated for each frequency m of interest. If the time-series

data are ideally periodic, the transformed data have a comb-like structure, as in Figure 1-21,

with a nonzero amplitude only at integer multiples of the fundamental frequency . For

nearly-periodic data on the other hand, the transformed data are more like an optical

spectrum, with peaks at all, or many, integer multiples of .

As in a.c. voltammetry, of which it is an adaptation, Fourier-transform voltammetry

employs a d.c. modulated by a single1546 sinusoidal a.c. voltage, as in Figure 15-10. One

distinction between the two techniques is that, whereas the higher harmonics are an

unwelcome complication in a.c. voltammetry, measuring them is the objective in the
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1547 The pan-voltammetric relation, and its special case – the reversible pan-voltammetric relation – are derived

in Web#1547. See page 364 for the full equation.

Fourier-transform technique. An applied a.c. potential of frequency in the range 51000

Hz is generally used, with an amplitude, |E|, even as large as100 mV. Typically a scan rate

v of 50 mV s1 is employed, with a d.c. potential range EfinalE0 of about 500 mV,

embracing the nernstian half-wave potential of the reaction under study. As a result, very

many harmonics are present and those up to the 6th, or more, often occur at amplitudes that

are well in excess of noise. Sometimes, the d.c. scan is reversed, as in cyclic voltammetry

(page 347).

The effect of the signal on the reversibly behaved reaction0( ) sin{ }E t E t E t   v

can be modeled via the reversible pan-voltammetric relation1547R( ) e O( )soln soln
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This valuable relationship applies in Fourier-transform voltammetry, as it does in most

manifestations of the typical voltammetric conditions detailed on pages 232233. M(t) is

the semiintegral1242 of the current and therefore, on semidifferentiation and incorporation

of the signal, one arrives at the formula:

hb 1/ 2
0R R
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15:53

that governs a.c. voltammetry, including its Fourier-transform variant. The expression in

15:53 does not describe a periodic function. However, it will be nearly periodic if the

timescale associated with the d.c. scan, namely (EfinalE0)/v, is much larger than the a.c.

timescale, which is 2/. This inequality is well satisfied in Fourier-transform

voltammetry, as practiced, providing legitimacy to the Fourier transformation/inversion

approach.

Except at the half-wave potential Eh of a reversible process, Fourier transformation

through numerical procedures is the only practical avenue open to process equation 15:53.

The procedure follows the strategy in scheme 15:51: the digitized current is Fourier

transformed, the entire transform is set to zero except in the immediate vicinity of the

frequency m of interest, and then inverse transformation is applied to the remnant.

Figure 15-13 illustrates the second and third steps in the procedure. The net result is to

split the current into a d.c. component (which is generally ignored), the fundamental, and

higher harmonics. The result is often displayed, as here, in the form of a graph of the

amplitude of the envelope of the absolute value of the sinusoids as a function of the d.c.

potential (or time). Note how diverse the individual patterns are, in both size and shape,

with the number of elements in each pattern equaling the harmonic number m.
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1548 Note that the summations, which involve only odd j’s, converge very rapidly. Appreciate that the “0” in

this column for even harmonics does not mean that these harmonics are absent; only that the half-wave potential

is a node in the harmonic pattern.

At the instant t  (E hE0)/v, as the d.c. ramp transits the half-wave potential, an

analytic prediction of the current components is available without Fourier transformation/

inversion. The amplitudes and phase angles of the various components are found to be as

tabulated here.

Current components at Eh in reversible a.c. voltammetry

Harmonic Amplitude1548 Phase angle
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Whereas Figure 15-13 addresses only reversible Fourier-transformvoltammetry, Figure

15-14 shows examples of the first harmonic voltammograms (at the fundamental frequency,

) and fourth harmonic voltammograms (frequency 4), for three degrees of reversibility.

The magnitude of the current at the fundamental frequency is much less sensitive to the rate

constant than are the higher harmonics. This underlines the value of Fourier-transform

voltammetry for the measurement of fast electrode kinetics. Moreover, the second, third,

and higher harmonics are virtually free of capacitive interference. With increasing

irreversibility, the patterns lose their symmetry, especially if  is other than one-half.

The only effective way of analyzing Fourier-transform voltammograms quantitatively

is by digitally simulating the experiment (page 333) and making theory/experiment

comparisons, especially at the harmonic frequency at which the voltammogram is most

responsive to the sought parameter. The simulation may incorporate such interferences as

uncompensated resistance and background currents from capacitance and other effects.

Electrode reactions that are more complicated than a single-step, one-electron transfer may
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View supplementary web material at www.wiley.com/go/EST.

be addressed similarly, permitting Fourier-transform voltammetry to be employed for

mechanistic identification, in much the same way as cyclic voltammetry (pages 354362)

is used.

Summary

The presence of three parameters – amplitude, frequency, and phase angle – endows

the application of a periodic voltage to an electrode with more flexibility than is possible

with d.c. and, as a result, there is a richer information content in the resultant current.

Moreover, electrochemistry has been able to borrow powerful techniques (circuit analysis,

complex algebra, fourier transformation) from other fields of science to aid in analyzing

the a.c. response of electrodes. A.c. methods fall into two broad categories according to

whether the amplitude of the applied voltage is small or large. Small amplitudes foster a

linear response and allow the analysis to be conducted as if the cell is composed of circuit

elements. This is not possible with such large-amplitude, near-periodic, methods as fourier-

transform voltammetry, with which computer assistance in evaluating the response is

almost mandatory. As is also true of much of the following chapter, most of the methods

discussed here were developed in an era when mercury was the electrode material of

choice; they have been taken over somewhat uncritically and applied to solid metal and

carbon electrodes, despite the latter being known to have polycrystalline surfaces that are

not atomically flat and may be chemically inhomogeneous.

Square-wave voltammetry and staircase voltammetry maybe regarded as near-periodic.

We have chosen, however, to regard them as instances of transient voltammetries and,

accordingly, they are discussed in Chapter 16.



1601 Sometimes cyclic voltammetry is prolonged until the response becomes repetitive. Figure 13-9 is such a

voltammogram, to which the name ultimate cyclic voltammogram has been given.

Electrochemical Science and Technology: Fundamentals and Applications, First Edition. Keith B. Oldham, Jan C. Myland, Alan M. Bond.

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

16

Transient Voltammetry

Examination of the way in which a working electrode responds to an applied signal is

one of the most fruitful ways of studying electrode reactions. The applied signal may be

a current, but more usually it is a rather simple time-dependent potential program. The

alternative name potentiodynamic voltammetry distinguishes experiments in which the

potential changes from those in which it is mostly constant. Almost invariably the

experiment is conducted under the control of a potentiostat and is subject to all the other

standard voltammetric conditions itemized on pages 232233. In Chapters 12 and 15 we

describe voltammetry that leads, respectively, to a steady response and to a periodic (or

nearly periodic) response. In the present chapter our concern is mostly for experiments that

respond by producing a time-dependent current that is neither constant nor repetitive1601.

As reported in Chapter 13, the presence of a parallel capacitive pathway for current, and

the inevitable presence of a small uncompensated resistance are nuisances that practitioners

of transient voltammetry must endure; we shall not here be unduly concerned with these

interferences, which may be addressed by strategies akin to those discussed on pages

271279. Usually electrodes are planar and large enough that edge effects may be ignored.

Variety in transient voltammetry arises from different choices of signals designed to

optimally elicit the information that the experimenter seeks, or to discriminate against

unwanted effects. As in other realms of human activity, tradition is also a factor.

Modeling Transient Voltammetry: mathematics, algorithms, or simulations

It is pointless to carry out an experiment that produces a transient current unless one

can interpret the size and shape of the response. Thus, predicting the outcome of a transient

voltammetric experiment is a necessary adjunct to the experiment, and it is frequently a

more demanding phase of the investigation than the experiment itself. The name modeling
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1602 Note the concordance between this name and the italicized passage in Web#1547. Definition 16:3 is

consistent with that given on page 253. If DO  DR, the nernstian half-wave potential and the formal potential

are identical. By what voltage do these potentials differ, at 25oC, if there is a 10% discrepancy between the

diffusivities? See Web#1602.

is given to the predictive activity that creates and analyzes a mathematical model of the way

in which we imagine the electrode to behave, in terms of various parameters and, on that

basis, proceeds to predict the current-time relationship. If the model is realistic and

flexible, it should be possible, by selecting appropriate parameter values, to bring the

predictions into close registry with the experimental curve. If not, the model is faulty. If,

with a credible set of parameters, the model agrees closely with experiment, the model is

vindicated and the parameters are accepted as probably correct. There are three routes that

can be identified as separate approaches to the prediction of the outcome of a transient

voltammetric experiment:
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though the distinctions among the three may not always be clear-cut.

More complex electrochemistry is addressed later. Here we shall be concerned only

with the one-electron, one-step oxidation R(soln) e + O(soln), the product being

initially absent, and assume obedience to Butler-Volmer kinetics. In these circumstances

there are nine parameters on which the current depends, namely:
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though the two listed in orange are irrelevant when the reaction behaves reversibly. In

addition to these nine, there is a need to specify the way in which the electrode potential

E(t) evolves with time. The modeler must assign known or supposed numerical values to

all the input parameters in order to predict the voltammogram quantitatively, whichever of

the three modeling approaches is followed.

The formal potential has been included in the 16:2 listing but an alternative reference

potential is often used in voltammetric theory. This is the nernstian half-wave

potential1602
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The Nernst equation may incorporate either reference potential, as in the formulations
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1603 Demonstrate that this is so by constructing an analogue of the Butler-Volmer equation 16:5 that uses the

abbreviation h(t)  exp{F [E(t)Eh]/RT}, or see Web#1603.
1604 Web#1547 gives a derivation of the pan-voltammetric relation, from which algorithm 16:6 derives.

Web#1604 includes a procedure for semiintegration and details of a spreadsheet algorithm by means of which

algorithm 16:6 may be conveniently implemented.
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but the Butler-Volmer equation is considerably simpler1603 when referenced to the formal

potential
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as is the pan-voltammetric relation1547. We shall mostly refer potentials to Eo in this

chapter, though expressions for reversible voltammograms benefit from being redrafted in

terms of Eh, and therefore we sometimes adopt that alternative.

Mathematical analysis is the most satisfactory of the three modeling approaches in

16:1, but sadly it is the method most likely to be inaccessible in all but the simplest cases.

This approach is to combine the mathematical equations representing the various

relationships – those describing the signal, the Butler-Volmer expression, Fick’s laws,

Faraday’s law, and so on – into a single equation that shows explicitly how the measured

output of the experiment, usually the current, is predicted to change with time.

Incorporated into this equation will be the various input parameters of the experiment, as

detailed above. Mathematical analysis is a pencil-and-paper operation; a computer is not

needed, though one may be useful in converting the formula into a set of numbers for

comparison with the experimental results.

Not infrequently, in attempting to model a voltammetric experiment mathematically,

one is successful in creating an equation, or a set of equations, that contains all the pertinent

parameters, including the time-dependent current, but which cannot be cast into the form

of a single explicit equation. In these circumstances, a semianalytical method is often a

second-best possibility. The equation(s) are solved with help froma numerical algorithm.

Such techniques are often “progressive”, by which is meant that the calculation of the

current at one instant relies on values already calculated for previous instants in time. Such

semianalytical procedures involve considerable arithmetic that nowadays is invariably

carried out by computer, though the earliest applications predated today’s computer

ubiquity. A progressive numerical procedure of very wide applicability is provided by the

rather elaborate formula1604 given as equation 16:6 overleaf. This powerful voltammetric

algorithm permits the calculation of the faradaic current that flows in response to any

applied potential signal E(t). It applies for any degree of reversibility of the single-electron
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1605 A one-thousandth of the total duration of the experiment, or thereabouts, would often be suitable.

Nowadays, potentials are commonly applied, not as a continuously varying signal, but as succession of very

short, constant-potential segments. In such cases  could be the period of such segments, or a multiple thereof.

transfer and irrespective of whether R, or O, or both are present initially. Employing the

(t) abbreviation defined in equation 16:5, the algorithm is
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The weights may be precalculated, but notice that the nth current is weighted by wNn, not

by wn. All the input parameters listed in 16:2 are incorporated into this spreadsheet

algorithm1604. In addition, a choice must be made of , a very small time interval1605. To

exploit this, and similar, algorithms, one may follow the flowsheet shown in Figure 16-1.

A crude value of I() is first calculated using E() together with the N  1 instance of

formula 16:6 [when N  1, the sum is “empty” and contributes nothing to I()]. Then set

N  2 and, after resetting the potential to E(2), calculate I(2) [the sum now has one term,

namely I()/2]. Next, set N  3 and calculate I(3), after resetting the potential to E(3)

[the sum now has two terms, namely {I(2)/2}+{3I()/8}]; and so on. Though the earliest

current values will be crude approximations, the error in subsequent outputs soon becomes

insignificant. A spreadsheet is available1604 to facilitate the procedure.

In applying mathematical analysis to, and devising semianalytical methods for,

voltammetric problems, there are two techniques that have proved particularly fruitful, each

lying somewhat outside the mathematical mainstream. These are Laplace transformation

and the semicalculus. The particular feature of Laplace transformation162 that is of value

in solving problems in voltammetry is its ability to convert a partial differential equation,

and particularly Fick’s second law, into an ordinary differential equation, and thereby aid

in the solution of such an equation. The great virtue of the semioperators1242 is their ability

to bypass the need to solve Fick’s second law. In most applications of the semicalculus to
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1606 As a simple application of the Faraday-Fick relation1508, use the table in Web#1242, to derive Cottrell’s

equation (page 157) which describes the current response to the sudden imposition of a large positive potential

(a “potential leap”) on an electrode at which the reaction R(soln)  e + O(soln) can occur. See Web#1606.
1607 Here we restrict attention to the finite-difference class of digital simulation. Another class, known as

finite-element digital simulation is also in use and is particularly efficient in cases of complicated cell geometry.
1608 See D. Britz, Digital Simulation in Electrochemistry, 3rd edn, Lecture Notes in Physics, Springer, 2005.
1609 Dating from 1991, DigiSim® was the earliest to be widely used; it models cyclic voltammetry primarily.

There are more recent alternatives, including the versatile, DigiElch®. See Appendix B of A.J. Bard and L.R.

Faulkner, Electrochemical Methods 2nd edn, Wiley, 2001, for an outline of how simulation programs work.

voltammetry, the only formulas needed are those based on the expression1606
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which, through the semiintegral M(t), relates the faradaic current I(t) directly to the

concentrations of the redox pair at the electrode surface. The Faraday-Fick relations are

derived1508 in Chapter 15 and are the keys to the creation of the pan-voltammetric

relation1604 that will find frequent use in this chapter.

The computer is essential for digital simulation1607, a powerful and versatile

technique, which is different in concept from the other two modeling routes, although it

shares with many semianalytical procedures the property of being progressive. Digital

simulation, however, is not only progressive in time, but also in space. In a digital

simulation, a specific memory location in the computer is allocated to represent a

corresponding site in the diffusion field. Each computer location holds a number that

corresponds to the concentration of a pertinent species. There may be several memory

locations representing a single site, each keeping track of the concentration of a particular

solute. With the passage of time, the stored numbers change repeatedly as each site

interacts diffusionally with its neighbors, and perhaps chemically with other species at the

same site. The memory locations that represent the electrode surface are especially

important, these being the ones that hold numbers representing concentrations that change

also on account of the electrochemical reaction. Though the geometry of an electro-

chemical cell is three-dimensional, symmetries generally permit the simulation to be

conducted in one, or at most two, spatial dimensions.

In devising a digital simulation, one replaces the continuity of Fick’s laws by discrete

approximations that involve small, though not necessarily constant, intervals in space and

time. In this way, a differential equation is replaced by a multitude of algebraic equations

and thereby solved. There is a great art in devising such replacements1608, so as to minimize

computer time, while preserving adequate accuracy, and this activity has now evolved into

a sophisticated vocation in which many experts are engaged. The creation of a successful

simulation routine is an exacting and time-consuming process. So exacting, in fact, that

electrochemists nowadays mostly rely on commercial simulation packages1609.
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1610 Measurement (-metry) of current (-ampero-) versus time (chrono-)
1611 See Web#1611 for two routes to the solution. Also given there is a simplified formula for large b2t.

Modeling approach
Discretization?

space time

mathematical analysis no no

semianalytical methods no yes

digital simulation yes yes

“Discretization” means the treating

of a continuous variable, such as time or

a spatial coordinate, as if it varies

discontinuously, in small discrete steps.

The threefold classification of modeling

approaches in 16:1 could be based on

what is, and what is not, discretized, as

the table demonstrates. Of course,

discretization is an error-inducing approximation, but if the steps are small, and if wise

choices are made in designing the algorithms that execute the model, those errors can be

made insignificant.

Potential-Step Voltammetry: single, double and multiple

The imposition on a working electrode of a sudden change in potential is the simplest

voltammetric experiment. Here we consider the electrode to be initially held at some

potential E0, well negative of the standard potential, such that the reaction

R( ) e O( )soln soln16:8

does not occur. At time t  0, the electrode potential is suddenly changed to a more

positive value E1, and maintained at that value. Because the ensuing current I(t) is

measured as a function of time, this experiment is an example of chronoamperometry1610.

Mathematically, the experiment is summarized by
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where the “?” represents the sought response. We shall assume the Butler-Volmer equation

to hold; the version given in equation 16:5, namely
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being appropriate, with a constant 1 now replacing the variable . Potential-step chrono-

amperometry provides a rare example of a transient voltammetric experiment in which

straightforward modeling by mathematical analysis1611 is feasible, the result being
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1612 See Web#1612 for a method of measuring the kinetics via the semiintegral M(t). Also included is a recipe

for carrying out semiintegration in such circumstances.

Figure 16-2 illustrates the responses for an irreversible, a quasireversible, and a reversible

case. There is a sharp initial rise in current, followed by an unending decline. In the

reversible case, characterized by a large the current obeys the simpler formula1611,b t
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with a spike that is theoretically of infinite height.

Equation 16:11 shows that the current immediately after the imposition of the step is
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and it might be thought that this is a good way to measure electrode kinetics. It is difficult,

however, to accurately record currents immediately after a step and, moreover, the faradaic

spike is then obscured by the large nonfaradaic current from double-layer charging. The

inconvenience of a spike may be avoided either by semiintegrating the current1612, or by

integrating it to give the charge Q(t).
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1613 For further information and references, see G. Inzelt in: F. Scholz (Ed.), Electrochemical Methods, 2nd edn,

Springer, 2010, pages 147158.
1614 The integral double-layer capacitance; see page 262.
1615 As before, we distinguish a “leap”, which is to a potential extreme enough that diffusion alone governs the

faradaic response, from a “step”, that could be to any potential. The faradaic component of equation 16:14 is,

of course, just the integral of the Cottrell equation (page 157).
1616 Fred C. Anson, U.S. electrochemist.
1617 Equations 16:16 and 16:17 are derived in Web#1617.

The technique of measuring charge as a function of time, following a potential step,

is known as chronocoulometry1613; it provides a useful means for separating the capacitive

and faradaic components. The nonfaradaic contribution to the charge occurs immediately,

at t  0, and is of magnitude C(E1E0) where C is the double-layer capacitance1614. Thus

the total charge is given by the equation
1615

b R
total 1 0 1 0 R

0

( ) ( ) ( )d ( )
potential-leap

chronocoulome
2

try

t
D t

Q t C E E I t t C E E FAc     
16:14

in the case of a large step or “leap”.1615It follows that a graph of the charge versus the square-

root of time – a so-called Anson plot1616 – will give a straight line as shown in blue in the

upper part of Figure 16-3.

What if, at some instant t  t1 during the leap experiment, the potential is abruptly

changed from E1 back to E0? This is double-step chronoamperometry. As the technique

is usually practiced, E0 and E1 are sufficiently far from E h that the electrode is fully

polarized throughout, the “steps” being “leaps”. The scheme
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describes the experiment. It may be demonstrated1617 that the (negative) faradaic current

following this second potential leap is given by
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and therefore, on integration
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as illustrated by the blue curve in Figure 16-4 (page 338). Formula 6:17 gives the faradaic

charge. There will again be a capacitive contribution, equal to that produced by the first
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Because the adsorbed species requires no transport, reaction is immediate and this creates

an additional charge of magnitude FAR promptly at t  0, where R is the surface

concentration of the adsorbed reactant, thereby adding a third term to the equation

describing the charge
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1618 By considering the SI units of all the terms, show that equation 16:19 is dimensionally homogeneous. See

Web#1618. Also calculate the surface concentration of reactant that would make a contribution to the intercept

equal to the capacitive contribution for a potential leap of 600 mV and a capacitance of 0.276 F m2.

Moreover, show that each adsorbing molecule occupies about 1.0 square micrometers of electrode area.
1619 See Web#1619 for the a general treatment of nernstian pulse voltammetry, including staircase voltammetry.
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1618This adsorption joins the capacitive charge in contributing to the intercept of the upper

green straight line in Figure 16-3, when reactant adsorption occurs. The effect of R(ads)

on the backward leap is more profound because of the extra O(soln) formed during the

forward leap, and the linearity of the lower graph shown in red on Figure 16-3 for no

adsorption, is destroyed. Nevertheless, the intercept of this line provides an approximate

estimate of C(E1E0) that can be combined with the upper intercept to determine R.

The faradaic current, the faradaic

semiintegral, and the faradaic charge

accompanying the double-leap experiment

are portrayed in Figure 16-4. As is often the

case in voltammetry, it is the semiintegral

that presents the simplest picture: here it

equals the constant up to time t1,
b
R RFAc D

and then returns to zero.

A succession of steps is known as a

staircase and an experiment in which the

potential program has this form is known as

staircase voltammetry. If the ensuing

current is measured late in the life of each

step, a beneficial discrimination is provided

against capacitive current, which decays

much more rapidly, following each step,

than does the faradaic current. The technique, illustrated on page 276, can deliver current

samples that are almost purely faradaic. The theory of staircase voltammetry is rather

complicated1619 and the method is little used. When both Estep and tstep are extremely

small, the applied signal is close to a ramp in which the potential increases with time at a

rate

step

step
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v16:20

As might be expected, the resulting current then becomes indistinguishable from that found
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in linear-potential-scan chronoamperometry (page 346). Figure 16-5 illustrates this. In

fact, modern digital instruments which purport to generate ramp signals actually provide

staircases with small steps (though often not of the submillivolt size that is desirable).

Pulse Voltammetries: normal, differential and square

A positive-going step soon followed by a negative-going step, or vice versa, is called

a pulse. There are very many ways in which a succession of pulses may progressively

attain evermore positive (or negative) potentials, and many of these pulse voltammetric

possibilities have been explored by electrochemists. Here, however, only the three shown

in Figures 16-6, 16-8, and 16-10 are addressed. An advantage of pulses, compared with the

ramped voltammetry considered later, is that the current following a pulse soon loses most

of its nonfaradaic component, whereas this interference is more-or-less constant with a

ramp. A disadvantage is that the current must be measured intermittently, rather than

continuously. As usual, our attention is directed to the one-step, one-electron, anodic

reaction

R( ) e O( )soln soln16:21
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1620 For further information on normal and differential pulse voltammetries see Z. Stojek in: F. Scholz (Ed.)

Electrochemical Methods, 2nd edn, Springer, 2010, pages 107119.
1621 unless the reaction behaves irreversibly at E0. Occasionally pulse voltammetries are carried out with

rotating electrodes which further encourages recovery.

taking place under the usual voltammetric conditions summarized on pages 232233.

In normal pulse voltammetry1620 the potential spends most of the time at a potential

E0 at which reaction 16:21 does not occur significantly, with brief excursions to

increasingly more positive potentials, as illustrated in Figure 16-6. The idea is to allow the

solution in the vicinity of the electrode to recover to its initial composition between pulses.

Recovery is achieved, not only by diffusive replenishment of R from the bulk, but also by

re-reduction of the O formed during the previous pulse1621. Thus the waiting time twait in

normal pulse voltammetry far exceeds the pulse duration tpulse. Current is measured

immediately before the end of each pulse, by which time the capacitive current has decayed

almost to zero. As will be clear from the discussion on page 276, the uncompensated

resistance must be small to ensure a speedy decay of the nonfaradaic contribution to the

current.

Because any one pulse is essentially independent of its predecessors, each pulse may

be treated as a distinct step, and modeled as in the previous section. Thus, by analogy to

equation 16:11, the sampled current obeys the formula
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1622 To help in understanding the principles involved, pick one of the points in Figure 16-7 and hand-calculate

the current. See Web#1622.

Notice that the only item that changes, from one pulse to the next, is the  parameter, given

by
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and reflecting the increasing pulse heightsEpulse, which might typically augment by 25 mV

between consecutive pulses. Accordingly, a normal pulse voltammogram is a point-by-

point plot of the measured currents versus the corresponding electrode potential E 

E0 + Epulse. The shapes predicted1622 for three such voltammograms are shown in Figure

16-7, in which the reversibility index, defined as

  pulseo
R O

R O

reversibility index for

normal pulse voltammetry

t
k D D

D D


   16:24

has values of 10, 1, and 0.1, corresponding to reversible, quasireversible, and irreversible

behavior.

When reaction 16:21 behaves reversibly, equation 16:22 simplifies to a concise
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1623 Analyses in the subnanomolar range are reported in A.M. Bond, Modern Polarographic Methods in

Analytical Chemistry, Dekker, 1980.

expression that can be rewritten more informatively by referencing the potential to the

nernstian half-wave potential:
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The latter expression exactly matches the standard reversible wave discussed on pages

252253. In the absence of reversibility, the wave is more elongated and its shape begins

to be influenced somewhat by the value of the transfer coefficient .

Because the wave height is proportional to the concentration normal pulse volt-b
R ,c

ammetry is useful in chemical analysis and, because the method offers good discrimination

against capacitive interference, it can analyze down to very low concentrations. Even

better1623 in this respect is differential pulse voltammetry1620. The principles of this

method are similar to those of normal pulse voltammetry in that there is a succession of

brief pulses each followed by a long waiting time. However, both the waiting periods and

the pulse durations are at potentials that steadily become more and more positive, when an

oxidation such as 16:21 is being studied, as illustrated in Figure 16-8. Another distinction

is that, rather than the current being sampled at the end of each pulse, it is a difference

between two currents that is the output function.

end pre

output in differential

pulse voltammetry
I I I  16:26

where Ipre is the current immediately preceding a pulse and Iend is the current at the end of
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1624 See Web#1619 and the second example therein.
1625 It then obeys equation (27) in Web#1619. The potential to associate with each IN measurement is

ambiguous, and this is important if Epulse is large.

11
pulse step2 2 ,NE E 

that pulse, just before the potential returns for the next waiting period. The waveform is

characterized by the waiting periodtwait, the pulse durationtpulse, the pulse heightEpulse,

and the step height Estep, all of which are positive.

As in the normal variant, the long interpulse waiting time in differential pulse

voltammetry effectively insulates each pulse from the effects of its predecessors. Making

plausible assumptions, mathematical modeling shows1624 that, in the case of a reversible

reaction, the voltammogram resembles Figure 16-9 and obeys the equation
2 b

R pulse 2R

pulse

[ nernstian differential

pu

]
sech

lse voltammo4 2 gram

h
N

N

F Ac E D F E E
I

RT t RT

  
   

  
16:27

It therefore has the standard peak shape discussed on pages 254-255, with a peak height

of However, if the pulse height exceeds about 25 mV,2 b
R pulse R pulse( / 4 ) / .F Ac E RT D t 

the peak shape becomes degraded1625 and its height is better described by the formula
b
R R pulse pulse( / ) / tanh{ / 4 }.FAc RT D t F E RT 

The “square” in the name square-wave voltammetry indicates that the “waiting time”

and “pulse duration” are equal, though these terms are no longer really apposite. It is one
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1626 Geoffrey Cecil Barker, 19152000, English electrochemist who introduced electronics into polarography.
1627 Robert Allen Osteryoung, 19272004, and his wife Janet G. Osteryoung, U.S. electroanalytical chemists.
1628 For a review and references, see M. Lovri in: F. Scholz (Ed.), Electrochemical Methods, 2nd edn,

Springer, 2010, pages 121145.

of several techniques invented by Barker1626 and was popularized by the Osteryoungs1627.

In one form of square-wave voltammetry1628 the potential waveform is that illustrated in

Figure 16-10; it represents a superposition of a square-wave and a staircase. The

coordinates describing the waveform are

0

1
0 step pulse2

2
0 step pulse2

0

( ) ( 1) 1,3,5,

( 1) 2,4,6,

N

N

E t

E t E E E N t t N t N

E E E N t t N t N





 


            


            

16:28

The theory is quite elaborate, even when the reaction is reversible, because – unlike the

pulse voltammetries discussed previously in this section – there is now no prolonged

waiting time during which the solution adjacent to the electrode is renewed; instead, the

current during any one pulse contains contributions arising from all previous pulses.
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1629 The derivation is reported in Web#1629.

A further complication, though one that confers additional power to square-wave

voltammetry, is that there are three alternative readouts. In the “forward mode”, the current

is sampled at times t, 3t, 5t, ..., that is, at the points indicated by a “ ” in Figure

16-10. The measured current will be denoted If,N, where N is odd. Sampling for the

“backward mode” current Ib,N (usually, but not always, negative) occurs at Nt with N

even; that is, at the points marked “ ”. In the third mode, sometimes called the “net

mode”, the current readout is the difference IN  If,N  Ib,N1. The formula1629

b 1
f,

R R

1b,

1,3,5,1 1 1

2 1 2,4,6,

N
N

N n
nN

I NFAc D

tI N N n N n N





         
                    

16:29

applies irrespective of the parity of N, but the values of the parameter do depend on

whether N (or n) is odd or even. The formula

  h2 3 2 1
0 tep pulse step4 4 2Int 4

tanh
2 /

N N N
s

N

E E E E E

RT F

                  
  

16:30

caters to both possibilities. Examples of the voltammograms generated by a reversible

reaction are shown in Figure 16-11.



346 16 Transient Voltammetry

1630 Two electrochemists – the Englishman John Edward Brough Randles, 19121998, and the Czech Augustin

Ševik, 19262006 – independently calculated approximate values of the function and established its maximal

value. One analytical formulation of the complete Randles-Ševik formula is given as equation 12:50; others

will be found at Web#1241.

Square-wave voltammetry is a powerful method, both for electrochemical analysis and

for the investigation of electrode reaction mechanisms. The published theory of the method

goes far beyond the simple nernstian case addressed here to include quasireversible

reactions, spherical diffusion, adsorbed reactant, and so on. Theory/experiment

comparisons have been employed in all such milieu to investigate mechanisms and measure

parameters. In a related technique bearing the name “cyclic square-wave voltammetry”,

the pulse heights at first increase, then diminish in size. Square-wave voltammetry is a

common “modulation” employed in the measurement stage of stripping analysis, as

described on pages 177180. At the present time, square-wave voltammetry is one of the

more popular voltammetric techniques, perhaps second only to the technique to which our

attention now turns.

Ramped Potentials: linear-scan voltammetry and cyclic voltammetry

The words “scan”, “sweep” and “ramp”, with or without the adjective “linear”, are all

used to describe a potential that increases (or decreases) steadily with time:
oxidation
reduction0 linear scan f( or)E t E  vt16:31

and this is the signal applied to the electrode in linear-scan voltammetry, with the initial

potential E0 being chosen to be sufficiently extreme (negative for an oxidation) that no

reaction occurs initially. Figure 16-12 includes a typical reversible linear-scan

voltammogram; it has the standard hybrid shape discussed on page 256. The other two

curves illustrate quasireversible and irreversible linear-scan voltammograms; compared

with the nernstian case, they are lower and more prolonged.

The normalized expression for the faradaic current during reversible linear-scan

voltammetry is known as the Randles-Ševik function1630. It is a complicated function,

previously encountered on page 256, usually represented, by multiplied by a
dimensionless  function. For a one-electron oxidation, the expression is:

h h
0

b 3
R R
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The nernstian voltammogram has a blunt peak, the coordinates of which are

3
b h h oR

peak R peak

1.1090
0.44629 ; 28.5mV at

F D RT
I Ac E E E T

F
    

v

RT
16:33

The equation in 16:33 that identifies the current peak is known as the Randles-Ševik
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1631 A third branch can sometimes provide useful information.

equation. Some other characteristics of the reversible hybrid will be found on page 256.

As noted on that page, the semiintegration of a reversible hybrid yields a standard

reversible wave. The simplicity of the formula for the semiintegrated reversible linear-scan

voltammogram

b
R R

semiintegra( ) 1 1 1
tanh

2

ted reversi

2 2 1 e

ble

linear-scan voxp{ } ltammogram

M t

FAc D

 
   

  
16:34

contrasts with the complexity of equation (16:32+12:50). Notice that whereas the current

in linear-scan voltammetry is proportional to the scan rate v, its semiintegrated counterpart

is independent of this parameter.

If the direction of the scan is reversed, at some time trev after the voltammogram’s peak,

then the technique is named cyclic voltammetry and the resulting chronoamperometric

plot is as shown by the dashed line in the latter half of Figure 16-12. However, a two-

branched graph1631 of current, not versus time but electrode potential, as in Figure 16-13,
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is customarily used to display the results of a cyclovoltammetric experiment. The instant

t  trev is known as the reversal time and the potential, Erev, at which it occurs is the

reversal potential or the switching potential. The “cyclic” descriptor in the name “cyclic

voltammetry” reflects the fact that the potential returns to its initial potential E0; the current

does not cycle. If very many triangular potential cycles are imposed, the current does

indeed eventually settle into a repetitive pattern and occasionally cyclic voltammetry is

carried out in this fashion. The procedure, ultimate cyclic voltammetry, yields

voltammograms similar to the example shown on page 274.

Whereas the pulse voltammetries discussed earlier are excellent tools for low-level

chemical analysis, this is not the case for linear-scan or cyclic voltammetries, which are

seldom used analytically. The reason is that capacitive interference is severe unless the

concentration of the analyte is quite high. Cyclic voltammetry is, however, the preeminent

method used to elucidate the mechanisms of electrode reactions. Capacitive interference

is still present in these mechanistic studies, but the reactant concentration can usually be

made much larger than the levels of interest to analysts, overwhelming capacitive and other

background currents.

The next two sections in this chapter address mechanistic issues; attention here being

restricted to cyclic voltammograms derived from the simple one-step, one-electron

oxidation or reduction reactions
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1632 Read F.Marken, A. Neudeck, and A.M. Bond in: F. Scholz (Ed.), Electroanalytical Methods, 2nd edn,

Springer, 2010, pages 57106, for further details of cyclic voltammetry and related issues.
1633 For example, the separation between the two peaks, for a process behaving reversibly at 25oC, may vary

between 69 mV (if reversal occurs at the forward peak) and 57 mV (if reversal is indefinitely delayed).
1634 Nevertheless, an exact analytical formula, described in Web#1634, exists to describe both branches of

reversible cyclic voltammetry, though it is too complicated for casual use.

R( ) e O( ) or O( ) e R( )soln soln soln soln   16:35

taking place under the usual voltammetric conditions summarized on pages 232233.

During cyclic voltammetry1632, the potential-versus-time program has the shape of an

isosceles triangle described by the formula

  oxidative
reductive

rev rev 0

potential program in

cyclic voltammetr
(

y
)E t E E E    vt16:36

where the | | symbol denotes the absolute value of its content. Of course, during its first (or

“forward”) branch, cyclic voltammetry is identical to linear-scan voltammetry and the

coordinates of the forward peak are those given, for reversible behavior, by equations

16:33. There are no corresponding formulas for the coordinates of the second (or

“backwards”) peak because these depend, as does the entire location of the second branch,

on the potential chosen for reversal1633. This arbitrariness undermines attempts to model

cyclic voltammetry mathematically1634 and has led to almost total reliance on digital

simulation for theory/experiment comparisons.

The forward peak in oxidative cyclic voltammetry arises from a competition between

two effects. As the potential becomes more positive, so does the rate of the R  O

reaction, leading to an increasing current. However, the vicinity of the electrode becomes

steadily more depleted of R, serving to decrease the current. The second effect triumphs

eventually, leading to the current decline after the peak. The depletion of R is matched by

a progressive enrichment of O in the vicinity of the electrode and, after an interval

following reversal, this product species starts to re-reduce (unless the R  O reaction is

totally irreversible), slowly at first, but faster as the potential becomes ever more negative.

Once more there is a competition – this time between the increasing reduction rate of O and

its decreasing availability – leading to a peak in the negative backwards current. Much of

the O produced escapes diffusionally, so the area enclosed by the entire cyclic volt-

ammogram is always positive.

Electrode reactions will behave reversibly, quasireversibly or irreversibly in cyclic

voltammetry, depending on the magnitude of the quantity

o

R

reversibility index

for cyclic voltammetry

RT
k

FD
 

v
16:37

Figure 16-13 shows an example of each variety. As an alternative to digital simulation, the

algorithm in 16:6 is an excellent vehicle for predicting the shape of linear-scan
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1635 The spreadsheet algorithm, which provides values of M(t) as well as I(t), simply requires you to insert

parameter values and click a button. You may, or may not, apply corrections for uncompensated resistance

and/or double-layer capacitance. See Web#1635.

voltammograms for any degree of reversibility. Based on the semianalytical algorithm

16:6, we provide1635 a spreadsheet specially dedicated to cyclic voltammetry. It will

accurately predict any cyclic voltammogram for a one-electron, one-step mechanism. This

spreadsheet algorithm was used to construct Figures16-13 and 16-14.

Recognize that whether or not a reaction behaves reversibly is not solely dependent on

the rate constant. As equation 16:37 makes clear, the scan rate is also a factor. It is the

ability to adjust the scan rate so as to “tune” a reaction into reversibility – thereby

simplifying the voltammogram – or into quasireversibilty – thereby permitting the

elucidation of ko – that is one of the major advantages of cyclic voltammetry. There are

limitations to the adjustments possible, however. With increasing scan rate, capacitive

interference becomes a greater problem because the capacitive current increases

proportionally to v, whereas the faradaic current increases only as . At the other endv

of the scan rate spectrum, too small a scan rate will cause the experiment to last long

enough for convection to occur. Moreover, note that the reversibility index responds to the

reciprocal square-root of the scan rate, so that a quadrupling of v is needed to halve the

index.

At one time, analyses of cyclic voltammograms were largely based on the locations of

the forward and backward peaks, the rate constant being estimated from the peak

separation. Alternatively, simulated voltammograms can be used to generate various

diagnostics1632 that are then used to analyze experimental cyclic voltammograms.

Fortunately, these crude methods are being replaced by a procedure in which the entire

cyclic voltammogram is matched against a sequence of digital simulations in which the

parameters in doubt are varied, until the best match with experiment is found. A thorough

analysis will involve running several experimental cyclic voltammograms, employing a

variety of scan rates, reactant concentrations, and reversal potentials. A single set of ko,

, E h, and D values should provide matches to all these voltammograms. In this modeling

exercise, extraneous factors, such as nonfaradaic currents and uncompensated resistance,

may be included in the model.

Semiintegration can be a valuable adjunct to cyclic voltammetry but, notwithstanding

facilities being built into many commercial instruments, it is seldom employed. Figure 16-

14 depicts the result of semiintegrating the voltammograms shown in Figure 16-13. The

peaks have now disappeared because semiintegration precisely compensates for the

depletion effects that cause the current to peak. Instead, a plateau, named the limiting

semiintegral, of height
b

lim R R plateau of semiintegrated cyclic voltammogramM FAc D16:38

is developed, irrespective of the reversibility of the electrode reaction. Of course, the
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1636 Derive this formula by setting the current to zero in the pan-voltammetric relation (Web#1547), or see

Web#1636.

plateau semiintegral is negative in reductive cyclic voltammetry, but hereabouts we are

illustrating the oxidative variety. Notice that the backward branch of the semiintegrated

cyclic voltammogram exactly retraces the forward branch, each being a standard

voltammetric wave, when the electrode reaction behaves reversibly. When the reaction

does not behave reversibly there is hysteresis, the forward and backward waves being

displaced from each other by a voltage that depends on ko. In all cases the semiintegral

eventually returns to zero; the semiintegrated voltammogram is truly cyclic! The similarity

of these waves to the steady-state waves encountered in Chapter 12 will be evident.

One application of semiintegration is to the accurate determination of the nernstian

half-wave potential from a cyclic voltammogram. Except for totally irreversible cases, all

cyclic voltammograms display a null potential En where the current trace crosses the axis.

At this instant, there is no kinetic (or ohmic) polarization and the Nernst equation holds,

even though the behavior need not be reversible elsewhere. Hence the semiintegral at this

instant can provide access to E h through the formula1636

h
hn n lim

n

lim n n

( )
exp whence ln 1

M F E E MRT
E E

M M RT F M

  
      
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16:39

where Mn is identified in Figure 16-15 overleaf.

By employing the semiintegral and the current in concert, it is possible to study the
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kinetics of the electrode reaction without assuming any particular dependence of the rate

constants on potential. Back in Chapter 7, before the Butler-Volmer model was introduced,

the faradaic current was identified (in equation 7:16) as proportional to the difference

s s
ox R rd O

( )
( ) ( ) ( ) ( )

I E
k E c E k E c E

FA
  16:40

between the oxidative and reductive reaction rates. Note that there are five variables in this

equation, all of which change as the potential is scanned in cyclic voltammetry. However

the two rate constants are distinct in that their value depends only on the potential, whereas

the two concentrations and the current also depend on the past history of the experiment.

Thus, these latter three variables will have different values, on encountering any particular

value of E during the forward scan, than they will later, on encountering the same potential

during the backward scan. The notations

s s
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and

s s
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16:42

use arrows to distinguish between the branches, as illustrated in Figure 16-16. Likewise,

the Faraday-Fick expression 16:7 adopts different forms during the two scans
b s s
R R O forward sc( ) n( ) ( ) aM E FA D c c E FA D c E    

  
16:43

and
b s s
R R O backward scan( ) ( ) ( )M E FA D c c E FA D c E    

  
16:44

In the interest of brevity, we are here treating the two diffusivities as equal. The four

expressions 16:41-44, as well as the formula
b

lim R limiting semiintegralM FA D c16:45
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1637 Solve them, but do not make the equal diffusivity approximation (that is, do not assume DR  DO). See

Web#1637. This Web also contains details of the Nernst check.

may be solved1637 simultaneously to produce the formulas
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and
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rd

lim

( ) ( ) ( ) ( reductive rate

cons

)
( )

( ) tant at( )

D I E M M E I E M M E
k E

M M E M EE

   
  

  

   

 16:47

Of course, these formulas may be applied at many potentials and, in this way, a single

cyclic voltammogram can, in principle, provide values of the two rate constants over a

range of potentials without any presumption of the form of their dependence on potential.

This method of investigating electrochemical rate constants has been called the global

method. Because formulas 16:46 and 16:47 incorporate many subtractions, they require

high quality data if errors are to be avoided, A way of testing whether the data are, indeed,

of sufficiently high quality to yield reliable rate constants is to check obedience to the

Nernst law, by carrying out a “Nernst check”1637.

Because of the widespread interest in unraveling the mechanisms of electrode

reactions, as described in the next two sections, cyclic voltammetry has become the most

popular voltammetric method in vogue today. Its popularity has reached such an extent that

it is frequently used for electrochemical studies that would be better served by another

technique. Mostly, the conditions stipulated on pages 232233 are adhered to during cyclic

voltammetry. A wide variety of solvents has been employed in these mechanistic studies.

Two problems frequently arise when unfamiliar liquids are used as solvents in

voltammetry. One is the difficulty of finding salts that are inert and sufficiently soluble to

serve as supporting electrolytes. A second is that traditional reference electrodes are not

always available to provide a reference scale. In this circumstance, internal references are
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1638 A minute sample of ferrocene is dissolved in the cell solution and it generates its own small cyclic

voltammogram, superimposed on the voltammogram of interest. Features of the latter curve can then be

referenced to the mid-peak potential of the ferrocene*ferrocenium voltammogram and reported in the style

“Potential of the forward peak  0.564 V versus ferrocene”.
1639 Of course, both oxidation and reduction occur in most cyclovoltammetric experiments; by oxidative cyclic

voltammetry we mean cases in which the forward potential scan is towards more positive potentials. Notice that

the adjective “forward” is applied to the first scan in cyclic voltammetry, even when, as in the reductive variety,

both the potential and current may be proceeding negatively.

commonly employed, the most popular being the ferrocene*ferrocenium and

cobaltocene*cobaltocenium cation couples (see reaction 7:12 for the former)1638. A similar

stratagem is used in ITIES studies (page 292), as evident in Figure 14-4.

Multiple Electron Transfers: the EE scheme

Hitherto in this book, attention has been largely restricted to electrode reactions

involving the transfer of a single electron, without any chemical complications. In practice,

however, many electrode reactions require the transfer of several electrons and/or involve

chemical reactions in addition to electron transfers. In this section, and the next, we briefly

address the way in which cyclic voltammetry is affected by some of these mechanistic

complications. Of course, other voltammetric techniques are similarly affected, but here

we limit discussion to cyclic voltammetry, because this is the technique that is favored by

electrochemists in seeking to identify and quantify the mechanism that is operative in each

case of interest.

We shall firstly discuss the sequential transfer of two electrons; the extension to three

or more is straightforward. The mechanism is summarized by the scheme
b

EE sch
S

m

S I P

e e

  

  16:48

in which an intermediate species I, produced by electron transfer to or from the substrate

species S, then undergoes a second electron transfer to form the final product P. The

scheme is designated “EE” because it involves two consecutive Electrochemical steps. The

red arrows in scheme 16:48 are the two electron transfer steps. The electrons are not

shown because, in the interest of generality, we do not specify whether the transfers are

oxidations or reductions. The blue double-headed arrows represent diffusion to and from

the electrode. Sb indicates the substrate species S present in the bulk (from which I and P

are absent). In what follows, we address either oxidative or reductive cyclic

voltammetry1639 indiscriminately, with the upper of any alternative signs signifying the

former, the lower signs the latter. Note that it is possible for the electrochemistry to be

confounded by the occurrence of the chemical proportionation reactions S + P 2I, but



Multiple Electron Transfers 355

1640 Do so, or see Web#1640.

we discount this possibility here.

In the EE mechanism, each of the three species diffuses independently and therefore

each obeys a Faraday-Fick law. These may be written

b s s s1 1 2 2
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where M1(t) and M2(t) are respectively the semiintegrals of the current generated by the first

and second electron transfers. Each electron transfer has its own nernstian half-wave

potential and, if both reactions are reversible, each obeys Nernst’s law in the forms
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16:50

If one solves1640 the five equations in 16:49 and 16:50 simultaneously, one finds

1 I 1 2 Pb
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16:51

where the  abbreviations are defined in 16:50. Figure 16-17 shows examples of the
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1641 Constructed by semidifferentiating the data for Figure 16-17 using the algorithm in Web#1604. See

Web#1641 for details.
1642 See Web#1642 for the derivation and its implementation.

semiintegrated cyclic voltammograms predicted by equation 16:51. Notice the transition

from two one-electron waves to a single two-electron wave. The two semiintegral branches

exactly overlap, and their shapes are independent of the scan rate and reversal potential.

The corresponding cyclic voltammograms themselves1641, shown in Figure 16-18, are

much less orderly than their semiintegrated counterparts.

The refined designation ErEr, indicating two reversible steps, is sometimes applied to

the scheme we have just discussed. The more general EqEq scheme, with two quasi-

reversible steps, is much more difficult to model because there are no less than sixteen

parameters that affect the cyclic voltammogram. These parameters are: electrode area A;

temperature T; bulk concentration of the substrate; three diffusivities DS, DI, and DP; theb
Rc

formal potential formal rate constant and transfer coefficient 1 of the first electrono
1 ;E  o

1k 

transfer; the corresponding parameters of the second electron transfer;o o
2 2 2, , andE k  

starting potential E0; scan rate v; reversal potential Erev; and the algorithmic time interval

. Using semianalytical techniques, it is nevertheless possible to write an algorithm1642 that

predicts the cyclic voltammogram for any selection of these parameters. An example of its

output is shown as Figure 16-19. Alternatively, of course, digital simulation packages may

be used.
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1643 See Web#1643 for the basic diffusion + interconversion theory underlying the method.

If the second reaction in a consecutive electron-transfer pair occurs much more readily

than the first, as in the black curves of Figures 16-17 and 16-18, then the effect is as if the

two electrons were transferred simultaneously. All voltammetric theory then resembles the

one-electron, one-step case except that the ubiquitous FA term becomes replaced by 2FA.

Similarly, the nerstian F/RT term becomes replaced by RT/2F. The current doubles while

the potential scale becomes contracted.

Chemistry Combined with Electrochemistry: a plethora of mechanistic possibilities

Frequently, one or more homogeneous reactions play a role in cyclic voltammetry.

These reactions take place in the electrolyte solution near to, rather than at, the electrode

surface. Recall from Chapter 2 that the first-order chemical reaction A B has a rate
given by where the unit of the rate constants is s1, not the m s1 that appliesA B ,k c k c 

 

to electrochemical rate constants.

The chemical reactions that participate in electrochemical mechanisms occur to

dissolved species in a space in which those species are also diffusing, so it becomes

necessary to examine the behavior of solutes when both factors affect the concentration.

The synthesizing of theoretical cyclic voltammograms, in this milieu, can be accomplished

in two ways: by digital simulation, or semianalytically. Either method is satisfactory,

although digital simulation1609 is the standard tool, and the more versatile of the two. A

semianalytical method is used here because the workings of this approach1643 are in plain

view, not concealed within the “black box” of a commercial product.

The strategy adopted in allocating a mechanism to a particular electrode reaction is

similar to that illustrated in Figure 7-6 (page 139) with “CYCLIC VOLTAMMOGRAM”
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1644 The algorithms that generated Figures 16-20 and 16-21 are derived and implemented in Web#1644.

replacing “RATE LAW”. Chemical savvy is used to postulate possible mechanisms and

the cyclic voltammogram corresponding to each mechanism is synthesized. Parameters are

adjusted to give the best match with the experimental voltammogram. To be credible, a

mechanism must continue to match experiment when changes are made to such parameters

as concentration, scan rate and reversal potential.

Perhaps the simplest, and certainly one of the most common, mechanisms involving

both chemistry and electrochemistry is the EC mechanism, in which the Electrochemical

reaction is followed by a Chemical reaction. Here, the substrate undergoes electron

transfer to produce an unstable intermediate I that decomposes to the product species P.

With similarities to 16:48, the scheme
b

E sC

S

S I

hem

P

c e






  16:52

is operative. The back P  I step may, or may not, be important. The green arrows

indicate the homogeneous chemical reaction occurring in concert with diffusion. These are

unimolecular homogeneous reactions (pages 4851) with rate constants and .k k 
 

When, as for I and P in scheme 16:52, two species are simultaneously diffusing and

interconverting, it is not possible to obtain an explicit analytical solution describing the

joint process unless the two species are assumed to share the same diffusivity. Species S

in scheme 16:52 could be allocated a distinct diffusivity but, for uniformity, it will be

assumed that all three species have the same diffusivity D. We shall often make this

equidiffusivity approximation throughout the present section. This is not a serious retreat

from exactitude because, in practice, values of the pertinent diffusivities are generally

unknown and must be guessed.

We provide a spreadsheet algorithm1644 to predict the form of cyclic voltammograms

when an EC mechanism is involved. An example of its output is shown in Figure 16-20.

A variant to the EC mechanism is the catalytic mechanism, sometimes designated

the EC mechanism. This scheme serves as an important synthetic tool in organic

chemistry, where interest is in a homogeneous reaction

A( ) Z( )soln soln16:53

that is thermodynamically favored, but kinetically impeded. A small quantity of an

electroactive mediator S is present in the solution and it electrochemically generates a

product P which reacts homogeneously with A to form Z and regenerate S:
b

E

S

Z A

S

sche e

P

C m



  



 16:54
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1645 Sometimes, by analogy with the specialization of the E symbol into Er, Eq, and Ei categories, one encounters

Cr, Cq, and Ci referring to chemical reactions that are at equilibrium, bidirectional, or unidirectional. Our

algorithms cater to all these categories.

k 


k 


k 
 k 



The large excess of A serves to make the homogeneous A + P S + Z reaction pseudo-k


first order in P, with a rate constant that incorporates the concentration of A. In manyk


experimental manifestations of this mechanism, the rate of the reverse homogeneous

reaction is negligible but, in the interest of generality, it may be assumed that the reverse

reaction occurs with a rate constant also pseudo-first order. Figure 16-21 shows ank


example of a catalytic cyclic voltammogram1644. This mechanism is often exploited by

biosensors, such as the glucose sensor described on pages 175176. Of course, species P

will serve equally well as a mediator, though the designation CE might then be more

appropriate.

In the CE mechanism1645, the substrate is electropassive but undergoes a homogeneous

reaction to produce an electroactive isomer I. The scheme is
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1646 The spreadsheet algorithms that generated Figure 16-22 and 16-23 are derived and implemented in

Web#1646.
1647 The algorithm used to generate this voltammogram is derived and implemented in Web#1647.
1648 Steven W. Feldberg, U.S. electroanalytical chemist, coinventor of Digisim®.

k 


k 


b

E scheme

S I P

C

S







  16:55

Figure 16-22 shows an example of a CE cyclic voltammogram1646.

Two electron transfers occur in the ECE mechanism but the species I formed by the

first electron transfer must isomerize to J before the second transfer can occur, the scheme

being
bS

S I

E E

J P

scC heme

  

 



   16:56

There are so many parameters in this mechanism that a wide variety of cyclovoltammetric

shapes might result, one example1647 being that shown in Figure 16-23. In this figure, as

in most experimental cases, the two electron transfers have the same polarity. That is to

say that if the S  I transfer is oxidative, so too is the J  P reaction. However, it was

realized by Feldberg1648 that this need not necessarily be so, and several counterexamples

have been found in which the measured current is the difference between that of a first

electron transfer and a subsequent transfer of opposite polarity.

There is a CEC mechanism, an ECEC mechanism, and so on ad nauseam, all with sub-

classifications according to the reversibilities of the various electrochemical and chemical

steps. Because the complexity increases, but without any new principles, we shall not
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1649 See Web#1649 for details.

k 


k 


address these mechanistic schemes. It would be remiss, however, to end this section

without mention of the commonly encountered square scheme. Many compounds exist

in solution as equilibrium mixtures. The most familiar example is provided by acids in

aqueous solution, where proton-transfer reactions, such as

2 3 equilibH O( ) HB( ) B ( ) H O riu( ) maq aq aq   16:57

are commonplace. If each of the two equilibrating forms is electroactive, current will arise

from each electron transfer. It is likely that the two products will establish an equilibrium,

too. A general scheme is

b
1 1 1

b
2 2 2

S S P

S S P

square scheme

 











 16:58

The origin of the name “square scheme” is evident. The chemical equilibria may be fast

or be subject to kinetic constraints, as may be the electrochemical reactions. Another

complication that arises in some instances is a second-order chemical cross-reaction, such

as

2 1 1 2 bimolecular cross-reactionS P S P 16:59

No such reactions are included in the semianalytical derivation1649 that leads to the example

illustrated in Figure 16-24 overleaf. The theory for the square scheme is particularly

elaborate because there are two instances of concurrent diffusion + interconversion taking

place. As many as twenty-one parameters may be needed.
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1650 See equation 16:63 for the pan-voltammetric relations and item (103) of Web#1242 for the appropriate

semiderivative.

S Pk k  
 

Pk 


Controlling Current Instead of Potential: chronopotentiometry

Voltammetry is concerned with the relationship between two time-dependent

properties: the potential E(t) of the working electrode, and the current I(t) that flows

through that electrode. Hitherto in this chapter we have described only the most common

procedure, in which a potential program is imposed on the electrode, and the resulting

current (or sometimes its integral or semiintegral) is recorded and analyzed. There are

alternatives, however, and one of these is to impose a constant current on the cell and

observe the way in which the electrode potential changes. This experiment is called

chronopotentiometry.

Chronopotentiometry is rarely practiced nowadays, but it does have some advantages

and finds application in such challenging systems as high-temperature fused-salt

electrochemistry. In such conditions, uncompensated resistance is rarely a problem, though

resistance associated with films on the electrode may be. The effect of such a resistance

is simply to shift the measured potential by an ohmic constant proportional to the resistance

and the current.

The response of the reversible electrode reaction to a constant currentR e O

can easily be found by combining the reversible pan-voltammetric relation with the formula

for the semiintegral of a constant1650, thus:

b o
R

R O

( )
( ) 2 ( ) exp

1 1

( )

FAc t E t E
M t I t

RT/F

D t D

  
     

   


16:60
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1651 Derive Karaoglanoff’s equation and construct an expression for the time required for the potential to reach

the nernstian half-wave potential. How does this time interval compare with the transition time? See

Web#1651.
1652 If, however, the reaction behaves quasireversibly, it is impossible to write an explicit formula for E(t). That

is, no function f can be found, such that E  f(t ). On the other hand, it is possible to find a function f such that

t  f(E), and this is almost as useful. Use the pan-voltammetric relation to find this function, or see Web#1652.

What is the transition time?
1653 Z. Karaoglanoff, 18781983, Bulgarian analytical chemist.
1654 Use the Sand equation to predict the transition time for the data used for Figure 16-25. See Web#1654.
1655 Henry J.S. Sand, British chemist, author of one of the first textbooks on electroanalytical chemistry.

It follows that1651

b
h R R

Karaoglanoff

equatio
)

n
( ln 1

2

RT FAc D
E t E

F I t

  
   

  
16:61

Figure 16-25 illustrates the chronopotentiometric response of an electrode behaving

reversibly1652. The Karaoglanoff1653 equation predicts that the potential will become infinite

at a time1654 known as the transition time, ttrans
1655

2 1655b
R R

trans

Sand

equation4

D FAc
t

I

 
  

 
16:62
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View supplementary web material at www.wiley.com/go/EST.

The double-layer capacitance is one reason why, in fact, the potential does not acquire an

infinite value. Even if the electrode is totally polarized faradaicly, the parallel capacitance

C will cause the potential to drift at a rate of I/C.

Summary

The major applications of transient voltammetry are in chemical analysis and in the

elucidation of reaction mechanisms. Almost always, the voltammetry is conducted by

imposing a potential program on an electrode in the presence of a substrate of interest.

Because of their excellent discrimination against capacitive currents, pulse voltammetric

techniques can detect and measure small faradaic currents, permitting analysis at nanomolar

levels. Cyclic voltammetry is the technique most often used to investigate the mechanisms

of electrode reactions, which can be of some complexity, involving chemical, as well as

electrochemical, processes. The modeling of transient voltammetry is a challenging

undertaking, most often addressed with help from digital simulation packages.

Alternatively, the pan-voltammetric relation

b b
R O

o
R O

( ) 1 ( pan-volta)
( ) ( )

mmetric

relation
( )

t t
M t I t FA c t c

D D k

  
          

16:63

which incorporates the Butler-Volmer equation and the Faraday-Fick relationship, is

applicable to most varieties of transient voltammetry in which the electron is transferred

in a single step uncomplicated by homogeneous chemistry.



Appendix

Glossary: symbols, abbreviations, constants, definitions, and units

References are to the first instance of the symbol’s use. When the number in the fourth

column is prefixed by #, it refers to a footnote and/or a Web; otherwise the reference is to

a page. Where alternative units are cited, those in green relate to homogeneous reactions,

whereas those in red relate to heterogeneous reactions. Symbols shown in bold type

(such as t or x) are undimensioned counterparts of the standard symbols (such as t or x).

They are defined locally, not in this glossary.

Symbol Name
Unit, definition or

value
See

A ampere, SI unit of electric current base SI unit 14

A,B,... reactants 46

A area (often of WE) m2 14

Aa area of anode m2 217

Ac area of cathode m2 219

a.c. alternating current 24

an (suffix) anodic 204

arccos{y} inverse cosine function of y  arccos cos{ }y y #1225

arccot{y} inverse cotangent function of y  arccot cot{ }y y 26

arcoth{y}
inverse hyperbolic cotangent function

of y
 1

2 ln ( 1) /( 1)y y  #1317
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Symbol Name
Unit, definition or

value
See

arcsin{y} inverse sine function of y  arcsin sin{ }y y #1612

arctan{y} inverse tangent function of y  arctan tan{ }y y 26

arsinh{y} inverse hyperbolic sine function of y  2ln 1y y  201

av (suffix) average value 319

ai activity of species i (no unit) 33

(ads) adsorbed on a surface #205

(amal) dissolved in mercury #205

(aq) in aqueous solution #205

B adsorption coefficient m3 mol1 268

b characteristic volume m3 164

b Tafel slope V 220

C coulomb, SI unit of electric charge  A s 1

C a chemical step 143

Cr, Cq, Ci

reversible, quasireversible, irreversible

chemical step
#1645

CE counter electrode 209

C capacitance F 12

cath (suffix) cathodic 204

cell (suffix) of the cell 197

conv (suffix) due to convection 161

cos{} cosine function of   2
sin    6

cosh{y} hyperbolic cosine function of y 1 1
2 2
exp{ } exp{ }y y  263
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Symbol Name
Unit, definition or

value
See

coth{y} hyperbolic cotangent function of y
exp{ } exp{ }

exp{ } exp{ }

y y

y y

 

 
#1317

csc{} cosecant function of  1/sin{} #1225

csch{y} hyperbolic cosecant function of y 1/sinh{y} #1317

cA, cC concentration of the anion, cation mol m3  mM 263

c charge-carrier concentration mol m3  mM 19

ci concentration of solute i mol m3  mM 20

s
ic concentration of i at (electrode) surface mol m3  mM 51

s
ic

amplitude of the periodically varying

concentration of i at electrode surface
mol m3  mM 306

b
ic concentration of i in the bulk mol m3  mM 156

co standard concentration 1.0000×103 mol m3 34

D debye, a non-SI unit of dipole moment 3.3356 C m #102

Di diffusivity (diffusion coefficient) of i m2 s1 154

d (prefix) infinitesimal change in 6

d1/2/dt1/2 semidifferentiation operator s1/2 #1242

d1/2/dt1/2 semiintegration operator s1/2 #1242

d.c. direct current 23

dif (suffix) due to diffusion 159

dmFc decamethylferrocene Fe[C5(CH3)5]2 294

d superficial diameter m 234

 (prefix) partial differential operator 162

E an electrochemical step 143

Er, Eq, Ei

reversible, quasireversible, irreversible

electrochemical step
356
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Symbol Name
Unit, definition or

value
See

E potential, electrode potential V 12

|E| voltage amplitude V 24

Eapp applied potential V #1635

Ecor corrosion potential V 217

E h nernstian half-wave potential V 240

Eint interfacial potential V #1635

En null potential, open-circuit potential V 109

Erev reversal (switching) potential V 348

Ezc potential of zero charge V 261

E1/2 half-wave potential V #1216

E o standard electrode potential V 110

E o formal (conditional) electrode potential V 113

e an electron 1

erf{y} error function of y 22

0
exp{ }d

y

x x


 156

erfc{y} error function complement of y 1 erf{y} #828

eerfc{y} “experfc” function of y  exp{y 2}erfc{y} #723

equil (suffix) at equilibrium 37

eV electron volt 1.6022×1019 J #124

exp{y} exponential function of y  e y 22

e base of natural logarithms 2.7183 #164

F farad, SI unit of capacitance  C V1 13

FAD flavin adenosine dinucleotide 175

Fc, Fcd ferrocene, a derivative of ferrocene Fc  (C5H5)2Fe 109

FFT fast Fourier transform #1545
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Symbol Name
Unit, definition or

value
See

Fn nth member of a time series as appropriate #1545

F Faraday’s constant 96485 C mol1 19

f (prefix) femto 1015

f force N 2

f repetition frequency Hz #1545

( fus) in the fused (molten) state #205

Glox glucose oxidase 175

GC (suffix) according to the Gouy-Chapman model 263

Gi (molar) Gibbs energy of species i J mol1 31

Gi Goldman permeability to ion i m s1 189

o
iG standard Gibbs energy of species i J mol1 31

g gram 103 kg

gd{y} gudermannian function of y  arctan sinh{ }y #1225

g gravitational acceleration 9.8066 m s2 #813

g gain of an amplifier (no unit) #1029

(g) in the gaseous state #205

H henry, SI unit of inductance  V s A1 313

HUP hydrogen uranyl phosphate tetrahydrate 69

Hz hertz, SI unit of frequency  s1 24

H (suffix) of the hydrogen evolution reaction 219

H (suffix) according to the Helmholtz model 259

H (molar) enthalpy J mol1 30

h hour  3600 s 86

h+ a hole 288
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Symbol Name
Unit, definition or

value
See

h thickness of a monomolecular layer m 282

h Planck’s constant 6.6261×1034 J s 290

I, J, … intermediates 258

In nth “imaginary” transform as appropriate #1545

Int{y} integer-value function of y largest integer  y #177

ISE ion-selective electrode 119

ITIES
interface between two immiscible

electrolyte solutions
291

IUPAC
International Union of Pure and

Applied Chemistry
xi

I, II (suffix) in phase I, in phase II 35

I electric current A 13

,I I
  current during the forward, backward

branch of cyclic voltammetry
A 352

|I | amplitude of sinusoidal current A 25

Icor corrosion current A 220

Ifar faradaic current A #1635

Ipre, Iend current before, at the end of, a pulse A 342

Imeas measured current A #1635

Imod modeled current A #1635

i an arbitrary species 19

ierfc{y}
integral of the error function

complement of y
#828erfc{ }d

y
x x





in (suffix) inside the (biological) cell 189

i current density A m2 14

iox, ird current densities of opposing reactions A m2 137
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Symbol Name
Unit, definition or

value
See

in exchange current density A m2 134

J joule, SI unit of energy and work  kg m2 s2 5

j imaginary operator 1 313

J total flux mol s1 #802

j i flux density of species i mol m2 s1 145

K kelvin, SI unit of temperature base SI unit 82

K activity-based equilibrium constant (no unit) 32

K
concentration-based equilibrium

constant
3(mol m ) 
 

#818

Kw activity-based ionic product for water 1.005×1014 39

kg kilogram, SI unit of mass base SI unit #225

kin (suffix) kinetic, kinetically controlled 200

k frequency counter (no unit) #1545

kB Boltzmann’s constant 1.3807×1021 J K1 #124

,k k
 

activity-based rate constants mol m3 or 2 s1 47

,k k 
  forward, backward experimental rate

constants
m33 or 32 mol1s1 50

# #,k k
 

forward, backward rate constants of

mechanistic step #
m33 or 32 mol1 s1 50

kox(E),

krd(E)

individual activity-based rate constants

of oxidative, reductive electrode

reaction

mol m2 s1 131

ox

rd

( ),

( )

k E

k E





individual rate constants of electrode

reaction moieties
m s1 131

ko formal rate constant m s1 132
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Symbol Name
Unit, definition or

value
See

ox rd,k k 
composite oxidative, reductive rate

constants
m32 mol1 s1 141

L liter (litre)  103 m3 38

L, R (suffix) on the left, on the right 37

L,U (suffix) lower, upper 153

L length m 4

L inductance H 313

lim (suffix) limiting 204

log10{y} decadic logarithm of y ln{y}/2.3026 39

ln{y} (natural) logarithm of y 32

 length coordinate m 5

() in the liquid state #205

M molar 1
solute solutionmol L 38

M (prefix) mega 106

M (suffix) of the metal dissolution reaction 219

M (suffix) of the metal 283

M semiintegral of the current A s1/2 #162

,M M
  current semiintegral during the

forward, backward branch of cyclic

voltammetry

A s1/2 352

Mn semiintegral at the null potential A s1/2 351

Mi molar mass of species i kg mol1 282

m meter (metre), SI unit of length base SI unit 22

m (prefix) milli 103

meas (suffix) measured 271



Glossary 373

Symbol Name
Unit, definition or

value
See

mig (suffix) due to migration 159

mol mole, SI unit of chemical amount base SI unit 19

m harmonic number (no unit) 322

mi transport coefficient of species i m s1 169

N newton, SI unit of force  kg m s2 2

NASA
National Aeronautical and Space

Administration (of the United States)
100

NHE normal hydrogen electrode #605

Nl naphthyl radical C10H7 142

N collection efficiency (no unit), 0 < N < 1 252

NA Avogadro’s constant 6.0221×1023 mol1 19

Ni number of channels for the ion i (no unit) #932

n (prefix) nano 109

net (suffix) of the net reaction ynet  yox  yrd 131

nf (suffix) nonfaradaic 271

nuc (suffix) of the nucleus or nucleation 283

n
number of electrons in electrode

reaction
(no unit) 59

n time counter (no unit) #1545

ni amount of species i mol 46

n (suffix) of the nth member 283

O oxidized member of redox pair 130

ohm (suffix) ohmic 197

osm (suffix) electroosmotic 300

ox, rd (suffix) of the oxidation, reduction 131
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Symbol Name
Unit, definition or

value
See

o (suffix) standard value 31

out (suffix) outside the (biological) cell 189

(org) dissolved in an organic liquid 292

P a product species 358

Pa pascal, SI uit of pressure  N m2 33

polylogarithm (Mathematica® symbol) (no unit)PolyLog{,} #1241

Pi permeability towards species i m2 s1 80

P period s 24

p (prefix) pico 1012

per(t) periodic function of time (no unit) 322

ppb parts per billion per 109 #924

ppm parts per million per 106 171

p pressure Pa 33

po standard pressure 105 Pa  1 bar 33

pi partial pressure of gas i Pa 33

pH basicity index  +
3

10 H O
log a 39

Q electric charge, quantity of electricity C 2

Qi charge on species i C 19

Q0 elementary charge 1.6022×1019 C 1

Qtest

test charge (vanishingly small

magnitude)
C 3

q (superficial) charge density C m2 5

R reduced member of redox pair 130

R an organic group 76
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Symbol Name
Unit, definition or

value
See

RE reference electrode 105

Rn nth “real” transform as appropriate #1545

R distance, radius m 2

R resistance  15

R gas constant 8.3145 J K1 mol1 32

Rc

radius of central ion in the

Debye-Hückel model
m 44

Rct charge-transfer resistance  202

Rpol polarization resistance  221

Ru uncompensated resistance  210

RT o 2.4790 kJ mol1 32

RT o/F 25.693 mV

59.159 mV
o

ln{10}
RT

F

R,L (suffix) on the right, on the left 37

rad radian primary SI unit 162

rem (suffix) removal controlled 241

rms (suffix) root-mean-square 24

rpm revolutions per minute #1229

r distance along radial coordinate 4

rhemi radius of a hemispherical electrode m 198

S siemens, SI unit of conductance  A V1  1 15

S a substrate species 354

SCE saturated calomel electrode #604

SHE standard hydrogen electrode 106
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Symbol Name
Unit, definition or

value
See

S (suffix) according to the Stern model 264

S (molar) entropy J K1 mol1 30

S sheared area m2 #842

SI le Système International d’unités ix

s second, SI unit of time base SI unit 14

sech{y} hyperbolic secant function of y 2/[exp{y}+exp{y}] 254

sin{y} sine function of y y  y3/3! + y5/5!  ... 24

sinh{y} hyperbolic sine function of y 1 1
2 2
exp{ } exp{ }y y  201

s Laplace variable Hz #162

(s) in the solid state #205

(sc) in the semiconductor 288

(sep) in the separator 99

(soln) in solution (not necessarily aqueous) 51

soc state of charge % #547

T temperature K 30

T o standard temperature 298.15 K  25.00oC 32

tan{} tangent function of  sin{}/cos{} #1225

tanh{y} hyperbolic tangent function of y
exp{ } exp{ }

exp{ } exp{ }

y y

y y

 

 
252

trans (suffix) transport 203

t time s 14

ttrans transition time s 363

t


time to reach completion s 126

U(t0) Heaviside (or unit-step) function 0 if t < t0; 1 if t > t0 #1242
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Symbol Name
Unit, definition or

value
See

u mobility of charge carrier m2 V1 s1 19

ui mobility of species i m2 V1 s1 20

uosm electroosmotic mobility m2 V1 s1 #1419

V volt, SI unit of electrical potential J C1 6

Vm valinomycin (C18H30N2O6)3 295

V volume m3 47

V flow rate m3 s1 126

v velocity m s1 #842

v scan (or sweep or ramp) rate V s1 271

v rate of reaction, net reaction rate mol m3 or 2 s1 47

,
 
v v forward, backward reaction rates mol m3 or 2 s1 47

vox, vrd rates of the electrode reaction moieties mol m2 s1 131

v average velocity m s1 19

vx, vr, v
velocity in the axial, radial, angular

directions
m s1 163

W watt, SI unit of power J s #159

WE working electrode 105

W molar work J mol1 32

W magnitude of Warburg element  s1/2 309

w work J 5

i
xw  work to carry one i ion from x to

infinity
J 263

wn nth weight (no unit) 332

X electric field strength V m1 3

x integration variable #828
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Symbol Name
Unit, definition or

value
See

x, y distances along cartesian coordinates m 2

xH thickness of the Helmholtz layer m 259

xi mole fraction of solution component i (no unit) 35

Y admittance S #170

y an arbitrary variable

( )y s the Laplace transform of y(t) s × (unit of y) #162

Z, Y, ... products 46

Z impedance  25

zi charge number of species i (no unit) 20

 (alpha) proportionality constant m2 188

, 1 reductive, oxidative transfer coefficient (no unit), 0 <  < 1 133

ox, rd composite transfer coefficients (no unit) 138

 (beta) Debye length m 42

i

(Gamma)
surface concentration of i mol m2 268

{y} (complete) gamma function of y 1

0
exp{ }dyx x x


  164

i

(gamma)
activity coefficient of solute i (no unit) 34

± mean ionic activity coefficient (no unit) 44

1
3{ , }y

incomplete gamma function of y of

one-third order
2 / 3

0
exp{ }d

y

x x x  164

 (prefix)

(Delta)
change in, difference y  ynew  yold 12

En null (or open-circuit) cell voltage V 62

Egap band gap V #124
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Symbol Name
Unit, definition or

value
See

mem transmembrane potential difference V 188

Estep, tstep step height, step width V, s 276

 (delta) Nernst diffusion layer thickness m #857

 small time interval s 332

 (prefix) small change in 5

 (epsilon) permittivity F m1 6

 abbreviation for F(EEh)/RT (no unit) 256

CB, VB energy of conduction, valence band J 290

H permittivity of the Helmholtz layer F m1 260

0 electric constant, permittivity of space 8.8542×1012 F m1 2

 (zeta) zeta, or electroosmotic, potential V 300

(y) zeta number of y 1 2 3 4y y y y       #1240

 (kappa) conductivity S m1 15

 (Lambda) abbreviation for /(RT) (no unit) #723

 (lambda) parameter in double-layer theory (no unit) #1317

 (molar) reorganization energy J mol1 #723

 reversibility index (no unit) 242

 wavelength m 290

{y} lambda function of y 1 3 5 7y y y y       #1240

 (mu) ionic strength mol m3  mM 41

 dipole moment C m #102

 (prefix) micro 106

DH Debye-Hückel ionic-strength constant mol m3  mM 43

i chemical potential of species i J mol1 #836
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Symbol Name
Unit, definition or

value
See

i electrochemical potential of species i J mol1 #836

v (nu) frequency of radiation Hz 290

v order of differintegration (no unit) #1245

vi stoichiometric coefficient of species i (no unit) 45

vC Cochran number 0.6159 #844

vK von Kármán number 0.51023 163

vL Levich number 0.62046 163

 (xi) abbreviation for exp{F(EE o)/RT} (no unit) #1547

h abbreviation for exp{F(EE h)/RT} (no unit) #1603

, (xi, psi) oblate spheroidal coordinates (no units) #1225

 (Psi)
abbreviation defined in equation (17)

of the cited Web
(no unit) #1619

 (pi) Archimedes’ constant 3.1416 2

 (eta)
viscosity (dynamic viscosity

coefficient)
kg m1 s1 148

 overvoltage V 194

(y) eta function of y 1 2 3 4y y y y       #1630

 (theta) angle radian or degree 7

i fractional coverage by adsorbate i (no unit), 0 < i < 1 35

 (rho) (volumetric) charge density C m3 7

 density kg m3 #914

 (sigma) abbreviation for exp{F(E1/2Eh)/RT} (no unit) #1231

 surface tension N m1 261

(Upsilon) Onsager coefficient m7/2 s1 V1 mol1/2 150

 abbreviation for tanh{F(EEh)/2RT} (no unit), 1 1    345
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Symbol Name
Unit, definition or

value
See

(phi) electrical potential V 6

(phi) phase angle radian or degree 25

{y} (chi)
is the Randles-Ševik{ }y 

function of y
(no unit) 256

{y}
a function relevant to cyclic

voltammetry
(no unit) #1634

 (Omega) ohm, SI unit of resistance  kg m2 s3 A2 15

 total reaction order (no unit) 139

i order with respect to species i (no unit) 139

i,ox, i,rd

order of species i in oxidative,

reductive step
(no unit) 138

 (omega) angular frequency rad s1 24

 angular velocity rad s1 162

o (suffix) standard 31

o (suffix) at infinite dilution #149

 (suffix) based on concentration not activity 51

o (suffix) formal, conditional 113

‡ (suffix) of activation #232

! (suffix) factorial function n! = (1)(2)(3)…(n) #1604

|y| absolute value of y y if y  0; y if y < 0 349

|E|, |I|
amplitude of a periodic potential,

current
V, A 24

 n̂ nth step is rate determining 49

y

n

 
  
 

binomial coefficient
( 1)( 2) ( )

(1)(2) ( )

y n y n y

n

      

  
#1242
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Absolute and Relative Permittivities: also some dipole moments

The second column lists permittivities, usually measured at 20oC or 25oC. The

third column lists the corresponding relative permeability, often cited as the dielectric

constant. The final column gives the dipole moment of the gaseous molecule, in the debye

unit102.

Material  / pF m1  / o  / D

free space 8.8542 1

nitrogen, N2(g) 8.8590 1.005 0

teflon®, (CF2)(s) 18 2.0

1,4 dioxane, C4H8O2() 19 2.2 0.45

tetrachloromethane, CCl4() 19.7 2.22 0

polyethene, (CH2)(s) 20 2.3

mylar, (CH2OOCC6H4COOCH2)(s) 28 3.2

silica, SiO2(s) 38.3 4.3

a typical glass 44 5.0

chlorobenzene, C6H5Cl() 49.8 5.62 1.69

neoprene, (CH2:CClCH:CH2)(s) 58 6.6

tetrahydrofuran, C4H4O() 65 7.6 1.75

dichloromethane, CH2Cl2() 76 8.9 1.6

1,2 dichloroethane Cl(CH2)2Cl() 91.7 10.4

methanol, CH3OH( ) 288 32.6 1.7

nitrobenzene, C6H5NO2() 308.3 34.82 4.22

acetonitrile, CH3CN() 332 37.5 3.93

dimethyl sulfoxide, (CH3)2SO() 400 47 3.96

water, H2O() 695.4 78.54 1.86

formamide, HCONH2() 970 109.5 3.73
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Material  / pF m1  / o  / D

titanium dioxide TiO2(s) 1500 170

N-methylformamide, HCONHCH3 () 1615 182.4 3.8

Properties of Liquid Water: SI values at T o and po

Molar mass, M = 0.0180152 kg mol1

Density,  = 997.07 kg m3

Molecular volume, M/(NA) = 3.0003×1029 m3 = (310.73 pm)3

Thermal expansivity = 2.572×104 K1

Thermal conductivity = 0.6069 W K1 m1

Heat capacity = 75.48 J K1 mol1

Vapor pressure = 3167.2 Pa

Surface tension,  = 0.07198 N m1

Viscosity,  = 8.937×104 kg m1 s1

Kinematic viscosity, / = 8.932×107 m2 s1

Self diffusion coefficient, D = 2.44×109 m2 s1

Permittivity,  = 6.954×1010 F m1

Relative permittivity, /o = 78.54

Debye length,  = 9.534×107 m

Conductivity,  = 5.696×106 S m1

Ionic strength,  = 1.003×104 mol m3

Ionic product, Kw = 1.005×1014

pH = 6.998
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Conductivities and Resistivities: assorted charge carriers

Mostly at 25oC or thereabouts. Both electronic and ionic conductors are included in

this listing.

Material  / S m1  /  m Charge carrier(s)

vacuum and most gases 0  none

teflon®, (CF2) 1015 1015 impurities?

typical glass 3×109 3×108 univalent cations

water, H2O() 5.7×106 1.75×105 H3O
+(aq) and OH(aq)

[(CH3)2NH]2CO2(), an

ionic liquid
2.8×103 360 3 2 2 3 2 2(CH ) NH and (CH ) NCO 

silicon, Si(s) 0.072 14 electrons and holes

Zr18Y2O39(s) , yttria-

stabilized zirconia

ceramic (at 1000 K)

0.3 3 O2(s)

100 mM aqueous KCl

solution
1.3 0.77 K+(aq) and Cl(aq)

germanium, Ge(s) 2.2 0.45 electrons and holes

0.500 M aqueous

CuSO4 solution
4.2 0.24 2+ 2

4Cu ( ) and SO ( )aq aq

seawater 5.2 0.19 cations, anions, and ion pairs

1.00 M aqueous KCl

solution
10.2 9.5×102 K+(aq) and Cl(aq)

Na6Al32O51, alumina

(at 350oC)
20 5×102 Na+(s)

RbAg4I5(s) 25 4×102 Ag+(s)

1.000 M aqueous HCl

solution
33.2 3.01×102 H3O

+(aq) and Cl(aq)

5.2 M aqueous H2SO4

solution, “battery acid”
82 1.2×102 H3O

+(aq) and HSO4


(aq)
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Material  / S m1  /  m Charge carrier(s)

molten KCl (at 1043oC) 217 4.61×103 K+(fus) and Cl(fus)

doped polypyrrole 6×103 1.7×104 pi electrons

graphite, C 4×104 2.5×105 pi electrons

bismuth, Bi(s) 8.2×105 1.22×106 electrons

mercury, Hg() 1.040×106 9.62×107 electrons

iron, Fe(s) 1.0×107 1.0×107 electrons

copper, Cu(s) 5.69×107 1.758×108 electrons

silver, Ag(s) 6.17×107 1.62×108 electrons

superconductors

(low temperature)
 0 electron pairs
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Elements with Major Importance in Electrochemistry: properties

The atomic mass gives the mass of one mole of the atom in grams; this is not an SI

unit; to obtain the SI unit, kg mol1, divide by 1000. Densities, at po and To, are listed in the

common unit of kg L1 or g cm3; to obtain the SI unit, kg m3, multiply by 1000. All

uncombined elements exist in oxidation state 0; this oxidation number has been omitted

from the listing. An orange color in the fifth column indicates that this oxidation state is

rare or unstable; unusual oxidation state are often discovered electrochemically.

Atomic

number

Symbol & Name

Nonmetals in red

Atomic

mass

Standard state and

density / kg L1

Oxidation numbers

Rare values in orange

1 H, hydrogen 1.0079 H2(g) 0.00008132 1, +1

3 Li, lithium 6.941 Li(s) 0.534 +1

6 C, carbon 12.011 C(graphite) 2.250 4, +2, +4

7 N, nitrogen 14.0067 N2(g) 0.0011300
3, –2, –1, +1, +2, +3,

+4, +5

8 O, oxygen 15.9994 O2(g) 0.0012909 2

9 F, fluorine 18.998403 F2(g) 0.0015328 1

11 Na, sodium 22.98977 Na(s) 0.971 +1

12 Mg, magnesium 24.305 Mg(s) 1.740 +2

13 Al, aluminum 26.98154 Al(s) 2.702 +1, +3

14 Si, silicon 28.0855 Si(s) 2.329 4, +4

15 P, phosphorus 30.97376 P4(s) 1.82 3, +3, +5

16 S, sulfur 32.06 S8(s) 2.070 2, +4, +6

17 Cl, chlorine 35.453 Cl2(g) 0.0028604 1, +1, +3, +5, +7

19 K, potassium 39.0983 K(s) 0.862 +1

20 Ca, calcium 40.078 Ca(s) 1.54 +2

22 Ti, titanium 47.88 Ti(s) 5.54 +2, +3, +4

23 V, vanadium 50.9415 V(s) 6.11 +1, +2, +3, +4, +5

24 Cr, chromium 51.996 Cr(s) 7.19 2, +1, +2, +3, +6

25 Mn, manganese 54.9380 Mn(s) 7.30
+1, +2, +3, +4, +5,

+6, +7

26 Fe, iron 55.847 Fe(s) 7.87 2, 1, +1, +2, +3, +4
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Atomic

number

Symbol & Name

Nonmetals in red

Atomic

mass

Standard state and

density / kg L1

Oxidation numbers

Rare values in orange

27 Co, cobalt 58.9332 Co(s) 8.90 +1, +2, +3, +4

28 Ni, nickel 58.69 Ni(s) 8.902 2, 1, +2, +3, +4

29 Cu, copper 63.546 Cu(s) 8.96 +1, +2, +3

30 Zn, zinc 65.38 Zn(s) 7.134 +2

33 As, arsenic 74.9216 As(grey) 5.73 3, +3, +5

35 Br, bromine 79.9904 3.12 1, +3, +5, +72Br ( )

42 Mo, molybdenum 95.94 Mo(s) 10.2 1,+1,+2,+3,+4,+5,+6

46 Pd, palladium 106.4 Pd(s) 12.02 +2, +4

47 Ag, silver 107.8682 Ag(s) 10.49 +1

48 Cd, cadmium 112.41 Cd(s) 8.65 +2

49 In, indium 114.76 In(s) 7.31 +1, +2, +3

50 Sn, tin 118.69 Sn(s) 7.31 +2, +3, +4

53 I, iodine 126.9045 I2(s) 4.93 1, +1, +3, +5, +7

58 Ce, cerium 140.12 Ce(s) 6.770 +3, +4

74 W, tungsten 183.85 W(s) 19.3 1,+1,+2,+3,+4,+5,+6

78 Pt, platinum 195.08 Pt(s) 21.45 +1, +2, +3, +4

79 Au, gold 196.9665 Au(s) 19.32 +1, +2, +3

80 Hg, mercury 200.59 13.534 +1, +2Hg( )

81 Tl, thallium 204.383 Tl(s) 11.85 +1, +3

82 Pb, lead 207.2 Pb(s) 11.35 +2, +4

92 U, uranium 238.0289 U(s) 18.95 +3, +4, +5, +6
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Transport Properties: mostly of ions in water

Values of conductivities, mobilities and diffusivities are listed here for many ions “at

infinite dilution” in water at 25oC. The three properties are mutually proportional, being

connected by the relationships and Mostly, these relationships
i

o o
i iRTu z FD o o

i i .iz Fu 

were used to populate the third and fourth columns from values of the ionic conductivities,

measured from the extrapolation to zero concentration of the conductances of very dilute

aqueous solutions. The final column contains a few diffusivity values, measured

voltammetrically in the stated media. Note that these differ significantly from the infinite

dilution values and depend on the identity of the supporting electrolyte and its

concentration.

species i
3 o

i
2 1

10

S m mol
 9 o

i
2 1 1

10

m V s

u
 

 9 o
i

2 1

10

m s

D


 9
i

2 1

10

m s

D




H3O
+(aq) 34.96 362.3 9.31 (Grothuss mechanism)

OH(aq) 19.8 205.2 5.27 (Grothuss mechanism)

H2O 0 0 2.44 (self diffusion)( )

O2(aq) 0 0 2.26

Br(aq) 7.81 80.9 2.080

Rb+(aq) 7.78 80.6 2.072

Cs+(aq) 7.72 80.0 2.056

I(aq) 7.68 79.6 2.045

Cl(aq) 7.631 79.09 2.032

Tl+(aq) 7.47 77.4 1.989

7.35 76.2 1.964NH ( )aq

K+(aq) 7.348 76.16 1.957

7.142 74.02 1.9023NO ( )aq

Zn(amal) 0 0 1.89 (Zn metal in mercury)

6.73 69.8 1.7924ClO ( )aq

Cd(amal) 0 0 1.66 (Cd metal in mercury)

Ag+(aq) 6.19 64.16 1.648

F(aq) 5.54 57.4 1.475

Na+(aq) 5.008 51.90 1.344
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species i
3 o

i
2 1

10

S m mol
 9 o

i
2 1 1

10

m V s

u
 

 9 o
i

2 1

10

m s

D


 9
i

2 1

10

m s

D




(CH3)4N
+(aq) 4.49 46.5 1.196

CH3COO(aq) 4.09 42.4 1.089

4.05 42.0 1.078 1.015 in 100mM KCl3IO ( )aq

16.00 82.91 1.0652
4SO ( )aq

Li+(aq) 3.866 40.07 1.029

32.07 110.8 0.9493
6Fe(CN) ( )aq

Pb2+(aq) 14.2 73.6 0.945

0.828 in 100 mM KNO3

0.715 in 100 mM KCl

0.681 in 1000 mM KCl

C6H5COO(aq) 3.24 33.6 0.863

Ba2+(aq) 12.72 65.92 0.847

Ca2+(aq) 11.89 61.62 0.792

44.16 114.4 0.735 0.650 in 100 mM KCl4
6Fe(CN) ( )aq

Fe2+(aq) 10.8 56.0 0.719

Cd2+(aq) 10.8 56.0 0.719 0.715 in 100 mM KCl

Cu2+(aq) 10.72 55.55 0.714

Mg2+(aq) 10.60 54.9 0.706

Zn2+(aq) 10.56 54.72 0.703

0.654 in 100 mM NaOH

0.638 in 100 mM KNO3

0.620 in 1000 mM KNO3

20.7 71.5 0.6133
4PO ( )aq

Fe3+(aq) 20.4 70.5 0.604

(C4H9)4N
+(aq) 1.95 20.2 0.519
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Standard Gibbs Energies: key to calculating Eo and Eo values

Listed here are the standard Gibbs energies of assorted neutral species and aqueous

ionic species. More exactly, each Go value is the molar Gibbs energy of formation of the

cited species, in its standard state, from its elements, also in their standard states, all at the

standard temperature T o  298.15K and standard pressure po  1 bar  100 kPa. For

aqueous ions, the convention is adopted that the hydronium ion H3O
+(aq) and the water

molecule share the same standard Gibbs energy. Because all elements in their2H O( )

standard states have zero values of Go they are omitted from the table. The table is mostly

compiled from the voluminous (but atrociously arranged) articles “Standard Thermo-

dynamic Properties of Chemical Substances” and “Thermodynamic Properties of Aqueous

Ions” in D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 89th Edition (Internet

Version 2009), Taylor & Francis. All manner of equilibrium physicochemical properties

(equilibrium constants, solubilities, vapor pressures, reaction feasibilities, equilibrium

compositions, etc), as well as electrochemical data, are calculable from Go values. Recall

that a Go value applies to a species only in its standard state. Whenever its state is

nonstandard, the operative molar Gibbs energy is G  Go + RT ln{a}.

The change in standard Gibbs energy accompanying the reaction

A B Z YA B Z Yv v v v       A:1

is
o o o o o

Z Z Y Y A A B BG v G v G v G v G       A:2

The standard null voltage E o of a cell at which reaction A:1 could occur is Go/nF,

where the positive integer n is determined by the procedure described on pages 5859.

To find the standard potential of an electrode operating in aqueous (only!) solution,

write the electrode reaction as

A B Z YA B e Z Yv v n v v          A:3

where n is positive, then calculate Eo  Go/nF, where Go is given by equation A:2,

ignoring the electrons. This will not always generate exactly the same value as from tables

of electrode potentials; discrepancies on the order of one millivolt are common.

Divergence arises from experimental error and from compromises made in correlating

thermodynamic data from diverse sources.
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Neutrals Cations Anions

i
o
i

1kJ mol

G
 i

o
i

1kJ mol

G
 i

o
i

1kJ mol

G


AgBr(s) 95.92 Ag+(aq) 77.08 Br(aq) 102.76

AgCl(s) 109.59 Al3+(aq) 485.0 Cl(aq) 131.2

Ag2O(s) 11.2 Ca2+(aq) 533.6 3ClO ( )aq 8.0

Ag2S(s) 40.7 CaOH+(aq) 718.4 4ClO ( )aq 8.5

Al(OH)3(s) 1140.7 Cu2+(aq) 65.6 2
3CO ( )aq 527.82

Al2O3(s) 1582.3 Fe2+(aq) 78.9 3
6Fe(CN) ( )aq 729.4

C(diamond ) 2.9 Fe3+(aq) 4.5 4
6Fe(CN) ( )aq 695.1

CO2(g) 394.38 FeOH+(aq) 277.4 3HCO ( )aq 586.8

CO2(aq) 186.2 FeOH2+(aq) 229.4 4HSO ( )aq 755.9

Fe2O3(s) 742.2 2Fe(OH) ( )aq 437.0 I(aq) 51.65

HCl(g) 95.3 H3O
+(aq) 237.14 3I ( )aq 51.48

H2O() 237.14 In3+(aq) 97.95 2
3IO ( )aq 128.0

H2O(g) 228.58 Mg2+(aq) 454.8 4MnO ( )aq 447.2

Hg2Br2(s) 181.1 Mn2+(aq) 228.1 2
4MnO ( )aq 500.7

Hg2Cl2(s) 210.7 4NH ( )aq 79.3 OH(aq) 157.2

HgCl2(s) 178.6 Ni2+(aq) 46.4 2
4PtCl ( )aq 384.5

NH3(g) 16.4 Pb2+(aq) 24.3 2S ( )aq +85.8

PbCl2(s) 313.94 Tl+(aq) 32.4 2
4SO ( )aq 744.5

PbO2(s) 217.3 Tl3+(aq) 214.6 3VO ( )aq 783.6

PbSO4(s) 813.0 Zn2+(aq) 147.2 3
4VO ( )aq 899.0

ZnO(s) 320.5 ZnOH+(aq) 330.1 2
2ZnO ( )aq 384.4
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Standard Electrode Potentials: some examples

The writing of an electrode reaction and its standard potential is a way of summarizing

thermodynamic information about the reaction. It does not imply that the reaction will

actually occur. For example, the first and third of the reactions below have never been

observed at any electrode. The standard electrode potential does not change when the

reaction is written in the reverse direction, nor is it affected if all the stoichiometric

coefficients are doubled or multiplied by any other number.

2
4 3 2MnO ( ) 8H O ( ) 5e Mn ( ) 12H O( )aq aq aq       Eo  +1.512 V

2Cl ( ) 2e 2Cl ( )g aq   Eo  +1.3578

2 3
2 7 3 2Cr O ( ) 14H O ( ) 6e 2Cr ( ) 21H O( )aq aq aq       Eo  +1.33 V

2 3 2O ( ) 4H O ( ) 4e 6H O( )g aq     Eo  +1.2288 V

Ag ( ) e Ag( )aq s   Eo  +0.7989 V

2
2Hg ( ) 2e 2Hg( )aq    Eo  +0.7958 V

3 2Fe ( ) e Fe ( )aq aq    Eo  +0.771 V

2 3 2 2 2O ( ) 2H O ( ) 2e H O ( ) 2H O( )g aq aq     Eo  +0.6946 V

3I ( ) 2e 3I ( )aq aq    Eo  +0.5362 V

3 4
6 6Fe(CN) ( ) e Fe(CN) ( )aq aq    Eo  +0.355 V

2 2Ag O( ) H O( ) 2e 2Ag( ) 2OH ( )s s aq     Eo  +0.3428 V

2Cu ( ) 2e Cu( )aq s   Eo  +0.340 V

2 2Hg Cl ( ) 2e 2Hg( ) 2Cl ( )s aq    Eo  +0.2680 V

AgCl( ) 2e Ag( ) Cl ( )s s aq   Eo  +0.22216 V

3 2 22H O ( ) 2e H ( ) 2H O( )aq g    Eo  0 definition

2Pb ( ) 2e Pb( )aq s   Eo  0.1207 V

3 2V ( ) e V ( )aq aq    Eo  0.255 V

2Zn ( ) 2e Zn( )aq s   Eo  0.7628 V

2 22H O( ) 2e H ( ) 2OH ( )g aq    Eo  0.8280 V
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work function . . . . . . . . . . . . . . . . . 288

working electrode . . . . . . . . . . . . . . . . .

. . . . . . . . . 105,117123,232,#1337

ZEBRA battery . . . . . . . . . . . . . . #539

zeta potential . . . . . . . . . . . . . . . . . 301

zinc-(carbon, chloride) cell . . . . . . . 90

zinc-air cell . . . . . . . . . . . . . . . . . . . . 92

zirconia . . . . . . . . . . . . #129,69,102,173

zwitter ion . . . . . . . . . . . . . . 297,#1415


